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Abstract. Recently, Neural Network based Deep Learning (DL) back-
door attacks have prompted the development of mitigation mechanisms
for such attacks. Out of them a key mitigation mechanism is Neural
Cleanse, which helps in the identification and mitigation of DL backdoor
attacks. It identifies the presence of backdoors in Neural Networks and
constructs a reverse-engineered trigger, which is later used to mitigate
the backdoor present in the infected model. However, since the pub-
lication of Neural Cleanse, newer DL architectures (e.g., Transformer
models) have emerged and are widely used. Unfortunately, it is not clear
if Neural Cleanse is effective to mitigate backdoor attacks in these newer
models—in fact a negative answer will prompt researchers to rethink
backdoor attack mitigation. To that end, in this work, we take the first
step to explore this question. We considered models ranging from pure
convolution-based models like ResNet-18 to pure Self-Attention based
models like ConVit and understand the efficacy of Neural Cleanse after
launching backdoor attacks on these models. Our experiments uncover a
wide variation in the efficacy of Neural Cleanse. Even if Neural Cleanse
effectively counters backdoor attacks in some models, its performance
falls short when dealing with models incorporating self-attention layers
(i.e., Transformers), especially in accurately identifying target classes
and learning reverse-engineered triggers. Our results further hint that,
for modern models, mitigation of backdoor attacks by constructing re-
verse engineering triggers should consider patches (instead of pixels).

Keywords: Backdoor Attack · Neural Cleanse · convolution-based mod-
els · Self-Attention based models.

1 Introduction

With the development of the computational capabilities of modern computers,
Artificial Intelligence has acquired a spot as an integral part of our daily lives. In
fact, Deep Neural Networks (DNNs) have become the core of many critical tasks
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like facial recognition, guiding self-driving cars and creating voice interfaces for
home assistants in our day-to-day lives. Deep learning has also been applied
to security space for malware [13] and network intrusion detection [14] tasks.
Further advancements in the field of Deep learning (e.g., designing new architec-
tures) are continuously improving the performance of different tasks every day.
However, still, Neural networks are considered black-boxes in most context be-
cause studying the structure of those models give no insights about the structure
of the function being approximated by that model [15,16].

In spite of this lack of explainability of output, it is impossible to test deep
learning models exhaustively for all possible input values due to the versatility
of the application scenarios (e.g., object recognition). Thus even if some models
work fine on one input then they might work incorrectly on other input. In fact,
the situation might worsen if an attacker can control the inaccuracy of the model
output and misdirect an end user. This poses a great challenge of how secure
these models are for application on critical real work applications. Thus a large
amount of work in the community focused on how deep learning systems are very
vulnerable to attacks [12]—e.g., how adding perturbations to inputs of AI sys-
tems used in self-driving cars can sometimes force them to make wrong decisions
for a particular input. These vulnerabilities enable the possibility of backdoors
or “Trojans” in DNNs. Backdoors are hidden patterns in the data that have
been trained into a DNN model (e.g., by perturbing training data) that result in
unexpected behaviour but are undetectable unless activated by some “trigger”
input. A “trigger” refers to a small, carefully designed and imperceptible pattern
or modification that is added to an input image with the intention of causing
a misclassification or some other unintended behaviour when the model makes
predictions.

Given the severity of the problem of backdoor attacks, many countermea-
sures have been developed to identify and mitigate the presence of backdoors
in DNNs, but in past works, we found that these countermeasures were tested
only on smaller (and simpler) DNN and purely Convolutional Neural Network
(CNN) based models [1]. However, with the introduction of transformers [18],
many computer vision models, now, work with self-attention layers instead of
convolution layers only [19, 20]. This created a large gap between models on
which countermeasures against backdoor attacks were being tested and DNNs
that were being actually deployed in real-world scenarios. In this work, we take
a step to bridge this gap.

Specifically, in this work, we consider Neural Cleanse [2] (described in Sec-
tion 3). Neural Cleanse is a popular and representative backdoor attack mit-
igation algorithm, aimed towards identifying and mitigating backdoor attacks
in DNNs. Neural cleanse provides a mechanism to detect backdoor attacks and
then provide heuristics (based on unlearning) to update the DNN and undo the
effect of a trigger. In previous work, Neural Cleanse has been tested on CNN
models like VGG-16 and Resnet-101 [1], but there is no work on experimenting
with the robustness of Neural Cleanse on self-attention-based networks or a hy-
brid of the two. These newer models are the state of the art models and created
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revolution in terms of inference accuracy in practical tasks. Thus, pertaining to
the huge popularity of these models, it is necessary to understand if these models
can be protected against backdoor attacks, e.g., via Neural Cleanse—we focus
on DNN models used in computer visions or vision models. To that end, we ask
the following questions in this work in progress:

1. Can backdoor attacks be successfully launched against newer self-attention
based or hybrid architectures?

2. Does mitigation strategy like Neural Cleanse works on self-attention-based
and hybrid vision models? Why or why not?

We address these two questions using extensive experimentation. We re-
implemented Neural Cleanse into pytorch and launched the attacks on a number
of models ranging from pure convolution-based models like ResNet-18 to pure
Self-Attention based models like ConVit, trained on two popular datasets, wiz.
GTSRB (German Traffic Signal Recognition Benchmark) [21] and CIFAR-10 1.
Our results show that backdoor attacks indeed work on both older CNN models
as well as newer self-attention based or hybrid architectures. However, Neural
Cleanse is significantly less effective on mitigating backdoor attack on newer
models. Our analysis further reveal potential reasons behind this discrepancy
and identify a path forward. Next, we will start with describing related works
for our study.

