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Abstract

The paper analyzes cache based timing attacks on opti-

mized codes for Advanced Encryption Standard (AES). The

work justifies that timing based cache attacks create hits in

the first and second rounds of AES, in a manner that the tim-

ing variations leak information of the key. To the best of our

knowledge, the paper justifies for the first time that these

attacks are unable to force hits in the third round and con-

cludes that a similar third round cache timing attack does

not work. The paper experimentally verifies that protecting

only the first two AES rounds thwarts cache based timing

attacks.

1 Introduction

The biggest threat to the security of embedded systems

is from side channel attacks. These attacks were initially

discovered by Kocher [8] and were then used to retrieve the

secret key of a cryptographic algorithm running on small

embedded devices such as smart cards. An embedded de-

vice could have several side channels which leak informa-

tion about the key. These channels include power consump-

tion, electro magnetic radiation, timing etc. Of these, timing

attacks are the cheapest to perform as they do not require

sophisticated measuring instrumentation. In this paper we

focus on preventing timing attacks for software implemen-

tations of cryptographic algorithms.

The main source of leakages in a cryptographic algo-

rithm implementation is from the processor’s cache mem-

ory. Cache memory is present on almost every computing

system and makes use of the temporal and spatial locality of

the code to improve the overall execution time of the pro-

gram. The time required to access data present in the cache

is much lesser than the time required to access data stored

in memory. This differential timing for memory access is

used by attackers to gain knowledge of the secret key of a

cryptographic algorithm. Such attacks are known as cache

attacks. Algorithms such as AES [7] that use large key de-

pendent lookup tables are most vulnerable to such attacks.

Based on the capabilities of the adversary cache attacks

can be categorized into two, namely cache-time and cache-

trace attacks. In a cache-trace attack, the adversary is as-

sumed to be able to capture the profile of the cache activity

during the encryption. The profile includes the outcomes

of every memory access the cipher issues in terms of cache

hits and misses. In a cache-time attack, the attacker derives

the key from just the knowledge of the time required for

encryptions. No additional information about the individ-

ual hit-miss pattern in cache access is required. This makes

time-driven attacks more deadly compared to trace-driven

attacks. Using a time-driven attack, it has been shown that

a remote server running an encryption algorithm can be bro-

ken over the network [1, 2].

The easiest way to prevent cache attacks is by avoid-

ing table lookups. This requires sboxes to be computed

using functions. The only efficient method to implement

such sboxes is by using bitslicing. In a bitsliced imple-

mentation [9, 13], several encryptions can be done in par-

allel on a single processor. However bitslicing is limited

to operating modes that do not require chaining. For op-

erating modes requiring chaining, table based implementa-

tions are a better solution although they are vulnerable to

cache attacks. There are several countermeasures that have

been proposed for table based implementations such as in

[2, 6, 11]. All these countermeasures suffer from a similar

drawback which is the overhead on the performance of the

algorithm. This overhead drastically slows down encryp-

tions making such methods impractical for high speed ap-

plications. Hence it is desirable to incorporate countermea-

sures with minimum overhead. However cache accesses be-

ing statistical and dependent on data is extremely hard to

analyze. In fact there has been insignificant research to ex-

actly pinpoint the cause of cache attacks. In this paper we

justify the cause of cache based timing attacks on AES by

analyzing the cipher structure. We then argue that to prevent

timing attacks on AES, it is sufficient to just protect the first

two rounds of the cipher instead of protecting all rounds.



In order to experimentally verify the result, we implement

the first two rounds using composite field sboxes [5]. We

justify our claim by showing that such an implementation

cannot be attacked by observing the timing of the cipher.

The paper is structured as follows : Section 2 has the

background for the work. Section 3 has related works on

countermeasures for cache attacks. Section 4 analyzes the

AES structure and presents the causes for information leak-

age in AES. It also reasons why a third round cache timing

attack is infeasible. Section 5 proposes a new countermea-

sure based on an analysis of the AES structure. Section 6

has experimental results showing the overhead of a popu-

lar countermeasure (composite field sboxes) on the cipher’s

performance and compares it with the countermeasure pro-

posed in the paper. The final section has the conclusion.

2 Background

The present section gives an overview of a popular im-

plementation technique for the AES block cipher [12]. Sub-

sequently we brief an existing work on cache based timing

attacks against AES [2].

