
CCCC: Corralling Cookies into Categories with CookieMonster
Xuehui Hu

King’s Collage London
London, UK

xuehui.hu@kcl.ac.uk

Nishanth Sastry
University of Surrey

Surrey, UK
n.sastry@surrey.ac.uk

Mainack Mondal
Indian Institute of Technology

Kharagpur
Kharagpur, India

mainack@cse.iitkgp.ac.in

ABSTRACT
Browser cookies are ubiquitous in the web ecosystem today. Al-
though these cookies were initially introduced to preserve user-
specific state in browsers, they have now been used for numerous
other purposes, including user profiling and tracking across multi-
ple websites. This paper sets out to understand and quantify the
different uses for cookies, and in particular, the extent to which
targeting and advertising, performance analytics and other uses
which only serve the website and not the user add to overall cookie
volumes. We start with 31 million cookies collected in Cookiepedia,
which is currently the most comprehensive database of cookies on
the Web. Cookiepedia provides a useful four-part categorisation
of cookies into strictly necessary, performance, functionality and
targeting/advertising cookies, as suggested by the UK International
Chamber of Commerce. Unfortunately, we found that, Cookiepe-
dia data can categorise less than 22% of the cookies used by Alexa
Top20Kwebsites and less than 15% of the cookies set in the browsers
of a set of real users. These results point to an acute problem with
the coverage of current cookie categorisation techniques.

Consequently, we developed CookieMonster , a novel machine
learning-driven framework which can categorise a cookie into one
of the aforementioned four categories with more than 94% F1 score
and less than 1.5 ms latency. We demonstrate the utility of our
framework by classifying cookies in the wild. Our investigation
revealed that in Alexa Top20K websites necessary and functional
cookies constitute only 13.05% and 9.52% of all cookies respectively.
We also apply our framework to quantify the effectiveness of track-
ing countermeasures such as privacy legislation and ad blockers.
Our results identify a way to significantly improve coverage of
cookies classification today as well as identify new patterns in the
usage of cookies in the wild.

CCS CONCEPTS
• Security and privacy→Web application security; •Computing
methodologies→ Machine learning approaches.
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1 INTRODUCTION
First introduced in the mid-nineties as a way of recording client-
side state [22], cookies have proliferated widely on the Web, and
have become a fundamental part of the Web ecosystem. However,
there is widespread concern that cookies are being abused to track
and profile individuals online for commercial, analytical and vari-
ous other purposes [27]. Recently, there has been a movement to
restrict their usage, and companies such as Google have announced
plans to replace certain kinds of cookies with more privacy-friendly
equivalents [4]. Before such drastic changes, however, it is impor-
tant to take stock and understand how cookies are really being
used across the Web. Given the variety and number of uses for
cookies and the fact that practically every website uses them, this
is a herculean task.

This paper is a first attempt to address this problem and cat-
alogue cookies in-the-wild. Currently the most commonly used
classification in English language websites is the one proposed by
the UK International Chamber of Commerce (UK ICC). The UK ICC
catalogues cookies into four broad categories [14]: strictly neces-
sary cookies, which are essential for the website’s function (e.g.,
logins, shopping carts); performance cookies, which collect analyt-
ics information to improve a website’s performance; functionality
cookies which remember user choices such as preferred language
or location, allowing personalisation of the website to the user;
and targeting/advertising cookies, typically placed by third party
advertising networks with the permission of the first party website
to profile users and serve them ads.

Our starting point is Cookiepedia, a database of over 31 Million
cookies, which are categorised into the four UK ICC categories. Un-
fortunately, however, our measurements show that when queried
with the cookies from the Top20K websites according to Alexa1,
Cookiepedia can only identify and categorise around 22% of the
cookies. We then turn to a Chrome plugin which some of us de-
veloped previously [12], and is currently being used by over six
thousand users. 475 of these users (from 44 countries) are con-
tinuously donating anonymised cookie data to us2. Cookiepedia
coverage on this dataset is even lower – it is able to classify less
than 15% of this sample of cookies in-the-wild.

To address this problem, we treat the Cookiepedia data as a gi-
ant labelled dataset of cookie categories, using which we train a

1https://alexa.com, which provides widely used ranks for websites
2This study is approved by our university ethics No. MRSP-19/20-18077
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number of standard machine learning models, using a standard
5-fold cross-validation. Several of these models perform well, and
we obtain a best-of-class F1 measure of around 0.95 with the Multi-
nomial Naive Bayes classifier. All our models rely on lexical n-gram
features generated from the names of cookies. We then show that
our model, which we term as CookieMonster , not only performs
well in automatically categorising cookies found in the Cookiepedia
data, but also generalises to other cookies in-the-wild. We manu-
ally classify cookies on a random selection of Alexa Top 1 Million
websites that are not in Cookiepedia, by leveraging GDPR consent
managers used on these websites to allow users in the EU to decline
particular categories of cookies. We demonstrate that our model
is able to correctly predict (94% accuracy) the cookies which will
be removed when a given category of cookies is declined through
GDPR consent management, which indicates that our models are
able to correctly categorise cookies in-the-wild.