2 Related Work

Attacks on deep learning models: A large amount of research has been con-
ducted on different types of attacks on Machine Learning models. These attacks
can be broadly classified into three categories Integrity attacks, Availability at-
tacks, and Privacy attacks. Backdoor attacks are a type of integrity attack in
which training data is poisoned with triggers and changing their label to a par-
ticular target class. There is a vast literature on how backdoor attacks can be
conducted on DNNs. Some different types of backdoor attacks on DNNs are
Outsourcing attacks, and Pretrained attacks [3]. Outsourcing attacks are older
forms of backdoor attack, where the attacker has access to the training of mod-
els [29,30]. The model can efficiently learn the attacker-chosen backdoor sub-task
and its main task at the same. Many variants of outsourcing attacks have been
identified by the community in the past. Other examples of outsourcing attacks
include dynamic trigger attacks and backdoor reinforcement learning attacks [3].
Pretrained attack is usually mounted via a transfer learning scenario, where the
user is limited with few data or/and computational resources to train an accu-
rate model. Therefore, the user will use a public or third-party pretrained model
to extract general features. Examples of such backdoors are Trojan attacks and
badnets [32,33].

1 https://www.cs.toronto.edu/ kriz/cifar.html
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Mitigation of backdoor attack on deep learning models: Countermea-
sures against backdoors can be largely classified into four categories wiz Blind
Backdoor removal, Offline Data Inspection, Offline Model Inspection and Online
Input Inspection. Blind backdoor removal methods can differentiated from other
methods based on fact that it does not differentiate backdoored model from a
clean model, or clean input from input with trigger. Some methods falling under
this class of countermeasures are Fine Pruning [7], Suppression [9], Februus [8],
ConFoc [10] and RAB [11]. These methods prove to be effective for backdoored
models but when applied on clean models, performance of models tend to de-
crease. Offline Data Inspection works on strong assumption that defenders have
access to the poisoned data. A few methods falling under this class include Spec-
tral Signature, Gradient Clustering, Activation Clustering, Deep k-NN, SCAn
and differential privacy [35, 36]. These countermeasures are mostly based on
clustering algorithms and fail to work effectively in case of special scaling-based
backdoor attacks. Offline Model inspections tend to avoid assumptions made by
data inspection methods; hence these are more suitable for countering attacks
resulting from various attacking surfaces. Methods falling under these classes are
Trigger Reverse Engineer, NeuronInspect, DeepInspect, AEGIS, Meta Classifier
and Neural Cleanse [2]. These methods generally require high computational
overhead and can’t deal with large triggers, especially those aiming to reverse
engineer the trigger. Online inspection methods can also be applied to monitor
the behaviour of either the model or input during run-time.

Research Gap: We found very less amount of literature on the evaluation
of the robustness of the Neural Cleanse algorithm [2], especially on modern-day
models like ConVit, ViT and DeiT. Work which most closely resembles our work
is [1], in which authors compared the performance of various countermeasures
mainly on convolution-based models like Resnet-18 and VGG19. To the best
of our knowledge, we could not find any work analysing whether self-attention-
based computer vision models can be backdoored. In this work, we tried to
perform backdoor attacks on self-attention-based and hybrid models, followed by
testing the performance of Neural cleanse on such models. Model architectures
considered in our study include Resnet-18, ConVit, ViT, DeiT and compact
transformer. Our exploration identify that Neural Cleanse does not work well
on self-attention based models and hint at a potential reason. For these newer
architectures, a mitigation strategy should consider patches instead of neurons.
Next section describes the methodology of our exploration.

3 Methodology

In this work, we examined the potential of backdoor attack and efficacy of the
defense (Neural Cleanse). To that end, we experimented with a variety of models
on the GTSRB (German Traffic Signal Recognition) and CIFAR-10 datasets.
The models considered in the experimentation phase can be broadly classified
into three categories completely convolution-based visual models, completely
Self-Attention based visual models and hybrid Models. We start first with a
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description of these models and then provide an overview of Neural Cleanse
along with the attack model, that we followed in this work.

3.1 Computer Vision Models - Preliminaries

Convolution Neural Network: A Convolutional neural network (CNN) is a
neural network that has one or more convolutional layers. In our experiments,
we primarily focused on a 6-layer CNN network and Resnet-18 to carry out our
experiments. ResNet-18 is a convolutional neural network that is 18 layers deep.
Skip connections or shortcuts are used to jump over some layers.

Self-Attention Based Models: The increasing popularity of transformers
in NLP has led to the development of visual models based only on the atten-
tion mechanism, completely removing convolution layers. In these Self-Attention
based models at first, input images are divided into nonoverlapping patches be-
fore embedding them into a multidimensional space. In the context of attention-
based models like the Vision Transformer (ViT) [19] and Data-efficient Image
Transformer (DeiT) [20], the image patches are also referred to as “tokens”.
These patches are then treated as individual elements, allowing the model to
process them separately and perform attention mechanisms over them.

ViT stands for Vision Transformer. The standard Transformer receives as
input a 1D sequence of token embeddings. To handle 2D images, image x ∈
RH×W×C is reshaped into a sequence of flattened 2D patches xp ∈ RN×(P 2C),
where (H,W ) is the resolution of the original image, C is the number of channels,
(P, P ) is the resolution of each image patch, and N = HW/P 2 is the resulting
number of patches, which also serves as the effective input sequence length for the
Transformer. The output of this patch projection is referred to as embeddings.

DeiT stands for Data-efficient Image Transformer. A Data-Efficient Image
Transformer is a type of Vision Transformer for image classification tasks. The
model is trained using a teacher-student strategy specific to transformers. It
relies on a distillation token, ensuring that the student learns from the teacher
through attention. The architecture is similar to that of ViT, but it can be
trained in much less time than compared to ViT.