2.1 AES Block Cipher

AES-128 [7] is a 10 round cipher which takes as input

a 16 byte plaintext P = (p0, p1, · · · , p15) and a 16 byte

secret key K = (k0, k1, · · · , k15). The most widely used

software implementation of AES is based on Barreto’s code

[12]. This performance optimized implementation uses four

1KB lookup tables T0, T1, T2, and T3 for the first 9 rounds

of the algorithm, and an additional 1KB lookup table T4

for the final round. The structure of each round is shown in

Equation 1 and encapsulates the four basic AES operations

of SubByte, ShiftRow,MixColumn, and AddRoundKey. The

input to round i (1 ≤ i ≤ 9) is the state Si comprising of 16
bytes (si

0, s
i
1, · · · , si

15) and round key Ki split into 16 bytes

(ki
0, k

i
1, · · · , ki

15). The output of the round is the next state
Si+1. The first round S1 comprises of inputs (P ⊕ K) and

round key K1.

Si+1 = {T0[si

0] ⊕ T1[si

5] ⊕ T2[s
i

10] ⊕ T3[si

15] ⊕ {ki

0, ki

1, ki

2, ki

3},

T0[si

4] ⊕ T1[si

9] ⊕ T2[s
i

14] ⊕ T3[si

3] ⊕ {ki

4, ki

5, ki

6, ki

7},

T0[si

8] ⊕ T1[si

13] ⊕ T2[si

2] ⊕ T3[si

7] ⊕ {ki

8, ki

9, ki

10, ki

11},

T0[si

12] ⊕ T1[s
i

1] ⊕ T2[si

6] ⊕ T3[si

11] ⊕ {ki

12, ki

13, ki

14, ki

15}}

(1)

2.2 Bernstein’s Cache Timing Attack

In 2005, Bernstein demonstrated a cache timing attack

on a remote server running Barreto’s implementation of

AES [2]. The attack required 227.5 plaintext samples gener-

ated randomly from a client machine. Initially all the bytes

of key (KT ) on the server are set to zero, and for every

key byte kTi
the average time for encryption is obtained for

all possible values (0 to 255) of the plaintext byte pi. This

forms the template for the known key byte kTi
. Next, the

process is repeated with the unknown key K and a similar

timing profile for every key byte ki is obtained. The two

profiles are statistically correlated to reveal the unknown

key byte ki.

3 Related Work

Various countermeasures have been proposed over the

years to provide protection against cache timing attacks

[2, 6, 11]. All proposed countermeasures are based on the

primary motivation which is to stop or randomize the in-

formation leaked by the cache access patterns of the AES

implementation. These countermeasures include:

• Using random permutations to mask the information

about actual cache access patterns [3, 4].

• Using smaller and compact tables for encryption.

• Ensuring constant time for AES encryptions by using

dummy functions of known latency [6].

• Architectural and operating system modifications.

The common drawback of the first three countermea-

sures is the overhead on the encryption time. This is gen-

erally not acceptable especially for high speed embedded

applications. The fourth countermeasure cannot be applied

to current operational systems.

All the strategies proposed in literature to prevent cache

timing attacks have one thing in common: the trade off be-

tween the performance and security of the implementation.

Evidently maximizing both parameters is a definite goal for

any countermeasure. This is considered in [11] where the

protection of just the first two and the last two rounds are

considered. This countermeasure is for the cache trace at-

tacks proposed in the same paper. In [4], the authors pointed

out that protecting the first and last rounds is sufficient.

However we will show in the following section that the sec-

ond round also causes information leakage and hence has to

be protected.

4 Pinpointing Cache Timing Attacks

For an AES encryption each table T0, T1, T2, and T3 is

accessed four times in every round for the first 9 rounds,

while table T4 is accessed 16 times in the final round. In all

there are 160 table accesses. If nh is the number of cache
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hits and nm is the number of misses then the encryption

time can be approximated by Equation 2.

T = nh · Th + nm · Tm + Tk

= nh · Th + (160 − nh) · Tm + Tk

(2)

where Th and Tm are the time required for a hit and a miss

respectively, and Tk is a constant.

The time difference between two encryptions is repre-

sented by Equation 3.

∆T = ∆nh · Th + ∆nm · Tm

= ∆nh(Th − Tm)
(3)

In the equation ∆nh and ∆nm are the difference in the

number of hits and misses in the two encryptions respec-

tively. The difference in the number of hits (or misses) oc-

cur because of the different patterns in accessing tables T0

to T4 as a result execution time for AES depends on its in-

puts (the plaintext and key), therefore in order to analyze the

timing variation it is sufficient to analyze the number of hits

and misses that occur during the program execution. In the

remainder of this section we use Equation 2, with Th = 1,
Tm = 4 to approximate the actual timing of AES.