Inspired by this performance on websites not represented in
Cookiepedia, we then use our model on all cookies in Alexa Top20K
websites, and find that the necessary and functional cookies (which
are the two categories that are directly beneficial mainly to the user
and not the website) constitute only 26.52% and 9.52% respectively
of all cookies. Furthermore, we demonstrate for the first time that
there are a number of third party cookies which are multi cate-
gory. We then look at cookies donated by the users of our browser
plugins, and find that even smaller percentages – less than 9.52%
(respectively 13.05%) of cookies found in-the-wild are necessary
(resply. functional). Interestingly, tracking/advertising cookies com-
prise 59.99% of cookies in the browsers of users from EU countries
and a nearly similar 61.33% of cookies in non-EU countries, which
is disturbing as it implies that EU users are not effectively utilising
GDPR consent management to decrease the numbers of trackers in
their browsers. We find similar results for other jurisdictions where
there are web privacy-related laws, such as California (CCPA) or
Brazil (LGPD). We also find that ad blockers are not fully effective,
managing to block between 40–80% of all the third party advertising
cookies.

The rest of this paper is organised as follows: section 2 presents
related work. section 3 presents the design of our model, Cook-
ieMonster . section 4 then uses this model in-the-wild, beyond the
Cookiepedia data it is trained on, and counts the numbers of cook-
ies that are not necessary and functional and can be eliminated,
and quantifies the effects of ad blockers and privacy regulations.
section 5 concludes by discussing implications for future work.

2 RELATEDWORK
We divide the related work in two dimensions—prior work on un-
derstanding usage of cookies with a focus on third-party cookies
and prior work on categorising cookies, which tried to bring trans-
parency into the tracking ecosystem.
Detecting third-party cookie usage in online tracking: Cook-
ies are an integral part of the Web, and were designed to store and
remember information across sessions about a particular user visit-
ing a particular site[22]. However, cookies today are often leveraged
for tracking users across services. These tracking cookies, often set
by third-parties, store and commercialize information regarding
browsing habits of users, often without user consent.

In fact, privacy violation by these third-party cookies has become
a common problem today, e.g., while browsing news [1] or process-
ing online payment [26] these cookies are generally placed to trace
and speculate on users’ online activities at scale. Consequently,
a flurry of recent studies attempted to identify and detect these
third-party cookies in websites. Many of these studies leverage
third-party domain names in cookies to detect third party cook-
ies [29, 33]. A few studies also leverage the similarity of source
HTML codes of a website [17] to identify third-party presence
and alert users. However, these methods are often computationally
expensive and greatly affects the practicality of real-time detec-
tion [20]. Our study contributes to this line of study by designing
CookieMonster , a novel machine learning-driven method for scal-
ably categorising cookies.

Aside from academic proposals, there are a number of deployed
approaches to detect third party-cookie presence and protect online
users from privacy intrusion. For example, popularly used tracker-
blocking lists like EasyList tried to automate detection and blocking
third-party trackers. However, researchers found that EasyList can
miss around 25% tracker detection [3] and is extremely hard to
be continuously updated due to ever changing lists of third party
domains [8]. Thus, our work provides a complementary machine
learning-based approach for cookie categorisation and potential
blocking which can be used in conjunction with these list-based
approaches. In fact, our work builds on recent work that used a
learning approach using web-traffic data [19]. This work captures
invisible trackers missed by filter lists using web-traffic from user’s
computer and obtains 90.9% accuracy of detection for the Alexa
Top10K websites. Our approach is complementary as both can
be used to identify and potentially block trackers. Moreover, our
system primarily depends on cookie names for categorization (re-
moving the need for more computationally expensive capture and
analysis of web traffic). Furthermore, we identify not only track-
ers, but also necessary and performance cookies and we achieve
an accuracy of 94%, significantly more than prior work [19] for
third-party tracker detection. By virtue of using cookie names, our
work also evades anti-ad-blockers—tools that are being developed
against ad blockers [11, 15] which aims to defeat today’s ad/tracker
blocking systems by manipulating the webpage source code.
Categorising cookies in the online ecosystem:With the advent
of General Data Protection Regulation (GDPR) in the EU, cookie
categorisation has become more structured. The UK ICC has sug-
gested a 4-part cookie categorisation which is nowwidely used [14].
Cookiepdia [25], a massive dataset of more than 31 million cookies
collected from websites and managed by OneTrust (a company for
operationalising privacy, security and data governance), classify
some of their cookies into the categories suggested by ICC [7, 24].
However, a recent work shows that a large number of cookies in
Cookiepedia are categorised as “unknown” [5]. Multiple studies
have used Cookiepedia but completeness has been an issue, with
less than 45% of cookie names being recognised [5, 6, 32], which has
impacted the usability of Cookiepedia for cookie categorisation.