Hybrid models: While pure self-attention-based models provide high accu-
racy, their data-hungry nature while training puts a bottleneck to their usability.
To eliminate such constraints, hybrid models are developed, which have convo-
lution and self-attention layers. In past studies, it has been identified that the
first few convolution layers, followed by self-attention layers, enhance the per-
formance of visual models on classification tasks and also reduce the amount of
data required to train the model. One such hybrid model is the Compact trans-
former [38]. Initially, features in the image are identified using convolution layers
which are later processed using a transformer encoder. Another hybrid model
considered in our study is ConVit [39], which stands for Convolution-like Vision
Transformer.



6 Raj et al.

3.2 Setting up Neural Cleanse

Attack Model: Attack models considered by the algorithm are BadNets [40]
and Trojan Attack [41]. BadNets is a backdoor attack methodology in which the
adversary has access to the training data, and the same trigger is added to the
input data points irrespective of the input. In contrast, in Trojan attacks, the
trigger is engineered based on the infected model. Both attack models poison
the model during its training phase. Neural cleanse assume that the defender
has access to trained DNNs, a set of clean samples to test the performance of
the model, and access to computational resources to test or modify DNNs.

Backdoor detection phase: The fundamental premise of backdoor detection
is that, compared to other uninfected labels, the target label might be incorrectly
classified as an infected model with considerably smaller adjustments. Therefore,
we repeatedly go through all of the model’s labels to see whether any may be
misclassified with a lower amount of alteration. The three stages below make up
our whole method.

– Step 1: For a given label, it treats it as a potential target label of a targeted
backdoor attack. An optimization scheme is designed to find the “minimal”
trigger required to misclassify all samples from other labels into this target
label. In the vision domain, this trigger defines the smallest collection of
pixels and its associated colour intensities to cause misclassification.

– Step 2: Step 1 is repeated for each output label in the model. For a model
with N = |L| labels, this produces N potential “triggers”.

– Step 3: After coming up with N potential triggers, the size of each trigger
is measured by the number of pixels each trigger candidate has, i.e. how
many pixels the trigger is replacing. Finally, it runs an outlier detection
algorithm to detect if any trigger candidate is significantly smaller than
other candidates.

Mitigation of Backdoor attack phase: After the detection of a backdoor
in the model, multiple approaches are proposed to mitigate the backdoor. The
first approach involves filtering inputs with a trigger by analysing neural acti-
vations. The second approach involves updating DNN via neuron pruning, i.e.
removing those neurons that produce strong activations in the presence of trig-
gers. We primarily focus on a third approach which involves updating DNN via
unlearning.

Updating DNN via unlearning involves retraining the poisoned model with
reversed engineered trigger assisting in unlearning the backdoor present in the
model. The methodology involves adding triggers to randomly picked images but
keeping their labels intact and then training the model on the modified dataset.
For this methodology, two variants are considered, one in which retraining is
done on a dataset prepared with reverse engineered trigger and another one in
which the dataset is prepared with the original trigger.
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Our implementation of Neural Cleanse: We used the implementation
of the Neural cleanse provided in the actual paper 2 and re-implemented it in
the Pytorch framework. To ease the understandability of the code, we created
a module for the injection of the model (one illustration of trigger injection
is shown in Figure 1), which first trains the model on the clean dataset and
then performs pretrained backdoor attack by finetuning the model with poisoned
input. This is followed by the module for the detection of a backdoor in the
model, which also constructs the reverse-engineered trigger.

Fig. 1. Image on left shows the original image from the dataset, the image in the middle
shows the trigger added to the image, and rightmost image shows poisoned input image

After constructing the reverse-engineered trigger, we updated the DNN by
unlearning the model, which uses both the original trigger and reverse-engineered
trigger. Both of the triggers are used in the process because it provides us with
a heuristic to measure the quality of reverse engineered trigger.

4 Efficacy of Backdoor Attack and Attack Mitigation on
Newer Models

We experimented with Neural Cleanse on different types of models. To test the
performance of neural cleanse in the identification of a backdoor in the model, we
logged the results in Table 2 and Table 4. Finally, to check the quality of reverse
engineering, we applied the neural updating method by unlearning introduced
in the paper. The results have been presented in Table 3 and 5.

4.1 Backdoor attack success on newer architectures

In our experiments, we found that the backdoor attack injection was successful.
This can be inferred from Table 3 where the drop of accuracy on clean samples
was very low, but the accuracy for inputs with trigger was very high. This trend is
consistent across all models, with slightly low accuracy for compact transformers.

2 https://github.com/bolunwang/backdoor
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GTSRB CIFAR-10
Models

AI TargetNorm AI TargetNorm

6 layer CNN 2.89 0.51 2.17 0.67

Resnet - 18 2.18 0.78 3.09 0.73

DeiT Classified wrong 0.73/0.79 1.31 0.67

ViT Classified wrong 0.81/0.819 1.71 0.85

Convit 2.21 0.68 2.21 0.73

Compact Transformer 2.45 0.76 2.75 0.71

Table 1. AI (Anomaly Index) and norm of mask for target class found in case of
different models

The confidence of Neural Cleanse about the presence of a backdoor in a model
is conveyed by the value of AI (Anomaly Index), which represents the amount
by which minimum mask size varies from the median value. The AI obtained in
experiments has been presented in Table 1. Neural Cleanse detected wrong class
in self attention based models like DeiT and ViT.

4.2 Efficacy of Neural Cleanse for identifying backdoors

In our experiments, we found that neural cleanse worked well in the case of pure
convolution-based models like CNN and Resnet-18.

