Privacy and Security in Machine Learning 2

Mainack Mondal

CS 60081 Autumn 2024

https://www.webpages.uidaho.edu/vakanski/Courses/ Adversarial_Machine_Learning/Fall_2021/Lecture_11_ Privacy_Attacks_against_ML.pptx

An overview of attacks

Privacy Attacks in AML

- *Privacy attacks* are also referred to as inference attacks or confidentiality attacks
- They can broadly be developed against:
 - Training data
 - o E.g., reveal the identity of patients whose data was used for training a model
 - ML model
 - E.g., reveal the architecture and parameters of a model that is used by an insurance company for predicting insurance rates
 - o E.g., reveal the model used by a financial institution for credit card approval
- Privacy attacks are commonly divided into the following main categories
 - Membership inference attack
 - Feature inference attack
 - Model extraction attack

Membership Inference Attack

• Membership inference attack

- Adversarial goal: determine whether or not an individual data instance x* is part of the training dataset D for a model
- The attack typically assumes black-box query access to the model
- Attacks on both supervised classification models and generative models (GANs, VAEs) have been demonstrated
- A common approach is to first train several *shadow models* that imitate the behavior of the target model, and use the prediction vectors of the shadow models for training a binary classifier (that infers the membership)

- Shokri (2016) Membership Inference Attacks Against Machine Learning Models
- Threat model:
 - The adversary has back-box query access to the target model
 - The goal is to infer whether input samples were part of its private training set
- *Shadow training* approach:
 - Create several shadow models to substitute the target model
 - Each shadow model is trained on a dataset that has a similar distribution as the private training dataset of the target model
 - E.g., if the target model performs celebrity face recognition, the attacker can collect images of celebrities from the Internet
 - Then, query the target model with images of Brad Pitt, and if the confidence of the target model is high, then probably the private training set contains images of Brad Pitt: use those images for the shadow training sets
 - Same input instances are used in the shadow training sets for multiple shadow models

- The output **probability vectors** from the shadow models are next used as inputs for training attack models (as binary classifiers) for each class
 - E.g., the probability vectors for all input images of Brad Pitt from all shadow training sets are labeled with 1 (meaning 'in' the training set)
 - The probability vectors for all input images of Brad Pitt from all shadow test sets are labeled with 0 (meaning 'out' or not in the training set)
 - An attack model is trained on these inputs to perform binary classification (in or out)
 - A separate attack model is trained for each celebrity person in the shadow training sets

- The attack models for each class are afterward used to predict whether individual inputs instances were members of the private training set of the target model
- The assumption in this attack is that the output probability vectors of the shadow models are different for samples that are members of the shadow training sets, in comparison to samples from the shadow test sets
- Experiments showed that increasing the number of shadow models improves the accuracy, but it also increases the computational recourses

- If the adversary cannot get access to input samples for shadow training sets or to any other statistics about the target data distribution, the authors developed an algorithm for creating synthetic samples by querying the target model
 - First, for each class, start with a random sample, query the target model and change each input feature until the modified samples are classified with high confidence
 - Next, randomly change a set of input features, and repeat the procedure to create new samples

Algo	rithm 1 Data synthesis usir	ng the target model
1: p	orocedure SYNTHESIZE(cla	ss:c)
2:	$\mathbf{x} \leftarrow \text{RandRecord}()$	▷ initialize a record randomly
3:	$y_c^* \leftarrow 0$	
4:	$j \leftarrow 0$	
5:	$k \leftarrow k_{max}$	
6:	for $iteration = 1 \cdots iter$	r _{max} do
7:	$\mathbf{y} \leftarrow f_{target}(\mathbf{x})$	query the target mode
8:	if $y_c \geq y_c^*$ then	▷ accept the record
9:	if $y_c > \operatorname{conf}_{min} z$	and $c = \arg \max(\mathbf{y})$ then
10:	if rand() $< y_{c}$	c then \triangleright sample
11:	return x	▷ synthetic data
12:	end if	
13:	end if	
14:	$\mathbf{x}^* \leftarrow \mathbf{x}$	
15:	$y^*_{m{c}} \leftarrow y_{m{c}}$	
16:	$j \leftarrow 0$	
17:	else	
18:	$j \leftarrow j+1$	
19:	if $j > rej_{max}$ the	en ▷ many consecutive reject
20:	$k \leftarrow \max(k_{m_{2}})$	$_{in}, \lceil k/2 \rceil)$
21:	$j \leftarrow 0$	
22:	end if	
23:	end if	
24:	$\mathbf{x} \leftarrow RANDRECORD($	$(\mathbf{x}^*, k) \triangleright$ randomize k features
25:	end for	
26:	return ⊥	▷ failed to synthesize
27: e	nd procedure	

