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• Unauthorized access to data, and data breaches 

• Massive data collection

Direct and intentional leakage

• Meta-data: Data about data 

• Data correlated with data 

• Computations on data

Indirect and unintentional leakage
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Privacy Risks in Machine Learning
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inference 
phase

training 
phase

How to prevent leakage? Secure multi-party computation, 
homomorphic encryption, trusted hardware, …

Direct Leakage
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Indirect Leakage

predictionsparameters

[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP’17

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19

What is leakage? Inferring information about members of X, 
beyond what can be learned about its underlying distribution 

Privacy Risks in Machine Learning
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Indirect Leakage

predictionsparameters

[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP’17

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19

What is leakage? Inferring information about members of X, 
beyond what can be learned about its underlying distribution 

Privacy Risks in Machine Learning

How to mitigate the risk? 
Differential privacy
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How to Quantify the Leakage? 

• Indistinguishability game: Can an adversary distinguish 
between two models that are trained on two neighboring 
datasets (one includes an extra data point x)?  

• Membership inference: Given a model, can an adversary 
infer whether data point x is part of its training set?

5

[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP’17
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How to Quantify the Leakage? 

• Indistinguishability game: Can an adversary distinguish 
between two models that are trained on two neighboring 
datasets (one includes an extra data point x)?  

• Membership inference: Given a model, can an adversary 
infer whether data point x is part of its training set?

5

[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP’17

Recognize the difference
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Membership Inference Attacks 
against Classification Models

Membership 
Inference Attack 

Accuracy: 
~ 90% 

DATA

Prediction API

Input data Classification
airplane 
automobile 
… 
ship 
truck 

Training API

Machine Learning 
as a Service

[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP’17
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Privacy Leakage due to Overfitting
7

[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP’17

Overfitted models 
and classes are 
more vulnerable
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Disparate Privacy Vulnerability
8

[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP’17

Smaller groups are 
potentially more 
vulnerable
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White-box Privacy Analysis

• Leakage through parameters (white-box) vs. predictions 
(black-box)

9

Most accurate pre-trained models Mem inference attack accuracy

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19
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White-box Privacy Analysis

• Leakage through parameters (white-box) vs. predictions 
(black-box)

9

High generalizability 
to test data 

Low privacy 
(Significant leakage 
through parameters)

Large 
capacity

Most accurate pre-trained models Mem inference attack accuracy

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19

[Feldman] Does Learning Require Memorization?A Short Tale about a Long Tail, STOC’20
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Decentralized (Federated) Learning
10

[Shokri and Shmatikov] Privacy-Preserving Deep Learning, CCS’15

…

updated 

param
s

aggregate 

params 

Aggregate

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19

[Melis, Song, De Cristofaro, Shmatikov] Exploiting Unintended Feature Leakage in Collaborative Learning, SP'19
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CIFAR100-Alexnet

Adversary can observe multiple 
snapshots of the model
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Decentralized (Federated) Learning
11

…

Aggregate

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19

Active Attack: Gradient Ascent
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…
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[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19

Increase loss on a particular data point x.

Active Attack: Gradient Ascent
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Decentralized (Federated) Learning
11

…

updated 

param
sag
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[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19

Increase loss on a particular data point x.

Active Attack: Gradient Ascent

A participant correct it back (by running 
gradient descent locally) only if x is part of 
its training set. => membership leakage
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AI Regulations - Data Protection

• “… membership inferences show that AI models can inadvertently 
contain personal data” 

• “Attacks that reveal confidential information about the data include 
membership inference whereby …” 

• ‘’..... ensuring that privacy and personal data are adequately protected 
during the use of AI’’ 

• “....... ensuring that AI systems are resilient to overt attacks and subtle 
attacks that manipulate data or algorithms....” 

• ‘’...should consider the risks to data throughout the design, 
development, and operation of an AI system’’

12

On Artificial Intelligence - A European Approach to excellence and trust - Feb 2020 
The White House Memo on Guidance for Regulation of Artificial Intelligence Applications - Jan 2020 
Guidance on the AI auditing framework Draft guidance for consultation. Information Commissioner’s Office 
A Taxonomy and Terminology of Adversarial Machine Learning. Draft NISTIR 8269
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Identify and analyze 
possible risk mitigation 

measures

Assess potential threats 
to the data

Data Protection Impact Assessment 
13

Systematic description of 
data collection, storage 

and processing

Assess necessity and 
proportionality

Likelihood and impact of 
the threats on 

individuals

https://gdpr-info.eu/art-35-gdpr/
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Tool: ML Privacy Meter
14

Model

Population Data

Predictions

Learning

Training Data

Privacy Risk 
Report for the 
Training Data

ML Privacy Meter

ML Privacy Meter is a Python library (ml_privacy_meter) 
that enables quantifying the privacy risks of machine learning 
models. https://github.com/privacytrustlab/ml_privacy_meter

https://github.com/privacytrustlab/ml_privacy_meter
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ML Privacy Meter 
Example: NLP Models

• How much does the model leak about the 
sentences of a particular author/speaker? 
What about the membership of the author in 
the training set (based on known samples)?  