Models Accuracy 1 Accuracy 2 Accuracy 3

6 layer CNN 0.927 0.964 0.983

Resnet - 18 0.97 0.981 0.991

VIT (Finetuned) 0.973 0.979 0.993

DeiT (Finetuned) 0.977 0.983 0.987

Compact Transformer 0.961 0.981 0.965

Convit (Finetuned) 0.961 0.98 0.991

Table 2. Table showing performance of neural cleanse for backdoor identification;
Accuracy of different models on GTSRB dataset, in different scenarios; Accuracy1 -
Accuracy of infected models on clean samples; Accuracy2 - Accuracy of the clean model
on clean samples; Accuracy3 - Accuracy of the infected model on poisoned samples

Models Accuracy 1 Accuracy 2 Accuracy 3

6 layer CNN 0.934 0.965 0.987

Resnet - 18 0.974 0.984 0.991

VIT 0.973 0.984 0.983

DeiT 0.977 0.987 0.984

Compact Transformer 0.972 0.99 0.975

Convit (Finetuned) 0.961 0.98 0.991

Table 3. Table showing performance of neural cleanse for backdoor identification;
Accuracy of different models on CIFAR-10 dataset, in different scenarios; Accuracy1 -
Accuracy of infected models on clean samples; Accuracy2 - Accuracy of the clean model
on clean samples; Accuracy3 - Accuracy of the infected model on poisoned samples
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Table 2 and 3 show the quality of backdoor injection in models. We can see
that there is a slight drop in the accuracy of models when tested on clean samples,
but for poisoned samples, a significant proportion of inputs are classified as the
target class. This tends to be in line with results presented in past literature.
The accuracy of the infected model on poisoned inputs is slightly less, showing
the attack’s smaller success in the GTSRB dataset.

One interesting observation in our experiment was that on GTSRB dataset,
neural cleanse failed to identify the correct target class for both self-attention
models. This was due to a minor size difference obtained between the norm of
the mask with the target class and some other classes. Also, in the case of using
CIFAR-10 dataset, these two models have low Anomaly Index (AI).

4.3 Quality of reverse engineered trigger created by Neural Cleanse

The reversed engineered trigger has been shown in Figure 2. The trigger for
ResNet-18 is more visually similar to the original trigger than the trigger for
ViT. To test further the quality of reverse-engineered triggers, we used neural
updating via the unlearning method, which mitigates the backdoor in the model
by retraining the poisoned model with reverse-engineered and original triggers.

Models Accuracy 1 Accuracy 2 Accuracy 3

6 layer CNN 0.935 0.89 0.964

Resnet - 18 0.946 0.94 0.981

Deit 0.853 0.94 0.987

ViT 0.871 0.96 0.993

Convit 0.913 0.972 0.991

Compact Tranformer 0.74 0.95 0.981

Table 4. Table showing performance of neural cleanse for backdoor identification;
Accuracy of different models on GTSRB dataset, in different scenarios; Accuracy1 -
Accuracy of model cleaned using reverse engineered trigger; Accuracy2 - Accuracy of
model cleaned using original trigger; Accuracy3 - clean model on clean samples

Models Accuracy 1 Accuracy 2 Accuracy 3

6 layer CNN 0.947 0.941 0.965

Resnet - 18 0.951 0.956 0.984

DeiT 0.893 0.961 0.984

ViT 0.875 0.954 0.987

Convit 0.923 0.948 0.990

Compact Transformer 0.871 0.962 0.980

Table 5. Table showing performance of neural cleanse for backdoor identification;
Accuracy of different models on CIFAR-10 dataset, in different scenarios; Accuracy1 -
Accuracy of model cleaned using reverse engineered trigger; Accuracy2 - Accuracy of
model cleaned using original trigger; Accuracy3 - clean model on clean samples

Table 5 and table 4 show the accuracy of models after unlearning using
the original trigger and reverse engineered trigger. The accuracy of the clean
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Fig. 2. Image on the left shows the original trigger used to infect the model; Image in
centre shows reversed engineer for ResNet-18; Rightmost image shows reversed engi-
neered trigger for ViT

model on clean sample is as expected. While performing the neural updating by
unlearning, we observed that accuracy after retraining with reverse engineered
trigger was significantly low compared to retraining with the original trigger
in the case of Pure self attention-based models showing lower quality reverse
engineered trigger. The image generated by Neural Cleanse showed a similar drop
in the case of the compact transformer, but the drop in the case of ConVit was
not that significant. This behaviour was consistent across both datasets, showing
consistency of the pattern observed. From these observations, we hypothesized
that the performance of Neural cleanse declines with an increase in the self-
attention behavior of the model on which it is being employed.

Finally, we investigate the reason behing these observations—why Neural
Cleanse can not devise good quality reverse engineered triggers for pure self-
attention networks.

5 Understanding Quality of Mitigation by Neural Cleanse

We first aim to open the black box—specifically we aim to understand the impact
of the reverse engineered triggers offered by Neural Cleanse for both older CNN
models as well as newer transformer model. We focus on four dimensions—
amount of neurons activated by reverse trigger, type of neurons activated by
reverse trigger, pace of learning across models and impact of trigger on discrete
patches in images (rather than pixels).

5.1 Comparing Fraction of Activated Neurons Across Models

Network Dissection [37] from Bau et al. is a method for quantifying the inter-
pretability of deep visual representations learned by neural networks. This work
argued that while neural networks have achieved impressive performance on a
variety of visual recognition tasks, the representations learned by these networks
are often difficult to interpret or understand. This lack of interpretability can
limit the usefulness of neural networks in real-world applications where trans-
parency and explainability are important.
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To address this problem, Bau et al. proposed a method to interpret the
visual representations learned by neural networks. The method involves using
semantic segmentation to identify objects in images and then measuring the
activation of individual units in the neural network in response to those objects.
They introduce a new metric called the “dissected unit”, which measures the
activation of a unit in response to a specific object. This metric can be used to
quantify the degree to which a unit in the neural network is interpretable, i.e.
how well it corresponds to a semantically meaningful visual concept.

