
TweLEX: A Tweaked Version of the LEX Stream

Cipher

Mainack Mondal ?, Avik Chakraborti, Nilanjan Datta ??,
Debdeep Mukhopadhyay ? ? ?

Abstract. LEX is a stream cipher proposed by Alex Biryukov. It was se-
lected to phase 3 of the eSTREAM competition. LEX is based on the Ad-
vanced Encryption Standard (AES) block cipher and uses a methodology
called Leak Extraction, proposed by Biryukov himself. However Dunkelman
and Keller show that a key recovery attack exists against LEX. Their attack
requires 236.3 bytes of keystream produced by the same key and works with
a time complexity of 2112 operations. In this work we explore LEX further
and have shown that under the assumption of a related key model we can
obtain 24 secret state bytes with a time complexity of 296 and a data com-
plexity of 254.3. Subsequently, we introduce a tweaked version of LEX, called
TweLEX, which is shown to resist all known attacks against LEX. Though the
throughput of TweLEX is half of LEX, it is still 1.25 times faster than AES,
the underlying block cipher. This work attempts to revive the principle of
leak extraction as a simple and elegant method to design stream ciphers.
Keywords: Leak Extraction, Differential cryptanalysis, Tweak, Advanced
Encryption Standard.

1 Introduction

LEX is a stream cipher designed by Alex Biryukov [1] using the round transforma-
tions of the Advanced Encryption Standard (AES). The proposal was built on the
concept of leak extraction[1] and was based on the analysis of the diffusion of the
transformations of AES to decide the extent of the leak and its frequency. LEX is a
128 bit key stream cipher, which is developed by extracting 32 bits from the state
matrix of AES after each round of the cipher. The property of LEX, which makes it
cryptanalytically different from AES is that the attacker never sees the entire 128
bit ciphertext, but sees a portion of it. The design objective of LEX was to design a
fast stream cipher, and indeed was faster than AES in both hardware and software
by 2.5 times.

LEX was selected as a candidate for eSTREAM competition and was seriously
considered till the third phase for its elegance in construction, faster operation
speed and high security margin. Its simplicity in construction attracted cryptan-
alytic efforts ([2] [3]) from several researchers. In response Biryukov submitted a
tweaked version of LEX to the second phase of the eSTREAM competition in 2007,
which could counter these attacks. However in 2008, Dunkelman and Keller [4]
proposed a key recovery attack on tweaked LEX which required 236.3 bytes of key-
stream produced by the same key and had time complexity of 2112. This attack
removed LEX from the final portfolio of eSTREAM. In spite of the above attacks,

? MPI-SWS, Germany (mainack@mpi-sws.org)
?? ISI Kolkata ({avikchkrbrti,nilanjan.datta.isi}@gmail.com)

? ? ? Comp. Sc. and Engg., IIT Kharagpur (debdeep@iitkgp.ac.in)



it may be appreciated that LEX is a stream cipher with high security margin while
at the same time having an extremely simple design. The other selling point of
LEX is that, the principle of leak extraction may be generalized to any block cipher,
thus motivating deeper investigations of its strength.

The motivation of the present work is to modify LEX, so as to prevent all
known attacks against the original cipher. In this work, we show further that
under a related key model, 24 secret bytes can be recovered using an attack which
has a time complexity of 296 and a data complexity of 254.3. This work motivates
the tweaking of LEX into a modified cipher called TweLEX, to resist the original
attacks by Dunkelman and Keller[4] and also other differential attacks. The work
investigates the interesting idea of leak extraction for constructing robust stream
ciphers from block ciphers. Although TweLEX is slower than LEX, it is still 1.25
times faster than the block cipher AES.

Organization

The paper is organized as follows: In Section 2 we describe the background of
this paper. In Section 3 we describe the differential trail identified in the AES key
schedule that we use to analyze LEX. Section 4 presents the related key based
analysis to recover secret state bytes of LEX. The attack algorithm is analyzed
for its data and time complexity in Section 5. The tweaked description of LEX is
presented in Section 6, and we conclude this work in Section 7.