To that end, a few earlier studies also looked at tracker categorisa-
tion using classification techniques. For example, the timestamp or
IP address embedded in cookies has been the basis of unsupervised
classification of trackers [10], while others use application-level
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traffic logs to automatically detect services running some track-
ing activity [21]. In general even more studies have attempted to
detect privacy leaks via machine learning, from detecting track-
ing to detecting phishing [16, 18, 31]. In this work, we developed
CookieMonster which uses a supervised classification approach.
CookieMonster uses Cookiepedia data as its training data to create
a supervised cookie detection framework which is accurate and cat-
egorises cookies with very low latency based on features extracted
for just cookie names. Furthermore, the Cookiepedia labels allow
us to divide cookies into all four UK ICC categories, rather than a
coarse-grained division into tracking and non-tracking cookies as
in previous work.

3 COOKIEMONSTER: A SYSTEM TO
UNDERSTAND COOKIE CATEGORIES

In this section, we present our attempt to categorise cookies first
using Cookiepedia [25] and identify its inadequacy. Then we will
demonstrate how we designed CookieMonster using a data-driven
approach to enable large-scale accurate cookie categorisation.

3.1 Inadequacy of Cookiepedia for cookie
categorisation

As we mentioned in section 1, we first attempted a simple off-
the-shelf approach using Cookiepedia. Cookiepedia is an open-
source database of browser cookies containing cookie details as well
as their categorisation according to cookie usage. Cookiepedia is
maintained by OneTrust, a privacy management software company
and reports existence of 31,553,377 cookies [25] in their database.

Cookiepedia provides a simple online search interface to search
for cookie names. To that end, we first used browser automation
using Selenium [28] to collect all active cookies from Alexa global
Top20K websites. In total these globally most popular 20,000 web-
sites used 54,694 unique cookies (with unique cookie names, i.e.,
cookie identifiers) for their visitors. In order to categorise these
cookies, we query Cookiepedia with each of the cookie names us-
ing a Selenium-driven automated browser. For each of these cook-
ies, Cookiepedia returned one of six categories: Strictly Necessary
Cookies (essential for features of the website), Performance Cookies
(used to collect information about how visitors use a website), Func-
tionality Cookies (allow websites to remember user preferences),
Targeting / Advertising Cookies (used to deliver personalized ad-
vertisements to users), Unknown and Nonexistent. The first four of
these categories are based on UK ICC categorisation, which is also
used in GDPR cookie consent management platforms [7]. An “Un-
known” category indicates that the cookie exists in the Cookiepedia
database but is not classified. A “Nonexistent” label indicates that a
particular cookie does not exist in the Cookiepedia database.

We present the Cookiepedia-driven categorisation of 54,694
unique cookies used by 20,000 top Alexa websites (that we collected)
in Table 1.Wemake an surprising yet important observation–43,116
(78.83%) of the cookies used by these Top20K websites simply re-
main uncategorised when we use Cookiepedia database. Thus, even
a massive database like Cookiepedia simply fell short in categoris-
ing the majority of the cookies used in even most popular websites
today. To that end, in order to improve the categorisation of cookies

Cookie Category # cookies % cookies
Strictly Necessary 3,071 5.61
Functionality 1,102 2.01
Performance 3,025 5.53
Targeting/Advertising 4,380 8.01
Unknown 19,007 34.75
Nonexistent 24,108 44.08
Unknown+Nonexistent 43115 78.83
Total 54,694 100

Table 1: Cookie categorisation using Cookiepedia for cook-
ies used by Alexa global Top20K websites. The first four cat-
egories align with the UK ICC categories. Cookiepedia re-
turns “nonexistent” when the cookie name does not exist
in its database, and ”unknown” when the cookie name ex-
ists in the database but has not been categorised. 78.83% of
cookies from Alexa Top20K websites are either unknown or
nonexistent.

while ensuring high accuracy and coverage we design and evaluate
CookieMonster .

3.2 CookieMonster Design
The key idea of our system is to use machine-learning for accu-
rate cookie categorisation in the wild. The ground truth for our
classifier is the cookies collected from Alexa 20k websites which is
classified in one of the four meaningful categories via Cookiepe-
dia. There were 11,578 such cookies with their categorisation into
four categories–Strictly Necessary, Functionality, Performance, Tar-
geting/Advertising (Table 1). For these cookies we used features
extracted from the cookie names to train our classifier.