• Which samples are leaked?

15

Privacy Risk 
Report for the 
Training Data

ML Privacy Meter
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Membership Inference
16

[Maddi] https://github.com/privacytrustlab/ml_privacy_meter based on [Song, Shmatikov] Auditing Data 
Provenance in Text-Generation Models, KDD'19

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te
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Annotated TED 
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https://github.com/privacytrustlab/ml_privacy_meter
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Examples of Vulnerable Training Data
17
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Examples of Vulnerable Training Data
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Privacy as a Learning Objective
19

[Nasr, Shokri, Houmansadr] Machine Learning with Membership Privacy using Adversarial Regularization, CCS’18



Reza Shokri — 2020

Privacy as a Learning Objective
19

maximize 
prediction 
accuracy

minimize 
inference 
accuracy

[Nasr, Shokri, Houmansadr] Machine Learning with Membership Privacy using Adversarial Regularization, CCS’18
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[Nasr, Shokri, Houmansadr] Machine Learning with Membership Privacy using Adversarial Regularization, CCS’18
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Privacy and Generalization
20

Random guessSmaller gap

[Nasr, Shokri, Houmansadr] Machine Learning with Membership Privacy using Adversarial Regularization, CCS’18
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Bound the Worst-case Privacy Loss

• Differential Privacy: Ensure the indistinguishability between 
two models which are trained on two neighboring datasets.  

• Randomize the training algorithm to bound the privacy loss

21

mechanism (randomized model)

observables

input (dataset)

privacy loss

[Dwork, McSherry, Nissim, Smith] Calibrating noise to sensitivity in private data analysis, TCC'06
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DP Stochastic Gradient Descent
22

© Navid Azizan 

Loss

[Bassily, Smith, Thakurta] Private empirical risk minimization: Efficient algorithms and tight error bounds, FOCS’14 
[Shokri and Shmatikov] Privacy-Preserving Deep Learning, CCS’15 
[Abadi, et al.] Deep learning with differential privacy. CCS’16.

Randomize the 
gradient function
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DP Stochastic Gradient Descent
22

© Navid Azizan 

Loss

[Bassily, Smith, Thakurta] Private empirical risk minimization: Efficient algorithms and tight error bounds, FOCS’14 
[Shokri and Shmatikov] Privacy-Preserving Deep Learning, CCS’15 
[Abadi, et al.] Deep learning with differential privacy. CCS’16.

Randomize the 
gradient function

Lower 
accuracy!
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Causes of Performance Loss

• Computation of total privacy loss is not exact (i.e., the 
upper bound of the privacy loss (epsilon) is not tight). By 
overestimating the privacy loss, the added noise is larger 
than what is really needed to achieve the same true level of 
privacy

23
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Causes of Performance Loss

• Computation of total privacy loss is not exact (i.e., the 
upper bound of the privacy loss (epsilon) is not tight). By 
overestimating the privacy loss, the added noise is larger 
than what is really needed to achieve the same true level of 
privacy

• Gaussian mechanism is not a utility-preserving mechanism 
for DP SGD

• All randomized gradient vectors are treated equally (but, 
the signal to noise ratio is not the same across all, and their 
influence on the parameter vector should not be the same)

23
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Observation 

• Gradients follow a symmetric distribution, concentrated 
around zero

24

• The DP noise would dominate the gradient values

[Nasr, Shokri, Houmansadr] Improving Deep Learning with Differential Privacy using Gradient Encoding and 
Denoising, 2020
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Gradient Coding and De-noising 

• Randomize gradients using a student-t distribution 

• To compute DP parameters, encode gradient values into a 
finite number of samples from a Gaussian distribution

25
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Gradient Coding and De-noising 

• Randomize gradients using a student-t distribution 

• To compute DP parameters, encode gradient values into a 
finite number of samples from a Gaussian distribution

• Weighted update of model parameters 

• Lower the weight if noise dominates the signal

25



• A bit more formalization



REMINDER: DIFFERENTIAL PRIVACY

(Figure inspired from R. Bassily)

Randomized
algorithm

A

x1

x2

xn

random coins

A(D)

distribution of A(D)

...

Randomized
algorithm

A

x1

xn

random coins

A(D')

distribution of A(D')

...