2 Preliminaries

2.1 Description of AES

The Advanced Encryption Standard (AES) is an 128 bit block cipher. It supports
three key sizes, 128, 192 and 256. The construction of LEX is based on the structure
of AES. So we describe the structure of AES very briefly.

AES considers a 128 bit plaintext as a byte matrix or state matrix of size 4× 4.
Here each byte represents an element of GF (28). The state matrix undergoes 10
AES rounds of transformation for each AES encryption. An AES round consists of 4
operations applied to the state matrix in the following order :

– SubByte − An invertible non-linear transformation performed on each byte.
– ShiftRow (SR) − The bytes of the state matrix are permuted.
– MixColumn (MC) − Each column of the state matrix is multiplied by a con-

stant 4 × 4 matrix.
– AddRoundKey (ARK) − The state matrix is xor-ed with a 128 bit round

subkey.

For the ARK operation, 10 rounds an AES encryption requires a total of 10 subkeys.
An extra subkey is also needed for ‘key whitening’ step before the first round. AES
derives these 11 subkeys from the original key using a key schedule algorithm [5].

2.2 Description of LEX

We describe the version of LEX explained in [1]. We define an AES
′ encryption as

the consecutive application of 10 AES rounds. There are two phases in LEX. In the



first phase or key initialization phase we choose a random string IV and encrypt
it using AES encryption. Let us call this encrypted IV S. In the key generation
phase S is encrypted using AES

′ in the output feedback mode. During each round
of AES′ 4 bytes from the state matrix are leaked as the output bytes of LEX. Thus
for each AES

′ encryption we have 40 keystream bytes from LEX. The bytes leaked

odd rounds even rounds

b b b b

b

bbb

b

b b

b

b

b

b

b

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Fig. 1. Output bytes in odd and even rounds of LEX

in different rounds are shown in Figure 1 by the colored squares. Therefore each
encryption produces 40 bytes of key stream.

After 500 encryptions, another IV is chosen, and the process is repeated. After
232 different IVs the key is replaced. Hence under this restriction by a single secret
key we can get at most 500×232×40 bytes of key stream = 246.3 bytes of keystream.

2.3 Notations

In the rest of this paper AES will refer to the cipher AES′ as described in Section 2.2.
The bytes of any intermediate state matrix B, of an AES encryption are denoted
by {Bi,j}

3

i,j=0
. Let E and E′ be two AES encryptions. The secret key for E is K

and that for E′ is K∗. Let an intermediate state matrix of E(E′) be B (B′). Then
the difference between B and B′ be denoted by ∆B. The bytes of ∆B are denoted
by {∆Bi,j}

3

i,j=0
. The rth round key derived from a key K is named as Kr and its

bytes are
{

Kr
i,j

}3

i,j=0
.

In our analysis we have used two related keys K and K∗. The difference between

bytes of rth round key derived from K and K∗ is
{

∆Kr
i,j

}3

i,j=0
. In this work

SB(x) denotes the output difference for an input difference of x to the SubByte

operation. On the other hand SubByte(x) denotes the output byte value for an
input byte value of x to the SubByte operation. Throughout this work we have
used mathematical operations in GF (28). So the symbol ’+’ in this work refers to
the operation xor.

2.4 Properties of AES SubBytes operation

Throughout this work we use the following properties of AES SubBytes operation.

Property 1. Given every non-zero input and output difference pair for the Sub-
Bytes operation, there are at most 4 input-output pairs which produce the given
differences

We use this Property in situations where we know the input and output differ-
ences to SubBytes operation. In such cases, using the observation we can deduce
candidates for actual values of the input and the output.



Property 2. Given any non zero input(output) difference to the SubByte operation,
there are a total of 127 output(input) differences possible.

As a result, given a non zero input difference β to the SubByte operation and
a random non zero difference γ, probability of the event that γ can be obtained
using SubByte operation on difference β= 127

255
≈ 1

2
.

The analysis proposed in this work is based on a special differential trail in the
key schedule of LEX. We describe the differential trail below.