- The table shows the accuracy of a target model on training and testing sets, and the success of the attack for several models
 - One can note that the larger the overfitting (difference between the training and testing accuracy), the more successful the membership inference attack is

• Conclusively, overfitting not only reduces the generalization of a model, but also makes the model more likely to leak sensitive information about the training data

 In addition, the attack was more successful for training datasets that are more diverse and have larger number of classes (e.g., compare Purchase model with 100 classes to Purchase with 2 classes)

Dataset	Training	Testing	Attack
	Accuracy	Accuracy	Precision
Adult	0.848	0.842	0.503
MNIST	0.984	0.928	0.517
Location	1.000	0.673	0.678
Purchase (2)	0.999	0.984	0.505
Purchase (10)	0.999	0.866	0.550
Purchase (20)	1.000	0.781	0.590
Purchase (50)	1.000	0.693	0.860
Purchase (100)	0.999	0.659	0.935
TX hospital stays	0.668	0.517	0.657

Feature Inference Attack

- Feature inference attack
 - Adversarial goal: recreate certain features of data instances x* or statistical properties (such as class average of x*) of the training dataset D for the model
- A.k.a. attribute inference attack, reconstruction attack, or data extraction attack
- Various attacks have been developed to either recover partial information about the training data (such as sensitive features of the dataset, or typical representatives for specific classes in the dataset) or full data samples
 - An example of a training data extraction attack is described later in this lecture
- Similarly, recreating dataset properties that were not encoded in the dataset is also referred to as *property inference attack*
 - E.g., extract information about the ratio of men and women in a patient dataset, despite that gender information was not provided for the training records

Figure form: Liu et al. (2020) When Machine Learning Meets Privacy: A Survey and Outlook

Model Inversion Attack

- Fredrickson (2015) Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures
- *Model inversion attack* creates prototype examples for the classes in the dataset
 - The authors demonstrated an attack against a DNN model for face recognition
 - Given a person's name and white-box access to the model, the attack reverse-engineered the model and produced an averaged image of that person
 - \circ The obtained averaged image (left image below) makes the person recognizable
 - This attack is limited to classification models where the classes pertain to one type of object (such as faces of the same person)

Recovered image using the model inversion attack

Image of the person used for training the model

Model Inversion Attack

- The model inversion attack applies gradient descent to start from a given label, and follow the gradient in a trained network to recreate an image for that label
 - The cost function is denoted *c*, whereas the PROCESS function applies image denoising and sharpening operations to improve the reconstructed image
- Model inversion attack can be used for potential breaches where the adversary, given some access to the model, can infer features that characterize each class

Algorithm 1 Inversion attack for facial recognition models.

1: function MI-FACE(*label*, $\alpha, \beta, \gamma, \lambda$) $c(\mathbf{x}) \stackrel{\text{def}}{=} 1 - \tilde{f}_{label}(\mathbf{x}) + \text{AUXTERM}(\mathbf{x})$ 2: $\mathbf{x}_0 \leftarrow \mathbf{0}$ 3: for $i \leftarrow 1 \dots \alpha$ do 4: $\mathbf{x}_i \leftarrow \operatorname{PROCESS}(\mathbf{x}_{i-1} - \lambda \cdot \nabla c(\mathbf{x}_{i-1}))$ 5:if $c(\mathbf{x}_i) \geq \max(c(\mathbf{x}_{i-1}), \ldots, c(\mathbf{x}_{i-\beta}))$ then 6: 7: break if $c(\mathbf{x}_i) < \gamma$ then 8: break 9: return $[\arg \min_{\mathbf{x}_i} (c(\mathbf{x}_i)), \min_{\mathbf{x}_i} (c(\mathbf{x}_i))]$ 10:

Model Extraction Attack

- Model extraction attack
 - Adversarial goal: reconstruct an approximated model f'(x) of the target model f(x)
- A.k.a. model inference attack
- The approximated function f'(x) will act as a substitute model and produce similar predicted outputs as the target model
 - The adversary has black-box query access to the model
 - The goal is to "steal" the model and use the substitute model for lunching other attacks, such as synthesis of adversarial examples, or membership inference attacks
- Besides creating a substitute model, several works focused on recovering the hyperparameters of the model, such as the number of layers, optimization algorithm, activation types used, etc.

Figure form: Liu et al. (2020) When Machine Learning Meets Privacy: A Survey and Outlook

Training Data Extraction Attack

- Example of training data extraction
 - The authors query GPT-2 by entering the *prefix*: "East Stroudsburg Stroudsburg..."
 - The model outputted a block of text, which included the full name, phone number, email address, and physical address of the person
 - This information was included in the training data for GPT-2, it was memorized by the model, and extracted by using the training data extraction attack

Training Data Extraction Attack

- The main findings of the study are:
 - Most of the memorized samples were found in only 1 document in the dataset

o However, the samples were repeated multiple times in the document

- Out of 1,800 candidate sequences that were manually analyzed by the authors, GPT-2 memorized 600 from the public training data
- Larger language models are more vulnerable to data extraction than smaller models
- Although LMs are trained on large datasets and therefore they exhibit little overfitting, they can still memorize the training data
- Implications:
 - Training data extraction attacks have previously been limited to small LMs trained on small datasets
 - It was also believed that LMs do not memorize the data, because they exhibit little overfitting
 - Recent LMs are increasingly larger, thus, such vulnerabilities can become more significant

Language Models

- *Language models (LMs)* are statistical models that assign a probability to a sequence of words
- Modern language models include:
 - Switch Transformer (Google, 2021): 1.6 trillion parameters
 - MT-NLPG or Megatron Turing NLG (Microsoft & NVIDIA, 2021): 530 billion parameters
 - GPT-3 (OpenAI, 2020): 175 billions parameters
 - Turing NLG, or Natural Language Generation (Microsoft, 2020): 17 billion parameters
 - T5, or Text-to-Text Transfer Transformer (Google, 2019): 11 billion parameters
 - Megatron ML (NVIDIA, 2019): 8.3 billion parameters
 - GPT-2 (OpenAI, 2019): 1.5 billion parameters
 - BERT, or Bidirectional Encoder Representations from Transformers (Google, 2018): 110 million parameters
 - GPT (OpenAI, 2018): 110 million parameters

Language Models Graph

• Language models and number of parameters

Language Models Timeline

• Language models timeline

Language Models

- Language models are trained on large training datasets containing raw text scraped from the Internet
 - LM generate text sequences as fluent natural language

• Therefore, are generative ML models

- The quality of text generated by LMs is often undistinguishable from human-written text
- A common approach to train LMs is the "next-step prediction" objective
 - I.e., when prompted with a sequence of words, predict the next word in the sequence
 - This is unsupervised learning, since the training set is not labeled
- Given a sequence of tokens (word embeddings) $x_1, x_2, ..., x_{i-1}$ from a vocabulary \mathcal{V} , the objective is to estimate the probability of the next token x_i in the sequence given the previous tokens, i.e., $\mathcal{P}(x_i|x_1, x_2, ..., x_{i-1})$
 - E.g., given the sequence "Marry had a little," the word "lamb" is the most likely next word in the sequence