Definition (Differential privacy [Dwork et al., 2006])
Let ε > ߿ and δ ∈ ,߿] .(ࠀ A randomized algorithm A : N|X | → O is (ε, δ)-differentially
private (DP) if for all datasets D,D′ ∈ N|X | such that ‖D− D′‖ࠀ ≤ ࠀ and for all S ⊆ O:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ, (ࠀ)

where the probability space is over the coin flips of A.
ࠀ



REMINDER: GLOBAL SENSITIVITY

Definition (Global ࠀ# sensitivity)
The global ࠀ# sensitivity of a query (function) f : N|X | → RK is

(f)ࠀ∆ = max
D,D′:‖D−D′‖ࠀ≥ࠀ

‖f(D)− f(D′)‖ࠀ

Definition (Global ࠁ# sensitivity)
The global ࠁ# sensitivity of a query (function) f : N|X | → RK is

(f)ࠁ∆ = max
D,D′:‖D−D′‖ࠀ≥ࠀ

‖f(D)− f(D′)‖ࠁ

• How much adding or removing a single record can change the value of the query,
measured in #p norm

ࠁ



REMINDER: LAPLACE MECHANISM

Algorithm: Laplace mechanism ALap(D, f : N|X | → RK, ε)

.ࠀ Compute ∆ = (f)ࠀ∆
.ࠁ For k = ,ࠀ . . . , K: draw Yk ∼ Lap(∆/ε) independently for each k
.ࠂ Output f(D) + Y, where Y = (Yࠀ, . . . , YK) ∈ RK

Theorem (DP guarantees for Laplace mechanism)
Let ε > ߿ and f : N|X | → RK. The Laplace mechanism ALap(·, f, ε) satisfies ε-DP.

ࠂ



REMINDER: GAUSSIAN MECHANISM

Algorithm: Gaussian mechanism AGauss(D, f : N|X | → RK, ε, δ)

.ࠀ Compute ∆ = (f)ࠁ∆

.ࠁ For k = ,ࠀ . . . , K: draw Yk ∼ N (ࠁσ,߿) independently for each k, where σ =
√

ࠁ ln(ࠄࠁ.ࠀ/δ)∆
ε

.ࠂ Output f(D) + Y, where Y = (Yࠀ, . . . , YK) ∈ RK

Theorem (DP guarantees for Gaussian mechanism)
Let ε, δ > ߿ and f : N|X | → RK. The Gaussian mechanism AGauss(·, f, ε, δ) is (ε, δ)-DP.

ࠃ



THE EXPONENTIAL MECHANISM



LIMITATIONS OF OUTPUT PERTURBATION

• So far we have seen the Laplace and Gaussian mechanisms, which are based on
output perturbation: A(D) = f(D) + Y

• Can you think of some intrinsic limitations?

• First limitation: they only work for numeric queries

• Second limitation: they are useful only if the utility function is sufficiently regular

ࠅ



EXAMPLE QUERIES NOT WELL SUITED TO OUTPUT PERTURBATION

• Non-numeric queries
• What is the most popular website among Firefox users?
• What is the best set of hyperparameters to train my classifier on the dataset?

• Numeric queries for which two “similar” outputs can have very different utility
• Which date works better for a set of people to meet?
• Which price would make the most profit from a set of buyers?

Buyer Offer
Alice 3€
Bob 4€

• Profit if we set price to :€ࠂ €ࠂ

• Profit if we set price to :€ࠀ߿.ࠂ €ࠀ߿.ࠂ

• Profit if we set price to :€ࠃ €ࠃ

• Profit if we set price to :€ࠀ߿.ࠃ 0€

ࠆ



NON-NUMERIC QUERIES

• We will now consider queries f : N|X | → O with an abstract output space O
• Example (websites): O = {’Google’, ’Qwant’, ’GitHub’, ’La Quadrature du Net’, . . . }
• Example (prices): O = ,ࠂ} ,ࠀ߿.ࠂ ,ࠃ ,ࠀ߿.ࠃ . . . }
• Example (hair color): O = {’dark’, ’blond’, ’brown’, ’red’}

• Associated to O we have a score function (or utility function)

s : N|X | ×O → R

• For a dataset D ∈ N|X | and an output o ∈ O, s(D,o) represents how good it is to
return o when the query is f(D)

• The function s can be arbitrary: it should be designed according to the use-case

• Of course, o = f(D) is usually assigned the maximum score

ࠇ



SENSITIVITY OF THE SCORE FUNCTION

Definition (Sensitivity of score function)
The sensitivity of a s : N|X | ×O → R is

∆(s) = max
o∈O

max
D,D′:‖D−D′‖ࠀ≥ࠀ

|s(D,o)− s(D′,o)|

• Worst-case change of score of an output when adding or removing one record

• Note that sensitivity is only with respect to the dataset (scores can vary arbitrarily
across outputs)

ࠈ



THE EXPONENTIAL MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Exponential mechanism AExp(D, f : N|X | → O, s : N|X | ×O → R, ε)

.ࠀ Compute ∆ = ∆(s)
.ࠁ Output o ∈ O with probability:

Pr[o] =
exp

(
s(D,o)·ε

∆ࠁ

)

∑
o′∈O exp

(
s(D,o′)·ε

∆ࠁ

)

• Sample o ∈ O with probability proportional to its score (denominator: normalization)

• Make high quality outputs exponentially more likely, at a rate that depends on the
sensitivity of the score and the privacy parameter

Theorem (DP guarantees for exponential mechanism)
Let ε > ,߿ f : N|X | → O and s : N|X | ×O → R. AExp(·, f, s, ε) satisfies ε-DP.