3 Differential Trail in the Key Schedule of LEX

Let α be a 32-bit word. Let β = SB(RotByte(α)). The operation RotByte and its

use in AES is explained in [5]. Also α can be expressed as [a, b, c, d]T . a, b, c, d are
nonzero bytes. When we choose the key difference of the differential as

∆(Kr) = (α ⊕ β, β, 0, 0)

we can easily show that the next six 128-bit subkeys starting from Kr used in
AES-128 have the following difference structure with probability 1:

(α ⊕ β, β, 0, 0)
(α ⊕ β, α, α, α)
(α, 0, α, 0)
(α, α, 0, 0)
(α, 0, 0, 0)
(α, α, α, α)

Here each row describes the differences between two subkeys for the AES rounds,
starting with the original key difference. In this key schedule we observe that
starting from the third subkey to sixth subkey we have no sbox computation
involved. This differential trail from third subkey to sixth subkey is depicted in
the Figure 2. The box denotes SubBytes operation and ⊕ denotes xor.

Fig. 2. Differential trail in the key scheduling of AES. The box denotes SubBytes operation
and ⊕ denotes xor

In the coming sections while doing related key cryptanalysis on LEX we shall
use this key schedule extensively. Here one thing needs to be noticed. If ∆(K) is
(α ⊕ β, β, 0, 0) then at third round we shall have ∆(K3) as (α, 0, α, 0). Hence if
we want to have ∆(Kr) as (α, 0, α, 0) in an odd round we can just set ∆(K) as
(α ⊕ β, β, 0, 0) and r = 3.



This is indeed the trick applied to the coming sections. Hence whenever we talk
about r as an odd round, one can assume that r = 3. In fact if r is any higher odd
round the analysis of this paper have to use related-subkey cryptanalysis. This
is more complex form of cryptanalysis and less practical compared to related-key
based analysis.

So from this point we consider all the results provided in the later sections are
based on related - keys and not on related - subkeys.

3.1 Special Differential Properties in the LEX State Matrices

In this analysis we have used two related keys K and K∗. The rth round keys
generated from K and K∗ have the difference (α, 0, α, 0). Here α is a 32 bit word

which can also be expressed as [a, b, c, d]
T
. Thus this difference pattern follows the

differential trail shown in Section 3. Our cryptanalysis is successful in extracting
secret state bytes when a special difference pattern appears just before the Ad-
dRoundKey step of the rth round. We first describe how to find the difference
pattern using the key streams.

Consider two AES encryptions generated by keys K and K∗. Here K and K∗

are related keys. Let us consider the event when the state matrices just before
the rth AddRoundKey operation in both encryptions will have zero differences in
12 specific byte positions. Mathematically, if the corresponding differential state
matrix is denoted by ∆b, then {∆b0,0, ∆b0,1, ∆b0,2, ∆b0,3, ∆b1,0, ∆b1,2, ∆b2,0,

∆b2,1, ∆b2,2, ∆b2,3, ∆b3,0, ∆b3,2} = 0, and {∆b1,1, ∆b1,3, ∆b3,1, ∆b3,3} are non zero
values. This pattern is shown in Figure 3 along with the value of the differences
after the rth AddRoundkey operation.

0

0

0

0

0

0

0

0

a a

b b

c c

d d

0

0

0

0

0

0

0 0 0

0 0

0

0

0

0

a a

b b

c c

d d

0 ARK

K
r

∆

Fig. 3. The Special Difference Pattern

Next we compute the minimum number of key streams required to obtain such
a difference pattern. Let the AES encryptions under the key K be sequenced as
E1, E2 . . . En, and with the key K∗ be denoted as E′

1, E
′

2 . . . E′

n. The two colliding
AES encryption pairs are obtained from the two sequences and may be denoted as
Ei and E′

j .

Let us assume that with a minimum number of n AES encryptions for each of
the keys K and K∗ the attacker has at least one pair of encryptions with high
probability where the required pattern holds. Consequently for that pair before
the AddRoundKey operation of rth round, at 12 byte positions the actual values
of the two state matrices generated by K and K∗ will be same. We call this event
a collision for a pair.



It can be shown that the optimal value of n is 248 and hence to get a colliding
pair with high probability we need 248 encryptions by the key K. For each of them
we have to consider 248 encryptions by the key K∗. So there are a total of 296

pairs.