The paper demonstrates the usefulness of the proposed method by applying
it to several state-of-the-art neural networks trained on object recognition and
scene classification tasks. The authors show that the method can be used to
compare different layers in a network and to identify which layers contain more
interpretable visual features. They also demonstrate that networks with higher
interpretability tend to perform better on recognition tasks.

We built on network dissection to fit our purpose of studying the fraction of
neurons which get activated in presence of a trigger. Since, we are using different
types of models so defining neurons which we consider during this experiment
becomes important for the comparison. Therefore, to maintain consistency in
the comparisons, we considered outputs of all Linear and Conv2D layer neurons.
Steps of the algorithm: The existing implementations of Network Dissec-
tion [37] are not able to handle self-attention based vision transformers and thus
we step into modifying the algorithm as follows:

1. Attach forward hooks to each neuron of each convolutional layer
and linear layer of the model: This step involves adding a forward hook
to each neuron in every convolutional and linear layer of the neural network
model. A forward hook is a function that is executed every time the output of
a neuron is computed during a forward pass through the network. By attaching
forward hooks to each neuron, we can log the activation of each neuron during
the forward pass.

2. Log activation of all hooked neuron activations in absence of
trigger: After attaching the forward hooks, we log the activation of each hooked
neuron in the absence of any trigger. This means that we simply run the input
data through the network and record the activation of each neuron as it is
computed.

3. Log activation of all hooked neuron activations in presence of
trigger. Next, we log the activation of each hooked neuron in the presence of
a trigger. The trigger selectively activates certain neurons and this step enables
us to observe how they respond to the input contaminated with the trigger.

4. Final result is percentage of neurons whose activation has in-
creased more than a threshold: We compare the activation of each neuron
in each model in the absence and presence of the trigger and calculate the per-
centage of neurons whose activation has increased more than a certain threshold.
This threshold is typically set to a small percentage of the maximum possible
activation value, such as 1% or 5%.



12 Raj et al.

Presence of
poison in
model

Type of
Trigger

6-layer
CNN

Resnet
Compact

Transformer
ConVit ViT DeiT

Poisoned
Model

Reverse
Eng

27.56 25.56 23.52 27.45 26.84 24.65

Poisoned
Model

Original 31.25 30.14 27.56 29.56 34.25 30.47

Clean
Model

Reverse
Eng

31.25 30.14 27.56 29.56 34.25 30.47

Clean
Model

Original 34.25 32.62 31.52 30.52 35.62 32.52

Table 6. Percentage of neurons activated due to the presence of original and reverse
engineered trigger in the input.

Neurons that meet this criterion are considered to be “triggered” by the trig-
ger pattern. By measuring the percentage of triggered neurons, we can estimate
the susceptibility of the network to adversarial attacks. The percentage of neu-
rons activated in each model have been summarized in 6. These results showed
no significant difference in these models.

5.2 Comparing Importance of Activated Neurons Across Models

With no discerning pattern in the above experiment, we went ahead to see if the
same set of neurons as in the previous experiment are getting activated across
the models in the presence of reverse engineered trigger as well.
Neuron Importance: In this case, following Neural Cleanse, we defined neuron
importance. Neuron importance refers to ranking of neurons based on activation
due to presence of a trigger in the input to the poisoned model. The higher the
activation, lower the rank and hence, the neuron has higher importance.
Steps in the algorithm: The steps involved in the experiment include:

1. Attach forward hooks to each neuron of each layer: Similar to the
previous experiment, this step involves adding a forward hook to each neuron in
every layer of the neural network model.

2. Rank neurons according to activation due to presence of original
trigger: After attaching the forward hooks, we first inject original trigger pat-
tern to the input data and record the activation of each neuron in the presence
of the trigger. We then rank the neurons according to their activation levels in
response to the trigger. Neurons that exhibit high activation levels in response
to the trigger are considered to be important for the network’s response to the
input.

3. Rank neurons according to activation due to presence of reverse
engineered trigger: Next, we inject the reverse engineered trigger pattern to
the input data and record the activation of each neuron in the presence of the
trigger. We then rank the neurons according to their activation levels in response
to the trigger. This step helps us understand how the network responds to reverse
engineered trigger and which neurons are identified by Neural Cleanse as being
poisoned.
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Having identified the neurons most activated by original and reverse engi-
neered trigger, we used precision@k metric to compare the two ranked lists.
Precision@k is a commonly used metric for evaluating the performance of rec-
ommendation systems and information retrieval systems. It measures the pro-
portion of relevant items that are included in the top k results recommended
or retrieved by the system. The metric is particularly useful when the num-
ber of recommended or retrieved items is large, as it allows for a finer-grained
evaluation of the system’s performance.

Finally, to have a better understanding of the results, we divided the training
period of Neural Cleanse into three phases. If the model takes 30 epochs to learn
reverse engineered trigger, we define phase-1 as the first 10 epochs by which
one-third of the training is roughly completed. Phase-2 comprises of the period
till two-third of training is complete (20 epochs). Finally, phase-3 lasts till the
training is complete. Also, since the models used differ largely in terms of number
of neurons we chose a range of values of k instead of fixing to a single value of k.

Model K=10 K=100 K=1000 K=10,000 K=50,000 K=100,000

6-Layer
CNN

0.3 0.54 0.57 0.53 0.61 0.62

Resnet 0.1 0.39 0.42 0.52 0.54 0.51

Compact
Transformer

0.0 0.05 0.13 0.19 0.15 0.15

ConVit 0.0 0.14 0.12 0.21 0.26 0.21

ViT 0.1 0.11 0.17 0.24 0.21 0.27

DeiT 0.0 0.09 0.19 0.15 0.25 0.23

Table 7. Precision@K for the phase-1 of training period.