߿ࠀ



THE EXPONENTIAL MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Proof.

• For clarity, assume O is finite and let D,D′ such that ‖D− D′‖ࠀ ≤ .ࠀ For any o ∈ O:

Pr[AExp(D, f, s, ε) = o]
Pr[AExp(D′, f, s, ε) = o]

=

exp

(
s(D,o)·ε
(s)∆ࠁ

)

∑
o′∈O exp

(
s(D,o′)·ε
(s)∆ࠁ

)

exp

(
s(D′,o)·ε
(s)∆ࠁ

)

∑
o′∈O exp

(
s(D′,o′)·ε

(s)∆ࠁ

)

=
exp

(
s(D,o)·ε
(s)∆ࠁ

)

exp
(

s(D′,o)·ε
(s)∆ࠁ

) ·

∑
o′∈O exp

(
s(D′,o′)·ε
(s)∆ࠁ

)

∑
o′∈O exp

(
s(D,o′)·ε
(s)∆ࠁ

)

= exp
( (s(D,o)− s(D′,o))ε

(s)∆ࠁ

)
·

∑
o′∈O exp

(
s(D′,o′)·ε
(s)∆ࠁ

)

∑
o′∈O exp

(
s(D,o′)·ε
(s)∆ࠁ

)

≤ exp
(ε
ࠁ

)
· exp

(ε
ࠁ

)
·

∑
o′∈O exp

(
s(D,o′)·ε
(s)∆ࠁ

)

∑
o′∈O exp

(
s(D,o′)·ε
(s)∆ࠁ

) = eε

ࠀࠀ



THE EXPONENTIAL MECHANISM: UTILITY GUARANTEES

• Fixing a dataset D, let s∗(D) = maxo∈ s(D,o)

• We show that it is unlikely that AExp returns a “bad” output, measured w.r.t. s∗(D)

Theorem (Utility guarantees for exponential mechanism)
Let ε > ,߿ f : N|X | → RK and s : N|X | ×O → R. Fix a dataset D ∈ N|X | and let
O∗ = {o ∈ O : s(D,o) = s∗(D)}. Then:

Pr

[
s∗(D)− s(AExp(D, f, s, ε)) ≤

(s)∆ࠁ
ε

ln
( |O|
β|O∗|

)]
≥ −ࠀ β

• It is highly unlikely that we get utility score smaller than s∗(D) by more than an
additive factor of O((∆(s)/ε) ln(|O|))

• Guarantees are better if several outputs have maximal score (i.e., |O∗| ≥ (ࠀ

ࠁࠀ



THE EXPONENTIAL MECHANISM: UTILITY GUARANTEES

Proof.

• We want to show that Pr[s(AExp(D, f, s, ε)) ≤ c] ≤ β for c = s∗(D)− (s)∆ࠁ
ε ln

(
|O|

β|O∗|

)

• Think about “bad”outputs o ∈ O with s(D,o) ≤ c

• Each such o has un-normalized probability mass at most exp(εc/ࠁ∆(s)), hence the
entire set has total un-normalized probability mass at most |O| exp(εc/ࠁ∆(s))

• In contrast, there is at least |O∗| ≥ ࠀ outputs o with s(D,o) = s∗(D), therefore:

Pr[s(AExp(D, f, s, ε)) ≤ c] ≤ |O| exp(εc/ࠁ∆(s))
|O∗| exp(εs∗(D)/ࠁ∆(s))

=
|O|
|O∗| exp

(ε(c− s∗(D))
(s)∆ࠁ

)

= β

ࠂࠀ



THE EXPONENTIAL MECHANISM: UTILITY GUARANTEES

• Let O = {’dark’, ’blond’, ’brown’, ’red’} and consider the query “What is the most
common hair color?” with counts as scores

• Suppose that the most common color is ’dark’ (with count (߿߿ࠄ and the second most
common is ’brown’ (with count (ࠈࠈࠂ

• For ε = ,ࠀ.߿ what is the probability that AExp returns ’dark’?