3.2.1 Preprocessing and tokenising cookie names. Each cookie is a
name-value pair and the cookie-name is unique for each cookie. We
noted via manual inspection that cookie names can be meaningful
and appear to provide some hints about functionality. Thus we
decided to use features extracted from these names for categorisa-
tion. First, we removed all numbers from each cookie name ((e.g.,
ADS_324 became ADS_). Next, we tokenise these names using punc-
tuation characters (e.g., %, ∼, ., _, -). Thus, at the end of preprocess-
ing and tokenization, a cookie with the name gdpr-track-status45
will be split into tokens “gdpr”, “track”, “status”. Furthermore, we
split the resultant token using capitalization (i.e., AnalysisUserId
→ [Analysis, User, Id] ) and used the enchant dictionary [30] to
segment known word combinations into root words (i.e, dayssince-
visit→ [days, since, visit] ). Finally, we case-folded all the resulting
tokens. In total, after this tokenization, we retrieved a total of 2,504
unique tokens from 11,578 cookies in our ground truth data.

3.2.2 Manually checking correlation of cookie categories and tokens.
Next, to verify the resultant tokens are meaningful, we divided the
names into the four cookie categories as provided by Cookiepedia.
We focused on the most popular tokens for each of our four cookie
categories. We present the top tokens in each category from cookies
in Figure 1 via wordclouds. To increase readability we show only
tokens from top 100 domains in the figure.
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(a) Strictly Necessary (b) Functionality (c) Performance (d) Targeting/Advertising

Figure 1: Wordclouds showing the most frequent tokens within cookie names from each cookie category.

We immediately notice that some particular tokens and token
combinations were immensely frequent in cookies from specific
cookie categories. For example, cookie combinations like (gat, gtag)
are popular within Targeting/advertising cookie names. In fact,
many popular tokens (e.g., geo, country, location, global) given
by the cookie names in Targeting/advertising categories identify
their usage in location tracking. Furthermore, names of third-party
trackers are also frequent in these tokens (e.g., OWOX, Marketo,
demdex). Although preliminary, our manual inspection of tokens
gives us confidence that these tokens are correlated with cookie
categories and using them as features in a supervised learning
framework has the potential to be successful.

3.3 Supervised Cookie Categorisation in
CookieMonster

3.3.1 Training a classifier for CookieMonster. We model the cookie
categorisation as a supervised multi-class classification problem to
predict our four cookie categories—strictly necessary, functionality,
performance and targeting/advertising. Given a cookie name, we
extracted the tokens from the names (as mentioned above) and
used them as features. Consequently, we evaluated seven classi-
fication algorithms to check the performance and identify which
one to use in CookieMonster . We used the known categorises of
cookies (from cookipedia) as our training data. Specifically, we
evaluated Multinomial Naive Bayes (MNB), Softmax Regression
(Multi-layer perceptron or MLP), Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), Random Forest, Naive Bayes and Binary
Search Tree (BST). We used a 5-fold cross validation with 80-20
split between training and testing data. We used overall (Micro)
precision, recall and F1-score over all-classes to report the accuracy
of categorisation for all of the seven models in Table 3.

Wemake two observations from this table: First, the top four algo-
rithms according to F1-score (MNB, MLP, SVM, KNN) all achieved
F1-scores more than 0.9, signifying the utility of our proposed
features based on tokenising cookie names. Second, the top two
algorithms (MNB and MLP) both achieved a F1-score of more than
0.94, making them suitable for use in CookieMonster . To that end,
given we envision CookieMonster to be used in the wild for cookie
categorisation, we next check the average categorisation latency
for all of these classifiers.

3.3.2 Latency of prediction for classifiers. We present the average
prediction latency for predicting the category of a single cookie
during testing in Table 3. We note that, models like Bernoulli Naive
Bayes, although extremely fast, provides a relatively poor F1-score
(0.83). To that end, we focused on the top two classification models
(MNB and MLP). These two models, while ensuring an F1-score
of nearly 0.95, are quite different in terms of prediction latency. In
fact, MLP has an average prediction latency of 1.2860 ms which
is 293% higher than MNB. Therefore, we choose this pre-trained
Multinomial Naive Bayes (MNB) model to use in CookieMonster .

3.3.3 Characterizing Misclassified cookies in MNB classifier. We
further did a simple analysis to understand why MNB model did
misclassify a few cookies. We present the confusion matrix for
MNB classifier from one fold of cross validation in Figure 2. This
shows that out of 2,016 cookies (our test set in this fold), 316 cookies
got misclassified. However, the majority (244 out of 316) of this
misclassification can be attributed to Necessary cookies being pre-
dicted as Targeting/Advertising and Targeting/Advertising cookies
predicted as Performance cookies. We hypothesize two reasons for
this. First, the Targeting/Advertising cookies share similar tokens
with other cookie category. Second, Necessary and Performance
cookies might sometimes also act as Targeting/Advertising cookies.
We leave exploring these avenues to future work.