Model K=10 K=100 K=1000 K=10,000 K=50,000 K=100,000

6-Layer
CNN

0.3 0.52 0.51 0.57 0.63 0.59

Resnet 0.1 0.41 0.47 0.51 0.58 0.51

Compact
Transformer

0.1 0.07 0.14 0.17 0.21 0.24

ConVit 0.0 0.19 0.16 0.24 0.27 0.31

ViT 0.0 0.15 0.17 0.14 0.24 0.26

DeiT 0.0 0.12 0.16 0.24 0.31 0.27

Table 8. Precision@K for the phase-2 of training period.
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Model K=10 K=100 K=1000 K=10,000 K=50,000 K=100,000

6-Layer
CNN

0.6 0.59 0.61 0.53 0.57 0.59

Resnet 0.2 0.45 0.42 0.41 0.53 0.56

Compact
Transformer

0.0 0.14 0.19 0.24 0.28 0.34

ConVit 0.1 0.17 0.24 0.21 0.27 0.29

ViT 0.0 0.15 0.19 0.21 0.29 0.31

DeiT 0.2 0.24 0.21 0.31 0.27 0.34

Table 9. Precision@K for the phase-3 of training period.

The results of this experiment are shown in table 7, 8 and 9. CNN achieved
very high precision for the first phase of training only, and it improved further.
Also, the important thing to note is that it has a very high precision value for
smaller values of k, meaning that neural cleanse successfully identifies poisoned
neurons in the case of the CNN model. Resnet model depicted similar nature to
6-layer CNN, but it had slightly lower precision values compared to the CNN
model. Compact transformer and ConVit showed very low precision values in
the first two training phases, and eventually, they covered up in the last phase.
Also, both of these models have very small precision values for small values
of k, and they increase eventually, showing that the Neural cleanse failed to
correctly identify the right neurons, which are affected most by the backdoor
injection. Self-Attention based models show similar nature to the hybrid models,
but they show an interesting trend in that they have lower precision during initial
phases of model training, but they eventually get higher value compared to the
hybrid model. From this, we inferred that learning the most affected neurons in
newer models is a slower process compared to older models. Also, they have low
precision values for smaller values of k, just like hybrid models.

5.3 Comparing Pace of Learning Across Models

Finally, we quantitatively check if self-attention-based models learn the reverse-
engineered trigger. Through this experiment, we wanted to see if all the models
learned the reverse-engineered trigger at the same pace.

We divided the period of running of Neural Cleanse, i.e., the number of epochs
required by Neural Cleanse to learn the reverse-engineered trigger, into multiple
phases. Dividing the running period into multiple phases helps monitor the op-
timisation’s progress. We log the minimum norm of activations for each class at
the end of each phase. The norm refers to the magnitude of the weight vector
of the reverse-engineered trigger for each class. The minimum norm represents
the minimum value of the norm achieved during the optimization process for a
particular class. By logging the minimum norm at the end of each phase, we can
track the progress of the optimization and determine whether the algorithm is
converging to a good solution. This logging helped us also to quantify the pace
at which the model is learning the reverse-engineered trigger. Also, to study the
pace, we have divided the training phase into 3 phases similar to the previous
experiment.
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Fig. 3. Figure on left shows minimum norm(y-axis) vs Class label(x-axis) plot at the
end of first phase of training for 6-layer CNN. Figure on middle shows minimum
norm(y-axis) vs Class label(x-axis) plot at the end of second phase of training for
6-layer CNN. Figure right shows minimum norm(y-axis) vs Class label(x-axis) at the
end of training process for 6-layer CNN.

Fig. 4. Figure on left shows minimum norm(y-axis) vs Class label(x-axis) plot at the
end of first phase of training for ConVit. Figure on middle shows minimum norm(y-
axis) vs Class label(x-axis) plot at the end of second phase of training for ConVit.
Figure right shows minimum norm(y-axis) vs Class label(x-axis) at the end of training
process for ConVit.

Fig. 5. Figure on left shows minimum norm(y-axis) vs Class label(x-axis) plot at the
end of first phase of training for ViT. Figure on middle shows minimum norm(y-axis)
vs Class label(x-axis) plot at the end of second phase of training for ViT. Figure below
shows minimum norm(y-axis) vs Class label(x-axis) at the end of training process for
ViT.

To understand the generated results visually, we plotted the minimum norm
for each class in all three phases (Figure 3, 4, 5). Through this, we concluded
the following points:

– CNNs learn the reverse-engineered trigger very early in the training process,
and the target class trigger has a significantly lower norm than other classes
at all phases of training.
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– Hybrid models have a relatively slower learning process than CNNs. For our
set of hyperparameters for ConVit, we also noticed that eventually, another
class which is not visually similar to the target class gains a very small norm
which is still more than the norm of the target class.

– Self-attention-based models have an even slower pace of learning than hybrid
models. In both ViT and DeiT, we also noticed that there are multiple classes
with very low minimum norms, and some even have lower norms than the
target class, leading to misclassification of the target class by Neural Cleanse.

5.4 A way forward for Protecting Tranformer Models: Focussing on
Patches instead of Pixels

Since the defenses which were applicable for earlier models is not quite effective
for self-attention based models, we finally, check what is the key difference be-
tween how the self-attention based and old models work. Self-attention based
image models revolutionize the way we process visual data by breaking images
into discrete patches. This approach is notably different from traditional DNNs,
which operate seamlessly on pixel-level data. The implications of this difference
are profound. In traditional DNNs, backdoor triggers are often discernible at
the pixel level, enabling Neural Cleanse to identify and mitigate them effec-
tively. However, in self-attention models, the patching system introduces a layer
of abstraction. This abstraction can effectively camouflage backdoor triggers
within the patches, rendering them far less conspicuous to conventional detec-
tion methods. Moreover, the non-overlapping nature of patches means that a
backdoor trigger can be distributed across multiple patches, making it challeng-
ing for Neural Cleanse to identify coherent patterns that indicate a backdoor’s
presence. This patch-based processing obscures the direct relationship between
trigger and output, further complicating the detection process.