• Note that ∆(s) = ,ࠀ |O| = ࠃ and |O∗| = ࠀ

• Applying the theorem, we know that the probability of returning an output whose
score is larger than ߿߿ࠃ = −߿߿ࠄ ߿ࠁ ln(ࠃ/β) is at least −ࠀ β

• This gives β = ,ࠄ−eࠃ hence the probability to get the correct answer is at least
−ࠀ β = ࠂࠆࠈ.߿

ࠃࠀ



THE EXPONENTIAL MECHANISM: PRACTICAL CONSIDERATIONS

• The exponential mechanism is the natural building block for answering queries with
arbitrary utilities and arbitrary non-numeric range

• As we have seen, it is often quite easy to analyze

• The set O of possible outputs should not be specific to the particular dataset!
• Otherwise we violate DP
• Example of violation: possible prices for items based on actual bids

• The exponential mechanism can define a complex distribution over an arbitrary
large domain, so it is not always possible to implement it efficiently

ࠄࠀ



REMINDER: PRIVATE DATA ANALYSIS

(Figure inspired from R. Bassily)
Individuals

(data subjects)

...

queries

answers
(ex: aggregate statistics,
machine learning model)

Algorithm
(ex: learning

algorithm)

Data users
(ex: government,

researchers,
companies,

or

adversary)

• We have focused so far on “simple” aggregate statistics

• How about releasing machine learning models trained on private data?

ࠀ



REMINDER: ML MODELS ARE NOT SAFE

• ML models are elaborate kinds of aggregate statistics!

• As such, they are susceptible to membership inference attacks, i.e. inferring the
presence of a known individual in the training set

• For instance, one can exploit the confidence in model predictions [Shokri et al., [ࠆࠀ߿ࠁ
[Carlini et al., [ࠁࠁ߿ࠁ

ࠁ



REMINDER: ML MODELS ARE NOT SAFE

• ML models are also susceptible to reconstruction attacks

• For instance, one can extract sensitive text from large language models
[Carlini et al., [ࠀࠁ߿ࠁ or run differencing attacks on ML models [Paige et al., [߿ࠁ߿ࠁ

ࠂ



TODAY’S LECTURE

.ࠀ Reminders on Empirical Risk Minimization (ERM)

.ࠁ Private ERM via output perturbation

ࠃ



REMINDERS ON EMPIRICAL RISK
MINIMIZATION (ERM)



SUPERVISED LEARNING

• For convenience, we focus on supervised learning

• Consider an abstract data space X × Y where X is the input (feature) space and Y is
the output (label) space

• For instance, for binary classification with real-valued features: X ⊂ Rd, Y = ,ࠀ−} {ࠀ

• A predictor (model) is a function h : X → Y

• We measure the discrepancy between a prediction h(x) and the true label y using a
loss function L(h; x, y)

ࠄ



STATISTICAL LEARNING FRAMEWORK

• We have access to a training set D = {(xi, yi)}ni=ࠀ of n data points

• Each data point (xi, yi) is assumed to be drawn independently from a fixed but
unknown distribution µ

• The goal of ML is to find a predictor h with small expected risk:

R(h) = E
(x,y)∼µ

[L(h; x, y)]

• Since µ is unknown, we will use the training set to construct a proxy to R

ࠅ



EMPIRICAL RISK MINIMIZATION (ERM)

• We thus define the empirical risk:

R̂(h;D) = ࠀ
n

n∑

i=ࠀ

L(h; xi, yi)

• Assume that we work with predictors hθ : X → Y parameterized by θ ∈ Θ ⊆ Rp

• For notational convenience, we use L(θ; x, y), R(θ) and R̂(θ) to denote L(hθ; x, y),
R(hθ;D) and R̂(hθ;D), and omit the dependency on D when it is clear from the context

• Empirical Risk Minimization (ERM) consists in choosing the parameters

θ̂ ∈ argmin
θ∈Θ

[F(θ;D) := R̂(θ;D) + λψ(θ)]

• ψ is a regularizer and λ ≥ ߿ a trade-off parameter

ࠆ



USEFUL PROPERTIES

• We typically work with loss functions that are differentiable in θ: for (x, y) ∈ X × Y ,
we denote the gradient of L at θ by ∇L(θ; x, y) ∈ Rp

• We also like the loss function, its gradient and/or the regularizer to be Lipschitz

Definition (Lipschitz function)
Let l > .߿ A function f is l-Lipschitz with respect to some norm ‖ · ‖ if if for all θ, θ′ ∈ Θ:

|f(θ)− f(θ′)| ≤ l‖θ − θ′‖.

If f is differentiable and ‖ · ‖ = ‖ · ,ࠁ‖ the above property is equivalent to:

‖∇f(θ)‖ࠁ ≤ l, ∀θ ∈ Θ.