Now using a 32 bit condition on the key stream we shall reduce the number of
pairs to be considered. Let Ei and E′

j have a collision. If the state matrix after rth

round of Ei is denoted by B, then ∆B0,0, ∆B2,0, ∆B0,2, ∆B2,2 should be a, c, a, c

respectively. It is expected that out of 296 pairs only 264 pairs will satisfy this
condition.

Also if the state matrix after (r + 1)th round of Ei is denoted by C, we can
observe the differences ∆C0,1, ∆C0,3, ∆C2,1, ∆C2,3 for the remaining 264 pairs from
the key stream. Using the propagation of difference pattern it can be shown that
these values need to satisfy 4 non linear equations.

Using Property 2 of Section 2.4, the probability of satisfying all of these 4
equations is 2−4. So after checking this condition, out of 264 pairs only 260 pairs
need to be considered.

The algorithm presented in the next Section uses this difference pattern. Hence
we have to repeat the analysis procedure explained in that Section for each of the
260 pairs to extract secret state bytes.

4 Algorithm to Recover Secret State Bytes

So far we have stated all the necessary properties required for our attack. In this
Section using those properties we describe our algorithm which recovers certain
state bytes of LEX. Our algorithm consists of two steps as presented below.

1. This step retrieves 8 bytes of the state matrix after round r. Let Ei and E′

j

form a colliding encryption pair. Then the special difference shown in Figure 3
holds for this pair. Now we shall concentrate on the propagation of this special
difference pattern through round (r+1). This propagation is shown in Figure 4.
We shall explain the rest of this step using this Figure.

ARK

ARK

Kr

r + 1
K

SB

SR

MC

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0

0 0

0 0

a a

a

a aa

b b

b

b b

a

c c

c c

c c

d d

d d

d d

a’ a’

b’ b’

c’ c’

d’ d’

γ γ

γ γ

1

1b

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

4

3

2∆

Matrix ∆B Matrix ∆C

∆

Fig. 4. Propagation of difference pattern in round (r + 1)(Bytes with known actual values
are colored)



We know the actual values of the colored bytes of Figure 4 from the key
stream. The symbols written in the byte positions are corresponding differ-
ences obtained for the pair Ei and E′

j . Let us first express the differences
a1, a2, b1, b2, c1, c2, d1, d2 in Figure 4 in terms of known differences a, b, c, d .
The difference of the rth subkeys for Ei and E′

j is known from the related key
differential of Section 3 and shown in Figure 4. Observing the differences before
and after xoring with round key Kr and using the linearity of ARK operation
we immediately get a1 = a2 = a, b1 = b2 = b, c1 = c2 = c, d1 = d2 = d. In
Figure 4 x′ denotes output difference after SubByte operation applied to input
difference x. Mathematically if x is a difference, x′ = SB(x) where x can be
a1, a2, b1, b2, c1, c2, d1 or d2.

Now we observe the differences between the key stream generated by Ei and
E′

j after (r+1)th round. From the related key differentials in LEX (Section 3) we

know the subkey difference ∆Kr+1 as shown in Figure 4. Hence using the lin-
earity of ARK operation we can get the values of the differences γ1, γ2, γ3, γ4 in
Figure 4. Let us denote the state matrix after SR operation of (r + 1)th round
as B. C is the state matrix after applying MC operation to B. Then using
the linearity of MC operation we can express each of ∆C0,1, ∆C2,1 as linear
combination of b′2, d

′

1. Also ∆C0,3, ∆C2,3 can be expressed as linear combina-
tion of b′1, d

′

2. Since ∆C0,1, ∆C2,1, ∆C0,3, ∆C2,3 are nothing but known values
γ1, γ2, γ3, γ4 respectively hence we get 4 equations in 4 variables b′1, b

′

2, d
′

1, d
′

2,

The attacker deduces b′1, b
′

2, d
′

1, d
′

2 from these equations. By virtue of knowing
the differences b, d we know b1, b2, d1, d2. Hence using Property 1 of Section
2.4, actual values of bytes corresponding to these four differences b1, b2, d1, d2

can be retrieved by four table look ups. In this way we recover four bytes of
the state matrix after the rth round. Combined with the bytes we get from
the key stream a total of eight bytes of the state matrix after the rth round is
known. The bytes of round (r + 1) whose actual values are known after this
step are shown in Figure 5 by coloring them.

