Day |
Time |
Room |
Tuesday |
11:30-1:00 |
CS102 |
Thursday |
11:30-1:00 |
CS102 |
Topic |
Reference |
Further Readings |
1. Introduction |
Chapter 1, Mitchell |
Does Machine Learning
Really Work?, Tom Mitchell. |
2. Concept Learning |
Chapter 2, Mitchell |
Haym Hirsh, Nina Mishra, and Leonard Pitt (2004), Version Spaces and the Consistency Problem. Artificial Intelligence 156(2):115-138. |
3. Decision Trees |
Chapter 3, Mitchell |
C4.5 Tutorial, http://www2.cs.uregina.ca/~hamilton/courses/ 831/notes/ml/dtrees/c4.5/tutorial.html |
4. Support Vector Machines |
* C. J. C. Burges.
A
Tutorial on Support Vector Machines for Pattern Recognition. Knowledge
Discovery and Data Mining, 2(2), 1998. B. Schölkopf. A short tutorial on kernels, 2000. Tutorial given at the NIPS'00 Kernel Workshop. |
|
5. Neural Networks |
Chapter 4, Mitchell |
Neural Networks, Haykin The self-organizing map Kohonen, T.; Proceedings of the IEEE ,Vol: 78(9) Sept. 1990, Pages:1464 - 1480, [PDF] Self organization of a massive document collection Kohonen, T.; Kaski, S.; Lagus, K.; Salojarvi, J.; Honkela, J.; Paatero, V.; Saarela, A.; Neural Networks, IEEE Transactions on ,Vol 11(3) , May 2000 , Pages:574 - 585, [PDF] |
6. Bayesian Learning |
Chapter 6, Mitchell |
Chapter 2, Duda, Hart and Stork |
7. Bayesian Networks |
Chapter 6, Mitchell |
D. Heckerman. A
Tutorial on Learning with Bayesian Networks.
In Learning in Graphical Models, M. Jordan,
ed.. MIT Press, |
8. Hidden Markov Models |
An introduction to hidden Markov
models, Rabiner,
L.; Juang, B.; ASSP Magazine,
IEEE ,Volume: 3, Issue: 1 , Jan 1986 , Pages:4 - 16, PDF
Full-Text (6464KB)] |
|
9. Inductive Logic Programming, Sequential Covering, FOIL, PROGOL |
Chapter 10, Mitchell |
Inductive Logic
Programming: theory and methods - Muggleton, De Raedt - 1994 |
10. Clustering |
Chapter 10, Duda, Hart & Stork |
Data clustering: a review,
A. K. Jain, M. N. Murty, P. J. Flynn, ACM Computing
Surveys, Vol. 31, Issue 3, Pages: 264 - 323, 1999 |
11. Feature Selection |
Chapter 10, Duda, Hart & Stork (Section 10.13) |
A Taxonomy of
Feature Selection Methods, H. Liu et al. |
12. Query learning, Boosting, Ensemble classifiers |
Ensemble Learning.
T. G. Dietterich, In The Handbook of Brain Theory and Neural Networks,
Second edition, (M.A. Arbib, Ed.), Cambridge, MA: The MIT Press,
2002. Postscript
Preprint. A short introduction to boosting, Y. Freund and R.E. Schapire.Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, September 1999. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Dietterich, T. G., Bakiri, G. Journal of Artificial Intelligence Research 2: 263-286, 1995. Postscript file. Query by committee, H. S. Seung, M. Opper, H. Sompolinsky, Proceedings of the fifth annual workshop on Computational learning |
|
13. Reinforcement learning |
Chapter 13, Mitchell |
Reinforcement
Learning: A Survey Kaelbling, Littman and Moore |
14. Computational Learning Theory, PAC Learning |
Chapter 1, Kearns, Vazirani |
A Theory of the Learnable, Leslie Valiant, Communications
of the ACM, 27(11), 1984 Pdf An overview of statistical learning theory, V.N. Vapnik, IEEE Trans. Neural Networks, 10(5), 1999, PDF |
15. VC-Dimension |
Chapter 3, Kearns Vazirani |
Learnability and the Vapnik-Chervonenkis dimension Anselm Blumer, A. Ehrenfeucht, David Haussler, Manfred K. Warmuth, JACM, 36(4), 1989 |
16. Online learning and mistake bound models, halving,
weighted majority, perceptron, winnow |
Chapter 7, Mitchell |
Avrim Blum, "On-Line
Algorithms in Machine Learning" (a survey). Nick Littlestone, Learning Quickly when Irrelevant Attributes Abound: A New Linear-threshold Algorithm. Machine Learning 2:285--318, 1987. Littlestone and Warmuth, The Weighted Majority Algorithm. Information and Computation 108(2):212-261, 1994. Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire, and Manfred K. Warmuth. How to use expert advice, Journal of the ACM, 44(3):427-485, May 1997. BTW, for fun, here is the Mindreading program of Rob Schapire and Yoav Freund compiled for sparc or linux (note: you need to hit ctrl-D to quit). |
17. Weak and strong learnability |
Chapter 4, Kearns, Vazirani |
Yoav Freund and Rob Schapire, A
decision-theoretic generalization of on-line learning and an application to
boosting, Journal of Computer and System Sciences, 55(1):119-139, 1997. |
18. Learning in the presence of noise, Statistical
query model |
Chapter 5, Kearns, Vazirani | Dana Angluin: Queries and Concept Learning. Machine
Learning 2 (4): 319-342 (1987) |
19. Computational game theory |
COMPUTATIONAL
GAME THEORY: A TUTORIAL, Michael Kearns, NIPS 2002 Michael Kearns course on Computational Game Theory http://www.cis.upenn.edu/~mkearns/teaching/cgt |