ࠇ



REMINDER: USEFUL PROPERTIES

• It is also useful when the loss and/or regularizer are convex or strongly convex

Definition (Strongly convex function)
Let s ≥ 0. A differentiable function f is s-strongly convex if for all θ, θ′ ∈ Θ:

f(θ′) ≥ f(θ) +∇f(θ)"(θ − θ′) + s
2
‖θ − θ′‖22,

or equivalently: (
∇f(θ)−∇f(θ′)

)"
(θ − θ′) ≥ s‖θ − θ′‖22,

For s = 0, we simply say that f is convex.

3



EXAMPLE: LOGISTIC REGRESSION

• Let X ⊂ Rd and Y = ,ࠀ−} {ࠀ

• Pick a family of linear models hθ(x) = sign[θ$x+ b] for θ ∈ Θ = Rp

• Pick the logistic loss L(θ; x, y) = log(ࠀ+ e−y(θ!x+b)), which is ‖x‖-Lipschitz and convex

• For ψ(θ) = ,߿ the ERM problem gives logistic regression

• If we additionally set ψ(θ) = ‖θ‖ࠁࠁ, we obtain regularized-ࠁ$ logistic regression

• Then ψ(θ) is strongly-ࠁ convex and F(θ) = R̂(θ) + λψ(θ) is λ-stronglyࠁ convex

߿ࠀ



PRIVATE ERM VIA OUTPUT
PERTURBATION



DIFFERENTIALLY PRIVATE MACHINE LEARNING

• We would like to privately release a model trained on private data

• A differentially private machine learning algorithm A : N|X×Y| → Θ should guarantee
that for all neighboring datasets D,D′ and for all SΘ ⊆ Θ:

Pr[A(D) ∈ SΘ] ≤ eε Pr[A(D′) ∈ SΘ] + δ

• Important note: in ML, we consider a slightly different neighboring relation where
two neighboring datasets D,D′ ∈ (X ×Y)n have same size n and differ on one record

• This corresponds to replacing instead adding/removing one record
• This is for convenience: normalization term in empirical risk is n/ࠀ for both D and D′

ࠀࠀ



DP AND GENERALIZATION

• Does DP seem compatible with the objective of ML?

• Yes! Intuitively, a model which does not change too much when trained on datasets
that differ by a single point should generalize well (because it does not overfit)

• This is related to the notion of algorithmic stability [Bousquet and Elisseeff, ,[ࠁ߿߿ࠁ
which is known to be a sufficient condition for generalization

• There are formal connections between DP and algorithmic stability [Wang et al., :[ࠅࠀ߿ࠁ
in particular, “DP implies stability”

ࠁࠀ



DIFFERENTIALLY PRIVATE ERM VIA OUTPUT PERTUBATION

• ERM is a more complicated kind of “query” than those we have seen so far

• Still, can we re-use some ideas to construct DP-ERM algorithms?

• A natural approach is to rely on output perturbation:
Private
dataset

Black box
ERM

solver
Non-private model Private model

add noise
...

Formally: A(D) = θ̂ + η, where θ̂ ∈ argminθ∈Θ[F(θ;D) := R̂(θ;D) + λψ(θ)]

• To calibrate the noise, we need to bound the sensitivity of θ̂

• In some cases, this sensitivity may actually be quite high!
• Non-regularized objectives with expressive models (e.g., deep neural networks)
• regularized-ࠀ! models such as LASSO, which are known to be unstable [Xu et al., [ࠁࠀ߿ࠁ ࠂࠀ



SENSITIVITY BOUND FOR SOME REGULARIZED ERM FORMULATIONS

Theorem ࠁ$) sensitivity for ERM [Chaudhuri et al., ([ࠀࠀ߿ࠁ
Let Θ = Rp. If the regularizer ψ is differentiable and strongly-ࠀ convex, and the loss
function L(·; x, y) is convex, differentiable and Lipschitz-ࠀ w.r.t. the ࠁ$ norm for all
x, y ∈ X × Y , then the ࠁ$ sensitivity of argminθ F(θ) is at most .nλ/ࠁ

• As expected, sensitivity decreases with n (the size of the dataset)

• Weak regularization leads to large upper bound on sensitivity

• Let’s prove this theorem!

ࠃࠀ



SENSITIVITY BOUND FOR SOME REGULARIZED ERM FORMULATIONS

Lemma
Let G(θ) and g(θ) be two vector-valued functions that are continuous and differentiable
everywhere. Assume that G(θ) and G(θ) + g(θ) are λ-strongly convex.

If θࠀ = argminθ G(θ) and θࠁ = argminθ G(θ) + g(θ), then ‖θࠀ − θࠁ‖ࠁ ≤ ࠀ
λ maxθ ‖∇g(θ)‖ࠁ.

Proof.