Finally, we note that overall (in spite of some misclassification),
the accuracy of this fast MNB-based model is quite high in our
training set (trained over from 11,578 cookies), however it makes a
basic assumption—tokens extracted from a new cookie name will
be included into 2,504 tokens that came from 11,578 cookies in our
dataset. Clearly, this assumption might not hold in the wild cookie
categorisation and we might encounter out-of-vocabulary tokens,
which CookieMonster will need to address when used in-the-wild.

3.3.4 N-gram-based additional categorisation for cookies with pre-
viously unseen tokens. New cookie names might contain tokens
which are not in the list of 2,504 tokens seen in our training dataset
of 11,578 cookies. Inability to categorise these cookies poses a chal-
lenge to the categorisation coverage ofCookieMonster . This problem
is common in NLP tasks which needs to deal with OOV (out-of-
vocabulary) words (thus we will call unseen tokens OOV tokens).
To solve this challenge we designed an additional n-gram based
classification for new cookies.
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Nec Perf Func Ad

Nec 486 1 2 140

Perf 2 566 7 16

Func 1 4 195 22

Ad 2 104 6 762

Figure 2: Confusion matrix of Multinomial Naive
Bayes (MNB). Majority of the misclassification
happened due to Targeting/Advertising cookies.

Algorithm Precision Recall F1 Mean prediction
Latency (ms)

Multinomial Naive
Bayes (MNB)

0.951 0.940 0.9458 0.44

Softmax Regression
(MLP)

0.944 0.948 0.9457 1.29

SVM 0.947 0.867 0.926 0.03
K-Nearest Neigh-
bors (KNN)

0.929 0.907 0.916 3.23

Random Forest 0.886 0.770 0.778 9.73
Naive Bayes 0.798 0.747 0.833 0.02
Binary Search Tree
(BST)

0.649 0.461 0.409 0.05

Figure 3: Recall, Precision and F-score of for different classifi-
cation models to categorise cookies. MNB and MLP achieved
more than 94% average F1-score.

In our approach, a new cookie name (e.g., _bti) with previously
unseen tokens is simply divided into the constituent character n-
grams (e.g., _bti can be split into bi-grams [(’b’, ’t’), (’t’, ’i’)]). In our
Cookiepedia dataset we noted that 75% of cookie names have 5 or
less characters. So we choose to use n = 2, 3 and 4. Next we simply
search for these n-grams within the set of our 11,578 cookie names
and create a set of existing cookie names that contain these n-grams
(e.g., NSC_mc-vsmibti and gati_abtc which matched bigram of _bti).
Finally, out of these existing cookie names we choose the one with
the least edit distance with the new cookie name and output the
category of that existing cookie as predicted category of the new
cookie. In our example, since edit_distance (_bti, NSC_mc-vsmibti)
= 10 and edit_distance (_bti, gati_abtc) = 6, so we predict category
of _bti to be the same as the category of gati_abtc.

3.3.5 Final workflow of CookieMonster. So, to summarize, Cook-
ieMonster used cookie names to categorise cookies. On encoun-
tering a cookie name, CookieMonster will run the pre-processing
step and identify tokens from the cookie names. If those tokens
exist in the MNB-based pretrained model, then CookieMonster will
output the prediction of MNB classifier. Otherwise, it will use the
ngram based additional classifier to find a previously seen token
that is lexically similar to the new unseen token, and will predict
the cookie category based on the known tokens. However, one obvi-
ous question is: since CookieMonster primarily uses the Cookiepedia
data for its design, can it accurately classify cookies in-the-wild on
websites not catalogued in Cookiepedia? We answer this question
affirmatively in the next section.

4 COOKIE CATEGORISATION IN-THE-WILD
CookieMonster gives us a tool to examine a collection of cookies
and categorise them into the 4 widely used UK ICC categories. We
first perform a manual verification (§4.1) on websites not included
in Cookiepedia, to show that CookieMonster generalises widely.
Then, given that we have a reasonably accurate method to classify
cookies beyond the dataset it is trained and tested on, we ask what
proportion of cookies are superfluous to a user’s experience of web-
sites, looking both at the Top20K websites according to Alexa, and
at cookies found in browsers of real users in-the-wild (§4.2). Finally,

we use CookieMonster to quantify the effectiveness of current web
privacy measures (§4.3).

4.1 Does CookieMonster work in-the-wild? – a
manual verification

section 3 demonstrated that cookie names can reveal the purpose
and UK ICC category of the cookies. While this was rigorously
tested using 5-fold cross validation on Cookiepedia data, we still
need to validate whether the model can correctly identify the pur-
pose of cookies on websites which have not been catalogued on
Cookiepedia. This is not straightforward, as the purpose of cookies
on most websites may not be apparent.