ARK

K

SB

SRr

Fig. 5. Known bytes after first step of algorithm

2. We recover some more bytes of another state matrix in this step. We continue
with the colliding encryption pair Ei and E′

j from step 1. Here we concentrate

on the propagation of differences in the rth round. Figure 6 shows the differ-
ences of different bytes in the rth round. The bytes whose actual values are
known to us from the key stream are colored. In this diagram, all of c1, c2, c3, c4

are differences we can get directly from the key stream. We want to determine
xi, i = 1, 2, . . . , 8. They are unknown differences.

Here G is the state matrix after SR operation of round r in the encryption
Ei. H is obtained after MC operation is applied to G. Since MC operation is
linear we apply MC operation on 2nd and 4th column of ∆G and equate them



0

0

0

0

0

0 0

0

0

0

0

0

x

x

x

x

5 6

7 8

0

0 0

0

x

x

x

x

5 6

7 8

a a

b b

c c

d d

ARK

K
r −1 

SB

SR

MC

c c

c c

x x

x x

1

1

2

2

3

3

4

4

0

0 0

0

a a

b b

c c

d d

0 0

00

ARK

K
r

Matrix Matrix 

Matrix 

∆ ∆

∆

G H

A

∆

∆

Fig. 6. Propagation of differences in round r

with corresponding columns of ∆H . In this way we can form 8 linear equations
involving xis, i = 1, 2, ..., 8.
We solve this system of linear equation and in particular focus on the values
of x1, x2, x3, x4 i. e the values of ∆G1,1, ∆G1,3, ∆G3,1, ∆G3,3. Thus we get the
total 2nd and 4th column of ∆G. Next we guess the actual values of the 2nd

and 4th column of the matrix G. This takes a complexity of 232. Hence using
the MC operation we get the actual values of 2nd and 4th column of H too.
Let the state matrix at the end of rth round of Ei is denoted by A. Using the
values of x5, x6, x7, x8 combined with the known value of ∆Kr we know the
2nd and 4th column of ∆A. The bytes whose actual values are known after
step 2 are shown in Figure 7 by coloring them.

ARK

K
r

MC

0

0

0

0

0

0

0

0

0 0

0 0

0

00

0a a

b b

c c

d d

x x

x x

x

x

x

x

5
6

7 8

5 6

7 8

Matrix AMatrix HMatrix G

c c

c c

x x

x

1 2

3 4

1 2

3
x

4

Fig. 7. Known bytes after second step of the algorithm

5 Analysis of the algorithm

5.1 Complexity Analysis

The algorithm depends on finding the special difference pattern mentioned in
Section 3.1. We also state in the same section that we need a minimum of 248

encryptions under each of the key K and K∗. Hence the total number of key
stream bytes required is ≈ 254.3. This is the data complexity of the algorithm.

Step 1 of the algorithm has a complexity of 24 on average. The second step has
a complexity of 232 since we have to make 232 guesses and we have corresponding



key suggestions. Thus the 2 steps of the attack procedure have a total complexity
of 236. We have to repeat this procedure for 260 pairs as explained in Section 3.1.
Hence the time complexity of the algorithm is 296.

5.2 Efficiency of the Algorithm

In this Section we show that the algorithm retrieves the intermediate state bytes
more efficiently than brute force search.

We can see from Figure 7 we have recovered 8 bytes of matrix H and 8 bytes of
matrix A. These 8 bytes of matrix A also include 4 bytes given by the key stream.
Hence we have recovered total 12 secret state bytes of matrix H and A.

A careful look at the algorithm reveals that we have retrieved not only secret
bytes of matrix A and matrix H for the encryption Ei but also the corresponding
secret bytes of E′

j . So we have retrieved 24 bytes of secret data with a cost of 296.
This is much lesser than an exhaustive search for these 24 bytes which should cost
2192.

In the following Section we present a tweaked version of LEX which is resistant
against all the attacks mentioned so far in this paper.