• By the optimality of θࠀ and θࠁ, we have ∇G(θࠀ) = ∇G(θࠁ) +∇g(θࠁ) = ߿

• As G(θ) is strongly convex, we have
(
∇G(θࠀ)−∇G(θࠁ)

)!
(θࠀ − θࠁ) ≥ λ‖θࠀ − θࠁࠁ‖ࠁ

• Using Cauchy-Schwartz inequality and the above two results, we obtain:

‖θࠀ − θࠁ‖ࠁ‖∇g(θࠁ)‖ࠁ ≥ (θࠀ − θࠁ)
!∇g(θࠁ) =

(
∇G(θࠀ)−∇G(θࠁ)

)!
(θࠀ − θࠁ) ≥ λ‖θࠀ − θࠁࠁ‖ࠁ

• Dividing both sides by λ‖θࠀ − θࠁ‖ gives us the result
5ࠀ



SENSITIVITY BOUND FOR SOME REGULARIZED ERM FORMULATIONS

Proof of the theorem.

• Let D = {(xࠀ, yࠀ), . . . , (xn, yn)}, D′ = {(x′ࠀ, y′ࠀ), . . . , (xn, yn)} be two neighboring datasets
that differ only in their first point

• Denoting θ̂ = argminθ F(θ;D) and θ̂′ = argminθ F(θ;D′), we want to bound ‖θ̂ − θ̂′‖

• We define a convenient differentiable function

g(θ) = F(θ;D′)− F(θ;D) = ࠀ
n

(
L(θ; x′ࠀ, y′ࠀ)− L(θ; xࠀ, yࠀ)

)

• By using the Lipschitz-ࠀ property of L we have for any θ:

‖∇g(θ)‖ =
∥∥∥
ࠀ
n

(
∇L(θ; x′ࠀ, y′ࠀ)−∇L(θ; xࠀ, yࠀ)

)∥∥∥ ≤ ࠁ
n

6ࠀ



SENSITIVITY BOUND FOR SOME REGULARIZED ERM FORMULATIONS

Proof of the theorem.

• To complete the proof, we will show that ‖θ̂ − θ̂′‖ ≤ ࠀ
λ maxθ ‖∇g(θ)‖

• Let G(θ) = F(θ;D) and recall the definition of g(θ) = F(θ;D′)− F(θ;D)

• Since L is convex and ψ is strongly-ࠀ convex, G(θ) and G(θ) + g(θ) = F(θ;D′) are
λ-strongly convex (as well as differentiable)

• Furthermore, θ̂ and θ̂′ are their corresponding minimizers

• Hence we can apply the lemma, which gives us the desired result

6ࠀ



DP-ERM VIA OUTPUT PERTUBATION: ALGORITHM & PRIVACY GUARANTEES

Algorithm: DP-ERM via output perturbation ADP-ERM(D, L,ψ,λ, ε, δ)

.ࠀ Compute ERM solution θ̂ = argminθ∈Rp F(θ)

.ࠁ For j = ,ࠀ . . . ,p: draw Yj ∼ N (ࠁσ,߿) independently for each j, where σ =
ࠁ
√

ࠁ ln(5ࠁ.ࠀ/δ)
nλε

.ࠂ Output θ̂ + Y, where Y = (Yࠀ, . . . , Yp) ∈ Rp

Theorem (DP guarantees for DP-ERM via output perturbation)
Let ε, δ > ߿ and Θ = Rp. Let the loss function L and the regularizer ψ satisfy the
conditions of the previous theorem. Then ADP-ERM(·, L,ψ, ε, δ) is (ε, δ)-DP.

• Proof: a direct application of the Gaussian mechanism with the previous theorem

7ࠀ



DP-ERM VIA OUTPUT PERTUBATION: UTILITY GUARANTEES

• Utility is the excess (empirical or expected) risk w.r.t. the non-private solution

Theorem (Utility guarantees for DP-ERM via output perturbation [Chaudhuri et al., ([ࠀࠀ߿ࠁ
Consider linear models with L(θ; x, y) := L(θ!x, y) and normalized data such that
‖x‖ࠁ ≤ ࠀ for all x ∈ X . Let ψ(θ) = ࠀ

‖θ‖ࠁ
ࠁ
,ࠁ γ > ߿ and β > .߿ Let L be differentiable and

Lipschitz-ࠀ w.r.t. the ࠁ( norm and ∇L be Lipschitz-ࠀ w.r.t. the ࠀ( norm. Let θ∗ ∈ argminR(θ)
be a minimizer of the expected risk. If n is of order

O
(
max

(‖θ∗‖ࠁࠁ log( ࠀ
β )

γࠁ
,
p log( pβ )‖θ

ࠁ‖∗
√
log( δࠀ )

γε
,
p log( pβ )‖θ

ࠁࠁ‖∗
√

log( δࠀ )