To answer this question, we take advantage of GDPR, which
holds in the European Union (and in our UK vantage point). GDPR
requires websites to obtain user consent before collecting data
about them. Because of this, it is extremely common to see websites
using consent management banners such as the example shown in
Figure 4. As in the figure, many websites use the UK ICC categories
for allowing users to control their consents. Thus, a careful user
can control which categories of cookies are allowed from a given
website. With the website in Figure 4, users have to allow necessary
cookies (there is no choice), but may choose to allow additional
categories of cookies. For example, one user may decide to allow
necessary and functional cookies. Another user may allow neces-
sary and performance cookies instead. Clearly other combinations
are also possible, including allowing three or all four categories
of cookies. This is a common pattern for consent management in
many websites.

We can therefore determine which cookies are in the “necessary”
category by visiting the website with a clean browser (after deleting
all cookies and clearing the user profile) and selecting to allow
only the necessary cookies. We can then clear the user’s cookie
and profile information again and revisit the website, this time
choosing to allow necessary and functional cookies. The additional
cookies installed in this second visit can be inferred to be in the
“functional” category. A similar approach can be used to determine
“performance” and “advertising/targeting” cookies.

The above approach is not scalable, but serves to test whether
the CookieMonster model “works” beyond the Cookiepedia data. To
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Figure 4: Cookie Consent Example

Recall Precision F1-score OneTrust OOV(%)
top1-100 0.93 0.87 0.91 2 0
top100-500 0.90 0.86 0.88 3 0.83%
top500-1k 0.83 0.85 0.87 0 1.68%
top1k-10k 0.86 0.93 0.89 2 0
top10k-100k 0.79 0.77 0.78 0 4.61%
top100k-1M 0.74 0.84 0.79 0 6.17%

Figure 5: Recall, Precision and F1-score of CookieMonster for cookie recog-
nition across Alexa top-1M websites. OOV is the percentage of cookies
whichwere not recognised and had to be classified using the OOV technique
(§3.3.4). The OneTrust column identifies the number of websites in each cat-
egory using OneTrust GDPR Consent Management.

this end, we select websites that satisfy two criteria: (i) They are
not indexed in Cookiepedia (to test generalisability of our model).
(ii) They have deployed a GDPR consent management solution
that allows free choice among the four UK ICC categories (so that
our approach above can be applied on that site). We randomly
select n = 60 websites satisfying our criteria, choosing 10 each
from the Alexa 1-100, 101-500, 500-1000, 1K-10K„ 10K-100K and
100K-1M ranks. We note that much of the Cookiepedia data comes
from a database maintained by OneTrust3. Among the 60 sites we
choose, 7 sites do use OneTrust (Figure 5), although these sites are
still not indexed in Cookiepedia. Thus, our manual test verifies
generalisability beyond Cookiepedia data to sites with and without
OneTrust support.

Figure 5 shows that our model generalises extremely well. As
may be expected, the performance is best for the top ranked Alexa
sites (F1 score > 0.85 for the Top10K sites), but even in less popular
sites up to Alexa rank 1 Million, an F1-score of > 0.78 is obtained.
For each category of ranks, we also show the proportion of cookies
whose names contained previously unseen tokens and therefore
required the OOV technique (§3.3.4) to be used. Most cookies are
recognised within our model and OOV matching is required for
less than 6-7% or fewer cookies.

We conjecture that CookieMonster generalises beyond the Cook-
iepedia data it is trained on because it is based on cookie names,
which are set by the javascript libraries or the third party providers
a website uses for targeting, advertising, analytics etc. The choice
of a website to use a particular GDPR consent management plat-
form such as OneTrust (which impacts inclusion in the Cookiepedia
database) is orthogonal to the libraries and third party providers
(and therefore the cookie names) it uses. A few libraries and third
party providers dominate the ecosystem in each country [12]; thus
cookie names or the naming pattern n-grams used in CookieMonster
generalise across websites.

4.2 What proportion of cookies are actually
required for websites to function properly?

Strictly speaking, a user only needs to enable “necessary” cook-
ies (e.g., login or shopping cart cookies). Some may choose enable
“functionality” cookies that personalise a site (e.g., to user’s pre-
ferred language or site layout). Arguably, performance analytics

3https://cookiepedia.co.uk/about-cookiepedia

and advertising/targeting cookies benefit the website more than
they do the user and do not need to be enabled. CookieMonster
therefore provides a convenient way to quantify how many cookies
are superfluous.