A First Round Distinguisher : For a given key if all bytes

of the plaintext are varied randomly, the frequency distribu-

tion of the number of hits is normal (Figure 1). Further, if

a single cache hit in the first round is forced, for example

by setting s1
0 = s1

4 (ie. p0 ⊕ k0 = p4 ⊕ k4), then the nor-

mal distribution is still obtained but is shifted to the right

with respect to the earlier distribution. This essentially is

the first round distinguisher, and the reduced time obtained

when there is a hit in the first round is used in first round

cache timing attacks.

An attack based on this first round distinguisher can be

carried out as follows. For every possible value for byte p0,

average hits are determined by randomly varying at least

one byte of the plaintext for each row of Equation 1 except

the bytes p4, p8, and p12. It may be noted that the bytes

p0, p4, p8, and p12 access the same table (T0) in the first

round. The average hits for different values of p0 is shown

in Figure 2. There are three glitches, these correspond to

hits that occur when p0 ⊕ k0 = p4 ⊕ k4, p0 ⊕ k0 = p8 ⊕ k8,

and p0 ⊕ k0 = p12 ⊕ k12. From this, the exclusive-or of the

keys can be determined as shown in Equation 4.

k0 ⊕ k4 = p0 ⊕ p4

k0 ⊕ k8 = p0 ⊕ p8

k0 ⊕ k12 = p0 ⊕ p12

(4)

In a similar way ex-or differences of other key bytes can be

determined.

Figure 2 assumes a hypothetical cache in which a miss

causes just a single data to be loaded into cache. However a
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Figure 2. First Round with Plaintext Byte p0 Varied
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Figure 3. First Round with plaintext byte p0 varied and

cache line of 64 bytes



miss in a real cache memory results in an entire cache line

to be loaded into cache. A cache line of size l bytes (which

is generally a power of 2) contains contiguous memory lo-

cations, therefore a cache hit occurs when two table indices

i and j are related by Equation 5, where >> is the right

shift operator.

i >> log2l = j >> log2l (5)

For a real cache it is only possible to retrieve the higher or-

der bits of the key bytes, therefore Equation 4 can be modi-

fied as shown in Equation 6.

(k0 ⊕ k4)(7···log2l) = (p0 ⊕ p4)(7···log2l)

(k0 ⊕ k8)(7···log2l) = (p0 ⊕ p8)(7···log2l)

(k0 ⊕ k12)(7···log2l) = (p0 ⊕ p12)(7···log2l)

(6)

Figure 3 shows the same attack as in Figure 2 except that

it is simulated with for a cache having a cache line equal

to 16 thirty two bit words (64 bytes). It may be noted that

the three glitches present in Figure 2 have broadened in

Figure 3. The extent to which it has broadened is equal to

the cache line size (16 words).

A Second Round Distinguisher : In the first round if all

bytes in a row (Equation 1) are kept constant while the re-

maining bytes are varied randomly then four bytes in the

second round will be constant. For example, if s1
0, s1

5, s1
10,

s1
15 are kept constant then s2

0, s2
1, s2

2, and s2
3 in the second

round are constant. This can be used to force hits in the

second round as explained below.

The plaintext byte p0 is varied from 0 to 255 just as in the
first round attack. This implies s1

0 also takes on all possible

bytes. The bytes s1
5, s1

10, s1
15 are kept constant by keeping

the corresponding plaintexts constant. The remaining bytes

in the AES state are varied randomly and the average time

taken for each value of p0 is obtained. Figure 4 plots the
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Figure 4. Second Round with Plaintext Byte p0 Varied

average time taken for all possible values of p0. There are

at most 9 glitches that can occur in the graph. Figure 4

shows only 8 glitches instead of 9 because the ninth glitch

coincides with the y axis. The 9 glitches occur when s2
0 =

s1
0, s2

1 = s1
5, s2

2 = s1
10, s2

3 = s1
15 and when s2

0, s2
1, s2

2, s2
3,

or s1
0 are zero. This distinguisher can be exploited in cache

attacks targeting the second round.