γࠁ/ࠂε

))
,

then the output θpriv of ADP-ERM satisfies Pr[R(θpriv) ≤ R(θ∗) + γ] ≥ −ࠀ .βࠁ

• The first term in the max is the sample size needed for non-private ERM

• This theorem shows that DP-ERM via output perturbation is well-founded: it matches
the utility of the non-private case at the cost of a larger training set 8ࠀ



DP-ERM VIA OUTPUT PERTUBATION: DISCUSSION

• An advantage of DP-ERM via output perturbation is that it is simple to implement on
top of non-private algorithms

• However it requires restrictive assumptions on the loss function and regularizer

• In practice, ERM is not solved exactly but only to a certain precision using iterative
solvers like (stochastic) gradient descent

• Approximate solutions may have small sensitivity, even if no (strongly convex)
regularization is used [Zhang et al., [ࠆࠀ߿ࠁ

ࠈࠀ



OTHER APPROACHES TO DP-ERM

.ࠀ Objective perturbation [Chaudhuri et al., :[ࠀࠀ߿ࠁ output the solution to ERM with a
perturbed objective (not covered in the lectures)

.ࠁ Gradient perturbation [Bassily et al., ,ࠃࠀ߿ࠁ Abadi et al., :[ࠅࠀ߿ࠁ perturb the gradients of a
gradient-based algorithm (next lecture!)

߿ࠁ



DIFFERENTIALLY PRIVATE SGD



LIMITATIONS OF DP-ERM VIA OUTPUT PERTURBATION

.ࠀ It requires restrictive assumptions on the loss function and regularizer

.ࠁ The sensitivity is likely to be pessimistic as it treats ERM as a black box

Private
dataset

Black box
ERM

solver
Non-private model Private model

add noise
...
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ALTERNATIVE APPROACH: DIFFERENTIALLY PRIVATE ERM SOLVER

• Another approach is to design differentially private ERM solvers

• Such a solver (optimization algorithm) must interact with the data only through DP
mechanisms

• The idea is to perturb only the quantities accessed by a particular solver

Private
dataset

Differentially
private

ERM solver
Private model...

DP queries

answers
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NON-PRIVATE STOCHASTIC GRADIENT DESCENT (SGD)

• For simplicity, let us assume that ψ(θ) = ߿ (no regularization)

• Denote by ΠΘ(θ) = argminθ′∈Θ ‖θ − θ′‖ࠁ the projection operator onto Θ

Algorithm: Non-private (projected) SGD

• Initialize parameters to θ(߿) ∈ Θ

• For t = ,߿ . . . , T− :ࠀ
• Pick it ∈ ,ࠀ} . . . ,n} uniformly at random
• θ(t+ࠀ) ← ΠΘ

(
θ(t) − γt∇L(θ(t); xit , yit)

)

• Return θ(T)

• SGD is a natural candidate solver: simple, flexible, scalable, heavily used in ML

• How to design a DP version of SGD?

8



MAKING THE STOCHASTIC GRADIENT PRIVATE

• We have already seen ingredients to do this in previous lectures

• Assume that L(·; x, y) is l-Lipschitz with respect to the ࠁ# norm for any (x, y) ∈ X × Y

• Then we know that for all x, y, θ we have ‖∇L(θ; x, y)‖ ≤ l

• Therefore, at any step t of SGD, the ࠁ# sensitivity of individual gradients is bounded:

sup
x,y,x′,y′

‖∇L(θ; x, y)−∇L(θ; x′, y′)‖ ≤ ,lࠁ ∀θ ∈ Θ

and we can use the Gaussian mechanism

• It feels like we can do better...

9



DIFFERENTIALLY PRIVATE SGD: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Differentially Private SGD ADP-SGD(D, L, ε, δ)

• Initialize parameters to θ(߿) ∈ Θ (must be independent of D)
• For t = ,߿ . . . , T− :ࠀ

• Pick it ∈ ,ࠀ} . . . ,n} uniformly at random

• η(t) ← (η(t)
ࠀ , . . . , η(t)

p ) ∈ Rp where each η(t)
j ∼ N (ࠁσ,߿) with σ =

6lࠀ
√

T ln(ࠁ/δ) ln(5.ࠁT/δn)
nε

• θ(t+ࠀ) ← ΠΘ

(
θ(t) − γt

(
∇L(θ(t); xit , yit) + η(t)))

• Return θ(T)

• More data (larger n)→ less noise added to each gradient

• More iterations (larger T)→ more noise added to each gradient

Theorem (DP guarantees for DP-SGD)
Let ε ≤ ,ࠀ δ > .߿ Let the loss function L(·; x, y) be l-Lipschitz w.r.t. the ࠁ$ norm for all
x, y ∈ X × Y . Then ADP-SGD(·, L, ε, δ) is (ε, δ)-DP.

ࠀࠀ