We study this systematically in Figure 6, by categorising all the
cookies of the Alexa Top20K websites as well as cookies collected
from users of a browser extension we developed and deployed in
an earlier study [12], and is currently being used by over 6000 users.
Specifically, in this work we use 44,971 cookies collected between
November 2020 to February 2021 from 475 of these users (from 44
countries) who are donating their data. We use two methods for
the categorisation: looking up the cookie name in the Cookiepedia
database (Figure 6(a), which presents the same information as Ta-
ble 1), and using CookieMonster (Figure 6(b)) to predict a category.
As mentioned previously (cf. subsection 3.1), the Cookiepedia data-
base is fairly incomplete, with over 78% of cookie names either not
existing in the database or not categorised; thus, for the purpose of
comparing with CookieMonster , we replot Figure 6(a) by ignoring
these unrecognised and uncategorised cookies and renormalising
the remaining cookies as 100%, obtaining Figure 6(c).

Both Cookiepedia (Figures 6(a), 6(c)) as well as CookieMonster
(Figure 6(b)) show similar trends: According to CookieMonster , only
13.05% of cookies are labeled as necessary, and an additional 9.52%
are functional. According to Cookiepedia, 5.6% of cookies are la-
beled as necessary (26.52% after ignoring unrecognised/uncategorised
cookies), and an additional 2.01% are functional (9.52% after ignor-
ing unrecognised/uncategorised). Thus, both methods suggest that
the vast majority of cookies can be removed without affecting user
experience.

Interestingly, according to both CookieMonster (Figure 6(b)) and
Cookiepedia (Figures6(a), 6(c)), real browsers have a smaller pro-
portion of necessary cookies and more functional/targeting cookies
as compared to Alexa Top20K websites. This is likely because real
users’ browsers have user profiles which are better established,
with a browsing history and long-lived cookies that may have been
set months ago, leading to better profiling and more ads/targeting
cookies. In contrast, we collect cookies on Alexa Top20K websites
programmatically using Selenium with a fresh user profile instance
for each website, resulting in fewer ad/targeting cookies. Also,
our user base is located in different countries where there may be
country-specific third party trackers [12] not visible from our UK
vantage point, and therefore not captured in the Alexa crawl.
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(a) Cookiepedia (b) CookieMonster (c) Cookiepedia (ignoring the unrecognised and uncate-
gorised cookie names)

Figure 6: Proportions of different cookie categories in Alexa Top20K (shaded) and real browsers (clear), according to (a) Cook-
iepedia (b) CookieMonster (c) Cookiepedia (ignoring the unrecognised and uncategorised cookie names)

(a) EasyList + Alexa Topsites (b) EasyPrivacy + Alexa Topsites (c) AdGuard + Alexa Topsites

Figure 7: EasyList, EasyPrivacy and AdGuard filter 40–80% of advertising third party cookies on Alexa Top20K sites.

4.3 On the effectiveness of current web privacy
measures

The previous section suggests that a large proportion of cookies can
be eliminated from many websites without affecting their function.
One of the main levers of control that users can employ to achieve
this, is to use ad blockers. In addition, web privacy regulations
around theworld, such as GDPR, provide varying degrees of support
for users to provide consent or decline different kinds of cookies.
We examine their effectiveness below.

4.3.1 Ad blockers. Ad blockers typically work based on dynam-
ically updated lists of third party advertising/targeting domains
that should be blocked. Figure 7 shows how three popular block
lists – EasyList, EasyPrivacy and AdGuard Plus – work on cookies
found in Alexa Top20K websites. In addition to a block list, EasyList
has a so-called ‘hide’ list of domains which break if blocked, and
therefore, are loaded but not rendered on screen, to improve user
experience. Unfortunately, because the domain is loaded, the user
can still be tracked even if the ad itself is hidden. These domains
are therefore shown separately. In general, Ad Guard appears to
block a larger proportion of domains than EasyList or EasyPrivacy,
even when counting cookies from hidden domains in addition to
the cookies from blocked domains. We also find that there are more

domains to be blocked in real browsers than when visiting Alexa
Top20K sites programmatically. Again, this is likely because of ad-
ditional targeting and advertising that may tend to be attracted by
more mature user profiles with a continuous browsing history.