Neural Cleanse heavily relied on the reverse engineering of backdoor triggers
which are identifiable at pixel level. In the context of self-attention-based image
models, this step becomes a formidable challenge due to the unique characteris-
tics of the triggers, Triggers generated in these models tend to be highly nuanced
and subtle, often resembling legitimate features of the data.
A proof of concept for potential effectiveness of patch-centric ap-
proach: As a very preliminary test, we compared the Euclidean distances be-
tween the original trigger and the CNN-reverse-engineered trigger (0.014) versus
the original trigger and the VIT-reverse-engineered trigger (0.023). the former
exhibited a more pronounced resemblance, potentially resulting in better per-
forming reverse triggers. This observation leads us to hypothesize that triggers
may be generated on a patchwise basis within self-attention based models. Thus,
our results hint that, Neural Cleanse’s reliance on reverse engineering based on
identification of specific, distinguishable trigger patterns resulted in its ineffec-
tiveness to protect self-attention models. In self-attention models, these patterns
become intricately intertwined with the natural structure of the data, making it
arduous to isolate and categorize them accurately.
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6 Concluding Discussion

In this work in progress, we aimed to study the robustness of Neural Cleanse on
different models when they face backdoor attacks. We experimented by attack-
ing CNN, ResNet-18, ConVit, Compact Transformer, ViT and DeiT on GTSRB
and CIFAR-10 dataset. We further used Neural Cleanse to detect and miti-
gate attacks on all cases. Through the set of models, we aimed to cover pure
convolution-based models, pure self-attention-based vision models and hybrid
models. To test the quality of reverse engineered trigger, we used Neural Patch-
ing using unlearning, which involves retraining of model with reverse engineered
trigger and original trigger to mitigate the backdoor present in the model.

Through our experiments, we found that while backdoor attacks could be suc-
cessfully applied on newer self-attention based models, the neural cleanse method
failed to correctly identify the target class in the case of pure self-attention-
based models like ViT and DeiT for the GTSRB dataset. In fact, in the case
of CIFAR-10 dataset, the AI index (which shows the confidence of algorithm
about the presence of backdoor) was very low compared to other models. The
performance drop of the model in the case of retraining with reverse engineered
trigger was found to be significantly higher in the case of ViT, DeiT and compact
transformer.

Finally, we designed experiments to understand the varying efficacy of Neu-
ral Cleanse on observed anomalies. Specifically, we studied neural activation due
to the presence of original and reverse-engineered triggers in different models.
We also studied the pace of learning of reverse-engineered triggers for different
models. Our experiments found that even though there was no significant differ-
ence in overall neural activations in all models by either the original or reverse-
engineered trigger, the reverse-engineered trigger identified the most poisoned
neurons in the case of CNNs but failed drastically for models with self-attention
layers. We also noticed that the presence of a self-attention layer slowed down
the process of learning reverse-engineered triggers. Our results finally hint that
the patching mechanism in the Self-attention model can be the potential reason
for this phenomenon. Our results pave the way to more robust and principled
backdoor attack mitigation for self-attention based newer vision models.

References

1. Qiu, H., Ma, H., Zhang, Z., Abuadbba, A., Kang, W., Fu, A., Gao, Y. (2022).
Towards A Critical Evaluation of Robustness for Deep Learning Backdoor Coun-
termeasures. ArXiv, abs/2204.06273.

2. Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., Zhao, B.Y. (2019).
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks.
2019 IEEE Symposium on Security and Privacy (SP), 707-723.

3. Gao, Y., Doan, B.G., Zhang, Z., Ma, S., Zhang, J., Fu, A., Nepal, S., Kim, H.
(2020). Backdoor Attacks and Countermeasures on Deep Learning: A Comprehen-
sive Review. ArXiv, abs/2007.10760.

4. Liu, Y., Xie, Y., Srivastava, A. (2017). Neural Trojans. 2017 IEEE International
Conference on Computer Design (ICCD), 45-48.



18 Raj et al.

5. Gu, T., Dolan-Gavitt, B., Garg, S. (2017). BadNets: Identifying Vulnerabilities in
the Machine Learning Model Supply Chain. ArXiv, abs/1708.06733.

6. Ji, Y., Zhang, X., Ji, S., Luo, X., Wang, T. (2018). Model-Reuse Attacks on Deep
Learning Systems. Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security.

7. Liu, K., Dolan-Gavitt, B., Garg, S. (2018). Fine-Pruning: Defending Against Back-
dooring Attacks on Deep Neural Networks. RAID.

8. Doan, B.G., Abbasnejad, E., Ranasinghe, D.C. (2020). Februus: Input Purifica-
tion Defense Against Trojan Attacks on Deep Neural Network Systems. Annual
Computer Security Applications Conference.

9. Sarkar, E., Alkindi, Y., Maniatakos, M. (2020). Backdoor Suppression in Neural
Networks using Input Fuzzing and Majority Voting. IEEE Design & Test, 37, 103-
110.

10. Villarreal-Vasquez, M., Bhargava, B.K. (2020). ConFoc: Content-Focus Protection
Against Trojan Attacks on Neural Networks. ArXiv, abs/2007.00711.

11. Weber, M., Xu, X., Karlas, B., Zhang, C., Li, B. (2020). RAB: Provable Robustness
Against Backdoor Attacks. ArXiv, abs/2003.08904.