6 Proposal of the tweaked version of LEX: TweLEX

In this Section we propose a modification of LEX which provides resistance against
existing attacks on LEX. We also argue that this simple modification provides
protection against any kind of differential attack on LEX.

6.1 Modification of LEX

We have seen that the most important part of the design of LEX is wherefrom a
designer should output the bytes. Let after an odd round the state matrix is M

and in the next round, which is essentially an even round the state matrix is N .

Then in the basic design the output bytes for those two consecutive rounds
would have been M0,0, M0,2, M2,0, M2,2, N0,1, N0,3, N2,1, N2,3. In the tweaked ver-
sion of LEXwe shall output (M0,0 ⊕ N0,1),(M0,2 ⊕ N0,3),(M2,0 ⊕ N2,1),(M2,2 ⊕ N2,3).
We call the resulting stream cipher TweLEX. It is advisable to change the secret
key of the cipher at least every 232 IV set ups, and to change the IV after every
T = 1000 iterations to prevent algebraic attacks.

We output 4 bytes after every two AES round. This indeed halves the through-
put of LEX but it provides better security than the actual LEX. We shall now
provide some argument in order to justify the design.

6.2 Security Analysis of TweLEX

In this subsection, we provide an overview on the performance of the existing
attacks against LEX on the new cipher TweLEX.



Protection Against the Key Recovery attack by Dunkelman: The attack
in [4] relies on finding the event that the difference between two state matrices is
zero at 8 specific bytes. The probability of this event is 2−64.

They have used a 32 bit filter on the output key stream of LEX. This filter
effectively reduces the complexity of their algorithm by a factor of 232. In TweLEX

the adversary does not directly know the values of state bytes. Hence he could not
use the 32 bit filter and the complexity of attack will become 2112 × 232 = 2144.
This is worse than a brute force attack.

Protection Against the state byte recovery attack proposed in this work:

In this work we have used filters on the key stream of LEX to find out a differential
pattern. Hence using a argument similar to previous paragraph we can show that
our attack is ineffective agaisnt TweLEX.

Protection Against other Differential Attacks: A close look on all the dif-
ferential attacks on AES or LEX which relies on differential propagation through
rounds reveals a similarity. All of them use the Property 1 of Section 2.4. They try
to locate input-output difference pairs for the AES S-box and using a table look up
retrieve corresponding actual input-output byte values.

Let us use this strategy for TweLEX. We assume that we have two or more
key streams generated by TweLEX. By construction the key stream will be xor of
certain state bytes. Using some differential propagation on the differences of two
key streams one can retrieve some output differences for AES s-box for certain bytes
of the state matrix. Then it can be shown that, using Property 1 of Section 2.4,
it is not possible to retrieve the state bytes with a complexity better than brute
force search. Hence this is apparent that any strategy that uses the Property 1 of
Section 2.4 will fail against this modified version of LEX.

7 Conclusion

In this paper we have revisited the stream cipher LEX and have presented a related
key cryptanalysis for the cipher. Consequently we proposed TweLEX, a modification
of LEX which prevents the existing attacks on LEX. Although the throughput of
TweLEX is half of LEX it provides a good optimization between speed and security
and attempts to show that leak extraction as an elegant method to design stream
ciphers.

References

1. Alex Biryukov, “A New 128-bit Key Stream Cipher LEX,” Ecrypt Stream Cipher
Project Report, 2005/013, 2005, http://ecrypt.eu.org/stream.

2. H. Wu and B. Preneel, “Attacking the IV setup of the stream cipher LEX,” Ecrypt
Stream Cipher Project Report, 2005/059, 2005, http://ecrypt.eu.org/stream.

3. H̊akan Englund, Martin Hell and Thomas Johansson, “A Note on Distinguishing
attacks,” in Preproceedings of State of the Art of Stream Ciphers workshop (SASC
2007), 2007, pp. 73–78.

4. Orr Dunkelman and Nathan Keller, “A new attack on the lex stream cipher,” in
ASIACRYPT, 2008, pp. 539–556.

5. Federal Information Processing Standards Publication 197, “Announcing the Ad-
vanced Encryption Standard (AES),” 2001.