Across all the combinations tested in Figure 7, we still find that
around 20% (for Ad Guard Plus) to 60% (for EasyList) of advertising
and targeting-related cookies that should have been blocked are
not being blocked. This is partly because the lists that ad blockers
rely can never be complete. However, when we dig deeper, we
on find two additional important reasons: First, ad blockers are
relatively successful at blocking third party advertising and cookies,
but we find that a significant proportion of first party cookies also
relate to advertising. Figure 8(a) quantifies this, showing the relative
proportion of targeting cookies and other categories of cookies
among both first party cookies and third party cookies. Thus, several
first party cookies may slip through ad blockers. Secondly, we find
that both among first parties (Figure 8(c)) and third parties (Figure
8(b)), a non-trivial proportion of advertising-related domains also
place other categories of cookies. Thus, a solely domain-based
block list risks either blocking too much, or not covering all the
domains that undertake targeting. The domain-based approach
is common among all widely used ad blockers – the diversity of
cookies on the web has thus far made it difficult to take a more
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Figure 8: Occurrence of multipurpose Third-Party domains in Top20K websites.
granular approach that blocks specific cookies. However, since
CookieMonster appears to provide reasonable predictions of cookie
categories based on cookie names, we may use it as one component
of a more sophisticated system that blocks specific cookies. Such
approaches can complement other methods which have utilised
the Internet Advertising Bureau’s Ads.txt [9] and other list-based
measures to identify ads.

4.3.2 Privacy regulation. A second lever that users have recently
obtained is support from privacy-related regulations in various
legal jurisdictions. By far the most comprehensive and well-known
of these is the General Data Protection Regulation (GDPR) in the EU,
which introduced the notion of requiring explicit and meaningful
consent. Comparable regulations include the California Consumer
Privacy Act (CCPA) which allows users to opt-out of tracking and
Brazil’s Lei Geral de Proteção de Dados (LGPD), which is the most
recent of them, and also mandates unambiguous consent from users
before websites can use cookies.

Previously, using a limited cohort of 16 users, we had found that
cookie numbers seen by users had not changed significantly before
and after GDPR was introduced [13], implying that users may be
choosing the ‘default’ choices offered bywebsites, whichmay not be
privacy optimal. Here, we extend this study based on the 475 users of
our extension [12] who are donating data. Specifically, we consider
all users within a given privacy jurisdiction (EU, California or Brazil)
and compare the proportions of ad/targeting cookies of users from
within that jurisdiction to the respective proportions in browsers of
users outside the jurisdiction. Figure 9 shows that in all cases, there
is little difference between proportions of cookies of users within
and out of each of the jurisdictions. This confirms (using a much
larger and more representative user base) our previous finding [13]
that users are not making the most privacy optimal choices for
themselves, and may be fatigued the burden of providing consent
on every website they visit, especially as several websites use dark
patterns that make it difficult to choose more privacy-oriented
settings [23].

5 DISCUSSION AND CONCLUSION
This paper set out to tackle the herculean task of classifying cookies
found in-the-wild. We started with data curated on Cookiepedia,
and demonstrated that its coverage was inadequate – its database
contained less than 22% of cookies on Alexa Top20K websites, and

less than 15% of cookies found in real browsers. We therefore de-
veloped machine learning models that trained on Cookiepedia data
and were also shown to work well (F1 > 0.94) on websites not
currently in Cookiepedia. Our models use lexical features derived
from cookie names, suggesting that cookie names generalise well
across websites, perhaps as a result of common web templating
infrastructures and libraries, and the prevalence of common third
parties across websites.

We then used the trained models on Alexa Top20K websites
as well as anonymised cookies donated to us by 475 users of a
plugin we have developed previously [12]. We found that across the
44 countries represented in our dataset, necessary and functional
cookies (the two categories beneficial to the user rather than the
website) constitute only 9.79% and 13.35% of all cookies in our
active countries. Thus, the vast majority of cookies can be removed
without impacting website functionality or user experience.

Surprisingly we find that privacy regulations such as GDPR in
the EU have not made much difference in the numbers of cook-
ies seen by real users. This indicates that users are not effectively
utilising the consent management options enabled by GDPR. Ad
blockers appear to be more effective if used, but mainly focus on
advertising cookies. Even among advertising cookies, a non-trivial
proportion is missed because the ad blockers are based on manu-
ally curated lists [2] which need to be continuously updated and
because these lists are based on blocking at the level of the do-
mains that serve up those cookies, rather than on blocking specific
cookies. Unfortunately, we also find that many domains set both
non-essential (e.g., advertising or performance) as well as essential
(necessary or functional) cookies; thus extreme care needs to be
exercised in blocking of entire domains, to ensure that functionality
of the website is not broken as a result.

Thus far, the diversity of cookie names has prevented a more
fine-grained approach and continuously updated but manually cu-
rated lists of domains to block have been the main tool for actively
restricting tracking and cookies via ad blockers. We propose that
our robust CookieMonster model based on lexical tokens extracted
from cookie names can be used as the basis for sophisticated tools
enable automatic rejection of specific cookies belonging to cate-
gories that are not beneficial for users. We intend to develop this
idea in future work.
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(a) GDPR: EU vs. non-EU (b) CCPA: California vs. non-California (c) LGPD: Brazil vs. non-Brazil

Figure 9: Proportions of ad/targeting cookies within and outside of 4 jurisdictions with privacy regulations.
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