Language Models

- NNs are currently used for estimating the likelihood of the next token x_i in NLP
 - Earlier works in NLP used architectures with recurrent layers (e.g., LSTM layers)
 - Recent works use attention-based architectures
 - *Transformer* is one such model that has been regularly used in recent LMs, consisting of a sequence of attention layers
- Training examples in LMs are text documents
 - E.g., webpages, new articles from the Internet
- The training loss minimizes the error in predicting the next token
 - For an NN *f* with parameters θ , the objective is to find network parameters θ that minimize the loss $\mathcal{L}(\theta) = -\log \prod_{i=1}^{n} f_{\theta}(x_i | x_1, x_2, ..., x_{i-1})$
 - *n* is the number of tokens in the vocabulary *V*

- GPT-2 (Generative Pre-training Transformer) was released by OpenAI in 2019
- It is a family of several models with varying number of parameters, trained using the same dataset
 - GPT-2 XL: 1.5 billion parameters
 - GPT-2 Medium: 334 million parameters
 - GPT-2 Small: 124 million parameters
- The training dataset consists of 40GB of de-duplicated text data
 - The data is scraped from publicly available sources from the Internet
- For the training data extraction attack the authors used GPT-2 XL
 - It was found that GPT-2 XL memorized 10 times more information than GPT-2 Small

GPT-3

- **GPT-3** was released by OpenAI in 2020
 - Training dataset: 45 TB of text
 - The cost for training GPT-3 175B reportedly is \$US 12 million
- Besides sentence continuation based on user's prompt, GPT-3 has also been used for other tasks, such as answering questions, summarizing text, language translation, information retrieval, automated code generation, etc.
 - Check an example of generating JavaScript XML (JSX) code for web and mobile User Interface applications by GPT-3 (<u>link</u>) and OpenAI's Codex model (<u>link</u>)

• 7	Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
	GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes10^{-4}$
	GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes10^{-4}$
	GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
	GPT-3 XL	1.3B	24	2048	24	128	1M	$2.0 imes10^{-4}$
	GPT-3 2.7B	2.7B	32	2560	32	80	1M	$1.6 imes10^{-4}$
	GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$
	GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes 10^{-4}$
	GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

Language Models

- LMs in other languages have also been developed recently
 - Wudao (Chinese LM, 1.75 trillion parameters), HyperCLOVA (Korean)
 - The German AI startup Aleph Alpha developed a large European language model, fluent in English, German, French, Spanish, and Italian
- Microsoft recently trained ZeRO-Infinity LM with 32 trillion parameters (it is not known if it outperforms current LMs)
- Several LMs are available through black-box API
 - Users can enter a prompt and obtain next-word predictions
- EleutherAI open-sourced a 6 billion parameter model called GPT-J (<u>demo link</u>)
 - It is available from Hugging Face
 - Hugging Face developed open-source NLP library based on the Transformers architectures

HUGGING FACE

- Controversy about LMs:
 - LMs can generate fake news, that are difficult to distinguish from real news

Attack Threat Model

- The authors had black-box query access to GPT-2
- Objective: extract memorized training data
 - The strength of the attack is measured based on the number of documents in which the text appeared
 - o Memorizing one word that occurred in many training examples (documents) is not severe
 - Stronger attack extract text that occurred in one single document

• This is referred to as "unintended" memorization

- The training data for GPT-2 was collected by OpenAI from public sources
 - OpenAI didn't release the training dataset

• But they released a document on the data collection process

- The authors downloaded the public data by following the documentation
 - o They didn't have access to the actual dataset used by OpenAI

Attack Approach

- Attack approach
 - Generate many text samples by using prefix prompts to GPT-2

o Build 3 datasets of 200,000 generated samples, each sample if 256 tokens long

Sort the generated output text using 6 metrics (see next page)

o LM has high confidence when the text is taken directly from the training data

- Remove duplicate outputs
- For the top 100 outputs, perform an Internet search to confirm whether the generated text is an exact match to a web document
- Check with OpenAI to confirm if the extracted text occurred in their training dataset

Attack Approach

- *Metrics for sorting* the predicted text
 - 1. Perplexity, quantifies the level of "surprise" by the GPT-2 model

• Defined as $P = \exp(-(1/n)\sum_{i=1}^{n}\log f_{\theta}(x_{i}|x_{1}, x_{2}, ..., x_{i-1}))$