12. Chernikova, A., Oprea, A., Nita-Rotaru, C., Kim, B. (2019). Are Self-Driving Cars
Secure? Evasion Attacks Against Deep Neural Networks for Steering Angle Pre-
diction. 2019 IEEE Security and Privacy Workshops (SPW), 132-137.

13. Wang, Q., Guo, W., Zhang, K., Ororbia, A., Xing, X., Liu, X., Giles, C.L. (2017).
Adversary Resistant Deep Neural Networks with an Application to Malware Detec-
tion. Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.

14. Debar, H., Becker, M., Siboni, D. (1992). A neural network component for an
intrusion detection system. Proceedings 1992 IEEE Computer Society Symposium
on Research in Security and Privacy, 240-250.

15. C. Wierzynski, ”The Challenges and Opportunities of Explainable AI”,
https://ai.intel.com/the-challenges-and-opportunities-of-explainable-ai, Jan. 2018.

16. ”FICO’s Explainable Machine Learning Challenge”,
https://community.fico.com/s/explainable-machine-learning-challenge, 2018.

17. Neff, Gina & Nagy, Peter. (2016). Talking to Bots: Symbiotic Agency and the Case
of Tay. International Journal of Communication. 10. 4915-4931.

18. Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I. (2017). Attention is All you Need. ArXiv, abs/1706.03762.

19. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.
(2021). An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. ArXiv, abs/2010.11929.

20. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., J’egou, H. (2021).
Training data-efficient image transformers & distillation through attention. ICML.

21. Stallkamp, Johannes & Schlipsing, Marc & Salmen, Jan & Igel, Christian. (2011).
The German Traffic Sign Recognition Benchmark: A multi-class classification com-
petition. Proceedings of the International Joint Conference on Neural Networks.
1453 - 1460. 10.1109/IJCNN.2011.6033395.

22. ”Learning Multiple Layers of Features from Tiny Images”, Alex Krizhevsky, 2009.
23. Saha, A., Subramanya, A., & Pirsiavash, H. (2020). Hidden Trigger Backdoor At-

tacks. ArXiv, abs/1910.00033.
24. Ayub, M.A., Johnson, W.A., Talbert, D.A., & Siraj, A. (2020). Model Evasion

Attack on Intrusion Detection Systems using Adversarial Machine Learning. 2020
54th Annual Conference on Information Sciences and Systems (CISS), 1-6.



Title Suppressed Due to Excessive Length 19

25. Jagielski, M., Severi, G., Harger, N.P., & Oprea, A. (2021). Subpopulation Data
Poisoning Attacks. Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security.

26. Zhou, X., Xu, M., Wu, Y., & Zheng, N. (2021). Deep Model Poisoning Attack on
Federated Learning. Future Internet, 13, 73.

27. Shapira, A., Zolfi, A., Demetrio, L., Biggio, B., & Shabtai, A. (2022). Denial-of-
Service Attack on Object Detection Model Using Universal Adversarial Perturba-
tion. ArXiv, abs/2205.13618.

28. Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017). Membership Inference
Attacks Against Machine Learning Models. 2017 IEEE Symposium on Security
and Privacy (SP), 3-18.

29. T. Gu, B. Dolan-Gavitt, and S. Garg, ”Badnets: Identifying vulnerabilities in the
machine learning model supply chain,” arXiv preprint arXiv:1708.06733, 2017.

30. X. Chen, C. Liu, B. Li, K. Lu, and D. Song, ”Targeted backdoor attacks on deep
learning systems using data poisoning”, arXiv preprint arXiv:1712.05526, 2017.

31. Li, Y., Li, Y., Wu, B., Li, L., He, R., & Lyu, S. (2021). Invisible Backdoor At-
tack with Sample-Specific Triggers. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), 16443-16452.

32. Guo, W., Wang, L., Xu, Y., Xing, X., Du, M., & Song, D. (2020, November).
Towards inspecting and eliminating trojan backdoors in deep neural networks. In
2020 IEEE International Conference on Data Mining (ICDM) (pp. 162-171). IEEE.

33. Gu, T., Dolan-Gavitt, B., & Garg, S. (2017). Badnets: Identifying vulnerabilities
in the machine learning model supply chain. arXiv preprint arXiv:1708.06733.

34. A. Chan and Y.-S. Ong, “Poison as a cure: Detecting & neutralizing variable-sized
backdoor attacks in deep neural networks,” arXiv preprint arXiv:1911.08040, 2019.

35. Z. Xiang, D. J. Miller, and G. Kesidis, “A benchmark study of backdoor data
poisoning defenses for deep neural network classifiers and a novel defense,” in 2019
IEEE 29th International Workshop on Machine Learning for Signal Processing
(MLSP). IEEE, 2019, pp. 1–6.

36. B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,” in Ad-
vances in Neural Information Processing Systems (NIPS), 2018, pp. 8000–8010.
[Online]. Available: https://github.com/ MadryLab/backdoor data poisoning

37. Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. (2017). Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 6541-6549).

38. Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., & Shi, H. (2021).
Escaping the big data paradigm with compact transformers. arXiv preprint
arXiv:2104.05704.

39. d’Ascoli, S., Touvron, H., Leavitt, M. L., Morcos, A. S., Biroli, G., & Sagun, L.
(2021, July). Convit: Improving vision transformers with soft convolutional in-
ductive biases. In International Conference on Machine Learning (pp. 2286-2296).
PMLR.

40. Gu, T., Dolan-Gavitt, B., & Garg, S. (2017). Badnets: Identifying vulnerabilities
in the machine learning model supply chain. arXiv preprint arXiv:1708.06733.

41. Tang, R., Du, M., Liu, N., Yang, F., & Hu, X. (2020, August). An embarrass-
ingly simple approach for trojan attack in deep neural networks. In Proceedings of
the 26th ACM SIGKDD international conference on knowledge discovery & data
mining (pp. 218-228).


