Collecting and analyzing quantitative (survey) data with statistics

Mainack Mondal

CS 60081 Autumn 2022

Roadmap

- Qualitative Data Analysis
 - Selecting participants
 - Data analysis techniques
- Inter-rater agreement
- Quantitative data analysis

How to analyze quantitative data

Statistics

- In general: analyzing and interpreting data
- Statistical hypothesis testing: How likely is it that any difference/pattern you observe in experiment actually exists real life?
- Statistical correlations: are these things related?

Type of data

- Quantitative/numerical
 - Discrete (e.g., #emails)
 - Continuous (e.g., age)
- Categorical
 - Nominal or no order (e.g., male-female)
 - Ordinal or ordered (e.g., Ex, A, B, ..., F)
- Q: Why cannot we just assign 1,2,3,... etc. ordered discrete values to the ordinal variables?

Hypothesis testing

- Causation (X causes Y)
 - vs. correlation (X is related to Y)
- Develop a hypothesis (e.g., age is related to typing speed)
 - Assign to conditions (include a control)
 - Terminology: "Condition" = "Treatment"
- H0 (null hypothesis): there is no effect
- H1 (alternative hypothesis): there is an effect

Way to do the test

- You have a set of values for variable X (e.g., age)
 - x1, x2, x3, ...
- You have a set of values for variable Y (e.g., typing speed)
 - y1, y2, y3, ...
- Question: Is higher age affect the typing speed? Why do you need a test?

Way to do the test

- You have a set of values for variable X (e.g., age)
 - x1, x2, x3, ...
- You have a set of values for variable Y (e.g., typing speed)
 - y1, y2, y3, ...
- Question: Is higher age affect the typing speed? Why do you need a test?
- You chose a test H (often a python or R function)
 - Statistic, p = H ([x1, x2, x3, ...], [y1, y2, y3, ...])
 - p value is essentially a probability that the statistic value occurred randomly (i.e., there is no effect aka H0 is true)
 - So if p is small (generally < 0.05, called α) you reject H0

Is P value enough?

- No! Consider:
 - Effect size (magnitude of the effect of the manipulation)
 - Power (long-term probability of rejecting H0 when there really is a difference)
- Type 1 error: wrongly reject H0 even if there is no effect (α)
- Type 2 error: wrongly fail to reject H0 even if there is an effect (β)

Type I errors

- Type I error (false positive)
 - You would expect this to happen 5% of the time if $\alpha = 0.05$

Type II errors

- Type II error (false negative)
 - There is actually a difference, but you didn't see evidence of a difference
- Statistical power is the probability of rejecting the null hypothesis (no effect) when you should → 1 Pr(Type II Error)
 - You could do a power analysis,
 - Minimum sample size to achieve a given effect size
 - How many times do you have to toss a coin to know that Pr(head) = 0.7?
 - Requires that you can estimate the effect size
 - Bonferroni's correction

How to pick the right test?

- What test to you want? (comparison, correlation)
- Different types of variables?
- Different data distributions? (e.g., normal vs., non-normal)
- Parametric vs. non-parametric tests

What test to you want?

- Depend on your research question
- You want to test if gender is related with height
 - RQ: Is there a correlation between gender and height? (correlation)
 - Alternative RQ: Is the average height of males more than average height of females? (comparison)

Check the variable type

- Important: check types of variables
- You want to see the correlation between age and number of emails sent per day
 - age: independent variable, you can vary it by taking different users
 - #emails/day: dependent variable, you want to measure
 - Technical expertise, job, ... : co-variate

Picking the right test: A limited cheat sheet (correlation tests)

Focusing on parametric tests!

		Independent Variable	
		Categorical	Quantitative
Dependent Variable	Categorical	Chi-Squared Test Fisher's Exact Test	Logistic Regression
	Quantitative	t-Test ANOVA	Correlation Linear Regression

Picking the right test: A limited cheat sheet (correlation tests)

Focusing on parametric tests!

		Independent Variable	
		Categorical	Quantitative
Dependent Variable	Categorical	Chi-Squared Test Fisher's Exact Test	Logistic Regression
	Quantitative	t-Test ANOVA	Correlation Linear Regression

Parametric vs non-parametric tests

When to use what?