Third Round Distinguishers are Not Possible : In

the previous descriptions of distinguishers on one and two

rounds of AES, we have seen that the average number of

hits are correlated to the plaintext value. To increase the

average number of hits, at least one hit has to be forced in

one of the rounds in each encryption. In order to obtain the

complete normal curve (Figure 1) we need to observe the

number of hits (in the form of encryption time) over large

number of samples. This means that we need to have some

randomly varying bytes in the plaintext. Further to inflict at

least one hit, the tables should be accessed at some constant

locations in one round while being accessed at all possi-

ble locations in the next round. This is possible only in the

first and second round but not for the third round due to the

AES structure. For example if there are two plaintext bytes

varying, then the variation at the input of the third round is

completely unpredictable. Moreover if only one plaintext

byte is varied, then we obtain only one point in the normal

curve and thus we are unable to obtain the required statis-

tics. Figure 5 shows the plot of deviation from average time

when the plaintext byte p0 is varied while the rest are con-

stant. We can observe that unlike the first and second rounds

(Figures 2 and 4) no distinguishable glitches are present.

5 The Proposed Counter Measure

From the discussions in the previous section it may be

concluded that significant variation in encryption timings

are obtained whenever a hit is forced during the encryption.
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Figure 5. Third Round with Plaintext Byte p0 Varied



In the first round distinguisher three plaintext bytes in a col-

umn (Equation 1) are maintained constant while the fourth

byte is varied from 0 to 255 thus forcing hits in the first

round. The second round distinguisher keeps three bytes in

a row constant and varies the fourth byte from 0 to 255 thus

forcing hits in the second round. In encryptions that have

forced hits in the first two rounds, the encryption time is

lesser than the average. The position in the graph (Figures

2 and 4) where the timing is significantly lower than aver-

age reveals information about key. These are used either

directly or indirectly in all cache timing attacks.

It is impossible to force a hit in the third round (or for

that matter any round greater than three) by just manipulat-

ing the input plaintext. Our proposed technique to counter

cache attacks is to prevent information leakages in just the

first and second rounds of the cipher. The preventive mea-

sure for the first and second round could be any of the pre-

viously used techniques. The advantage of our proposed

method is that the overhead on the performance is reduced

considerably, thus an AES implementation with our coun-

termeasure implemented will not only prevent cache attacks

but will also be able to do encryptions faster than regular

protected AES implementations.

6 Experimental Validation and Results

To test our proposal we used an implementation of Bern-

stein’s attack [10]. In this attack the client server architec-

ture from [2] is replaced by a single system without need for

any networking. In order to aid the attacker by reducing the

attack time required, we flush the cache at every iteration to

ensure that every encryption starts with a fresh cache.

We first executed the attack on an unprotected OpenSSL

library[14] which uses Barreto’s code [12]. The test plat-

form was a laptop having Intel Core 2 Duo with 32KB L1
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Figure 6. Deviation from average for p0 on an Unpro-

tected AES code

Table 1. Comparison of Timings for Protected and Un-

protected Implementations

Implementation Time Overhead

of AES (in clock cycles)

Unprotected 712 -

All rounds protected 47500 66.71

2 rounds protected 7674 10.79

data cache. The attack was successful with 225 randomly

generated plaintexts. To determine k0, the plaintext byte p0

was varied from 0 to 255 and the graph of deviation from

average is plotted. The graph (Figure 6) clearly shows for

some values of p0 the execution time was significantly dif-

ferent from the average. These correspond to the hits ob-

tained in the initial rounds of the cipher.

We then modified OpenSSL’s AES code so that the first

two rounds used composite field [5] implementations for

sbox instead of table lookup. The attack was carried out on

the same platform. After 228 randomly generated plaintexts

the attack was unsuccessful. The graph (Figure 7) clearly

shows no pattern in the waveform.

Table 6 compares the timing for AES with two rounds

protected and with all rounds protected. The two round pro-

tected AES has an overhead of 10.79 compared to the un-

protected implementation, while the implementation with

all rounds protected has an overhead of 66.71 times that of

the unprotected AES implementation. This shows about 6
times improvement in the performance of our countermea-

sure.
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Figure 7. Deviation from average for p0 on a Protected

AES code



7 Conclusion

The paper pinpoints that the vulnerability of software im-

plementations of AES due to cache timing is because of the

ability of the attacker to control cache hits in the first and

second rounds. It is explained that the attacker is not able

to control the hits in the third round, thus making a third

round cache attack infeasible. The paper proposes that pro-

viding countermeasures for the first two AES rounds are

sufficient to prevent timing attacks. This leads to the im-

plementation of AES resistant against cache timing attacks

with minimum overhead. Detailed analysis and supported

experimentations have been provided to justify the claim.
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