- 2. Comparison to the predictions by GPT-Small and GPT-Medium models
 - \circ It is less likely that the different models will memorize the same data
- 3. Text entropy when the output is compressed using zlib compression
- 4. Perplexity when the text is switched from uppercase to lowercase letters
- 5. Averaged perplexity using a sliding window of 50 tokens
- Other strategies to improve the attack:
 - Use prompts based on Internet text
- The authors used 3 datasets of 200,000 generated samples
 - For the 6 metrics above, this resulted in 3×6 configurations, or 1,800 top samples

Results

- The authors manually inspected 1,800 generated samples from GPT-2
- They identified 604 memorized training examples (about 33% of the samples)

•	The categories of	Category	Count the table
		US and international news	109
		Log files and error reports	79
		License, terms of use, copyright notices	54
		Lists of named items (games, countries, etc.)	54
		Forum or Wiki entry	53
		Valid URLs	50
		Named individuals (non-news samples only)	46
		Promotional content (products, subscriptions, etc.)	45
		High entropy (UUIDs, base64 data)	35
		Contact info (address, email, phone, twitter, etc.)	32
		Code	31
		Configuration files	30
		Religious texts	25
		Pseudonyms	15
		Donald Trump tweets and quotes	12
		Web forms (menu items, instructions, etc.)	11
		Tech news	11
		Lists of numbers (dates, sequences, etc.)	10

Results

- Examples of memorized content
 - Personally identifiable information (PII)

o Found 78 examples of peoples' names, phone numbers, addresses, and social media accounts

 E.g., extracted the usernames of participants in an Internet forum conversation that appeared in one training document

URLs

 \circ 50 examples of memorized URLs

Code

 \circ Identified 31 samples that contain snippets of memorized source code

Unnatural text

o E.g., UUID: 1e4bd2a8-e8c8-4a62-adcd-40a936480059

- GPT-2 memorized removed content
 - The authors extracted content that has been removed from the Internet, but it had been memorized by GPT-2

Results

- Examples of memorized strings of unnatural text and URLs that occurred in only 1 document in the training data
 - E.g., in the left table the first extracted string listed has 87 characters, and occurred 10 times in 1 document
 - In the right table, we can see that GPT-XL model memorized more content than GPT-S and GPT-M models

Memorized	Sequence	Occurrences in Data			
String	Length	Docs	Total		
Y2	87	1	10		
7C	40	1	22		
XM	54	1	36		
ab 2c	64	1	49		
ff a f	32	1	64		
C7	43	1	83		
0x	10	1	96		
76	17	1	122		
a7 4 b	40	1	311		

Occur	rences	Memorized:			
Docs	Total	XL	Μ	S	
1	359	\checkmark	\checkmark	1/2	
1	113	\checkmark	\checkmark		
1	76	\checkmark	1/2		
1	72	\checkmark			
1	64	\checkmark	\checkmark		
1	56	\checkmark	\checkmark		
1	51	\checkmark	1/2		
1	51	\checkmark	1/2		
1	35	\checkmark	1/2		
1	33	\checkmark			
1	17				
1	17				
1	8				
	Docs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Docs Total 1 359 1 113 1 76 1 72 1 64 1 56 1 51 1 33 1 17 1 8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Mitigation Strategies for Data Leakage

• Selecting the training data for LMs

- Avoid text from websites that are known to host sensitive data
- Apply methods that limit the amount of sensitive content

• E.g., filter personal information

- De-duplicate content in the training data
- Training with differential privacy
 - DP can reduce, but cannot prevent, memorization of content that occurs often in the dataset
 - Limitation: reduced accuracy, longer training times
- Auditing LMs for memorization
 - Determine the level of memorization in LMs
 - E.g., the training data extraction attack can be used to evaluate the level of memorization of an LM

Ethical Considerations and Lessons

- The authors contacted the individuals whose PII was extracted and obtained permissions to include it in the paper
 - All PII in the paper is masked with a black rectangle box
- Among the 600,000 generated samples, 604 (or 0.1%) contain memorized text
 - The authors manually inspected only 1,800 samples
- For complete memorization, it was estimated that the content should occur 33 times in one single document
- It is important to further study and understand memorization in LMs, and develop prevention strategies