- Finding relations between two numerical variables
 - As the age of a man increases, his/her max running speed decreases
 - Pearson's correlation / Spearman's rank correlation
- Finding relations between two categorical variables
 - People randomly assigned to exercise more than twice a week (as opposed to less than once a week) are more likely to be rated as healthy (as opposed to unhealthy)
 - χ2, Fisher's exact test

When to use what?

- Comparing a variable value between two groups (numerical)
 - People who exercise more than twice a week (as opposed to less than twice) are more likely to take a shorter time to run a race
 - ANOVA, Kruskal-Wallis, etc.
- Lots of factors has effect on the dependent variable (numerical)

- Regression (Y = a1x1 + a2x2 etc...)

- Lots of factors has effect on the dependent variable (category)
 - Logistic regression

We talked about...

- Type I error : Wrongly reject H0 even if whatever you observed happened due to random chance
 - expect this to happen 5% of the time if $\alpha = 0.05$
- Type II error : Wrongly fail to reject H0 even if whatever you observed happened due to non-random process

- What happens if you conduct a lot of statistical tests in one experiment?
 - In at least one case p < 0.05

A xkcd example

https://xkcd.com/882/

Bonferroni correction

- Divide a by #tests
 - Say you did 1000 tests (age with typing speed, gender with typing speed, etc.)
 - Previous : Likely to get $p < \alpha = 0.05$ for at least one test
 - Now: Much harder to get $p < \alpha \, /1000 = 0.00005$ even for one test

Case 1: Dependent variable (DV): Categorical Independent variable (IV): Categorical

Chi-squared (x2) Test

- Example research questions
 - Does the gender (male, female) correlate with a user's favorite color?
 - Does the cuisines it ate this month correlate to its privacy concerns?
- H0 : Variable X values are equally distributed across variable Y values (independence or no effect)
- (Not covered today) Goodness of fit: Does the distribution we observed differ from a theoretical distribution?

Contingency table

 Rows are r values of one variable, Columns are c values of other variable

Creat	ceAnn	oying	Perce	entages:	
Count	:8:				
	0	1		0	1
0	161	32	0	"83.42%"	"16.58%"
1	165	33	1	"83.33%"	"16.67%"
2	168	34	2	"83.17%"	"16.83%"
3	170	30	3	"85%"	"15%"
4	164	32	4	"83.67%"	"16.33%"
5	161	35	5	"82.14%"	"17.86%"
6	167	32	6	"83.92%"	"16.08%"
7	129	60	7	"68.25%"	"31.75%"
8	128	61	8	"67.72%"	"32.28%"
9	154	40	9	"79.38%"	"20.62%"
10	153	40	10	"79.27%"	"20.73%"
11	154	38	11	"80.21%"	"19.79%"
12	142	42	12	"77.17%"	"22.83%"
13	121	67	13	"64.36%"	"35.64%"
14	124	76	14	"62%"	"38%"

• $\chi 2 = 97.013$, df = (r - 1)* (c - 1) = 14, p = 1.767e-14

Chi-squared (x2) usage

- Use χ^2 if you are testing one categorical variable (usually a demographic factor) impacts another categorical variable
 - If you have < 5 data points in a single cell of your contingency table, use Fishher's exact test

• DO NOT use this test for numerical variables

What about Likert scale?

- Some people treat it as continuous (assign 1 to an option, 2 to another option etc.) (a controversial step)
- Others treat it as ordinal (better choice)
 - In that case, use Mann-Whitney U / Kruskal-Wallis (nonparametric)
- A simple alternative
 - Bin the data into binary agree/non-agree, or comfortable/non-comfortable categories
 - Now you can use Chi squared test (parametric)

Case 2: Dependent variable (DV): Categorical Independent variable (IV): Quantitative

Choosing a numerical test

- Do your data follow a normal (gaussian distribution)?
 - Use Shapiro-Wilk normality test
 - Yes \rightarrow parametric test, No \rightarrow non-parametric test
- Considerations
 - Is your data independent? → not from same family in case of a skin-color-based hypothesis
 - If not \rightarrow repeated-measures, mixed models

Why might your data not be independent

- Reason 1: Non-independent sample (change sampling)
- Reason 2: Inherent design, e.g., within subjects design (then its ok)

Numerical data

- Popular question: Are values bigger in one group?
- Normal, continuous data (for comparing mean):
 - H0 : There are no differences in the means
 - 2 conditions: t-test (age vs. typing speed)
 - 3+ conditions: ANOVA
- Non-normal data / ordinal data:
 - H0 : No group tends to have larger values.
 - 2 conditions: Mann-Whitney U (likert scale data vs. likert scale data)
 - 3+ conditions: Kruskal-Wallis

Case 3: Dependent variable (DV): Quantitative

Correlation

- Popular question: is X related to Y?
- less good: Pearson correlation
 - Assumes both variables as normally distributed
 - Only look for linear relationship
- Preferred: Spearman's rank correlation coefficient (Spearman's ρ)
 - Evaluates a relationship's monotonicity (always going in the same direction or staying the same)

Regressions

- What is the relationship among variables?
 - Generally one outcome (dependent variable)
 - Often multiple factors (independent variables)

- The type of regression you perform depends on the dependent variable i.e., outcome
 - Binary outcome: logistic regression
 - Ordinal outcome: ordinal / ordered regression
 - Continuous outcome: linear regression

Outcome of a regression

• Normally, outcome = ax1 + bx2 + c + ...

- Interactions
 - when two variables are not simply additive. Instead, their interaction impacts the outcome
 - Then outcome = $ax1 + bx2 + c + d(x1^*x2) + ...$

Example

- Outcome: If a user can complete a task (Yes/No)
 - Logistic regression (binary outcome)

- Independent variables
 - Age
 - #prior takes completed
 - Income
 - Job
 - ...

In case of non-independence?

In case of non-independence use

- Repeated measures (multiple measurements of the same thing)
 - e.g., before and after measurements of a unicorn's time to finish a race

- Paired t-test (two samples per participant, two groups)
- Repeated measures ANOVA (more general)

Picking a test [IMPORTANT]

- <u>http://webspace.ship.edu/pgmarr/Geo441/Statistical%20</u>
 <u>Test%20Flow%20Chart.pdf</u>
- <u>http://abacus.bates.edu/~ganderso/biology/resources/stat</u> <u>istics.html</u>
- <u>http://med.cmb.ac.lk/SMJ/VOLUME%203%20DOWNLOA</u> <u>DS/Page%2033-37%20-</u> <u>%20Choosing%20the%20correct%20statistical%20test%</u> <u>20made%20easy.pdf</u>

Case study: Longitudinal data management in cloud storage Khan et. Al., CHI'18

Motivation

- People change over time
 - And so might their privacy/security requirements of their data
 - Question: Identify whether there is a need for longitudinal data management in cloud storage services

Approach

 How to find what factors does privacy decisions depend upon for 100 participants?

Steps

- First the variables:
 - Remembrance (dependent) vs. ownership (independent)
 - Remembrance: remember this file? Strongly agree to Strongly disagree
 - Ownership: owner, editor, viewer

Steps

- First the variables:
 - Remembrance (dependent) vs. ownership (independent)
 - Remembrance: remember this file? Strongly agree to Strongly disagree
 - Ownership: owner, editor, viewer
 - Both categorical

Recap: A limited cheat sheet

Focusing on parametric tests!

		Independent Variable		
		Categorical	Quantitative	
Dependent Variable	Categorical	Chi-Squared Test Fisher's Exact Test	Logistic Regression	
	Quantitative	t-Test ANOVA	Correlation Linear Regression	

Parametric vs non-parametric tests

Steps

- First the variables:
 - Remembrance (dependent) vs. ownership (independent)
 - Remembrance: remember this file? Strongly agree to Strongly disagree
 - Ownership: owner, editor, viewer
 - Both categorical AND each combination of these values has more than 5 feedback → Chi Square

Remembrance vs. ownership

Figure 3: Comparison of file ownership and remembrance (agreement or disagreement that they remembered the file was stored in their cloud account). File ownership had a significant positive correlation with remembering the file was stored in the cloud ($\chi^2(8, N = 862) = 32.244, p < .001$).

Remembrance vs. ownership

the cloud ($\chi^2(8, N = 862) = 32.244, p < .001$).

Other questions

- Recognition vs. ownership
- Deletion decision vs. ownership
- Participant background (technical/non-technical) vs. ownership
- Keep-sharing decision vs. ownership

- All Chi-square
 - Then answer *why* with qual coding