# Advertising systems in social media (3)

Mainack Mondal

CS 60017 Autumn 2021



## The story so far ...

- Social advertising systems
  - Why bother about them?
  - The curious case of Facebook ads
  - How can we leverage these systems for doing good
- Abuse of the advertising systems
  - Why is targeted advertising bad?
  - Privacy risks with PII based targeting

## The story so far ...

- Social advertising systems
  - Why bother about them?
  - The curious case of Facebook ads
  - How can we leverage these systems for doing good
- Abuse of the advertising systems
  - Why is targeted advertising bad?
  - Privacy risks with PII based targeting
- Now, how to prevent abuse of advertising systems and provide data privacy?

## Preserving privacy of social data

- Two broad dimensions
  - Preserving privacy from the background actors, e.g., advertisers or even the social media platform
  - Preserving privacy of data from other users, e.g., your ex

# Preserving privacy from background actors

## What are we going to talk about?

- Mechanisms for hiding privacy sensitive attributes in databases
  - K-anonymity
  - Differential privacy

- Slides heavily borrowed from
  - Vitaly Smatikov from Cornell
  - Li Xiong from Emory

## Public Data Conundrum

- Health-care datasets
  - Clinical studies, hospital discharge databases ...
- Genetic datasets
  - \$1000 genome, HapMap, deCode ...
- Demographic datasets
  - U.S. Census Bureau, sociology studies ...
- Search logs, recommender systems, social networks, blogs ...
  - AOL search data, social networks of blogging sites, Netflix movie ratings, Amazon ...

## What About Privacy?

- First thought: anonymize the data
- How?
- Remove "personally identifying information" (PII)
  - Name, Social Security number, phone number, email, address... what else?
  - Anything that identifies the person directly
- Is this enough?

## **Re-identification by Linking**

网络古马科学校 化合金 医外部的 化过程的 化过程的 医布莱尔氏 化合金 医内部的 化过程的 化过程的 医布莱斯氏试验 化合金 医外部的 化过程的 医外外的 化化合金 医子科学校 化合金

#### Microdata

| ID      | QID     |     |     | SA              |
|---------|---------|-----|-----|-----------------|
| Name    | Zipcode | Age | Sex | Disease         |
| Alice 🔇 | 47677   | 29  |     | Ovarian Cancer  |
| Betty   | 47602   | 22  | F   | Ovarian Cancer  |
| Charles | 47678   | 27  | М   | Prostate Cancer |
| David   | 47905   | 43  | М   | Flu             |
| Emily   | 47909   | 52  | F   | Heart Disease   |
| Fred    | 47906   | 47  | М   | Heart Disease   |

#### Voter registration data

2012/11/14

| Name        | Zipcode | Age | Sex |
|-------------|---------|-----|-----|
| Alice 🤇     | 47677   | 29  | F   |
| Bob         | 47983   | 65  | М   |
| Carol       | 47677   | 22  | F   |
| Dan         | 47532   | 23  | М   |
| Ellen 46789 |         | 43  | F   |

# Latanya Sweeney's Attack (1997)

#### Massachusetts hospital discharge dataset

| SSN | Name | vnicity | Date Of Birth | Sex    | ZIP   | Marital Status | Problem             |
|-----|------|---------|---------------|--------|-------|----------------|---------------------|
|     |      |         | 09/27/64      | female | 02139 | divorced       | hypertension        |
|     | 8    |         | 09/30/64      | female | 02139 | divorced       | obesity             |
|     |      | asian   | 04/18/64      | male   | 02139 | married        | chest pain          |
|     | ŝ    | asian   | 04/15/64      | male   | 02139 | married        | obesity             |
|     | 8    | black   | 03/13/63      | male   | 02138 | married        | hypertension        |
|     |      | black   | 03/18/63      | male   | 02138 | married        | shortness of breath |
|     | £.   | black   | 09/13/64      | female | 02141 | married        | shortness of breath |
|     |      | black   | 09/07/64      | female | 02141 | married        | obesity             |
|     | \$1  | white   | 05/14/61      | male   | 02138 | single         | chest pain          |
|     | Q    | white   | 05/08/61      | male   | 02138 | single         | obesity             |
|     |      | white   | 09/15/61      | female | 02142 | widow          | shortness of breath |

#### Voter List

| 1 | Name           | Address       | City      | ZIP   | DOB     | Sex    | Party    |  |
|---|----------------|---------------|-----------|-------|---------|--------|----------|--|
|   |                |               |           |       |         |        |          |  |
|   |                |               |           |       |         |        |          |  |
|   | Sue J. Carlson | 1459 Main St. | Cambridge | 02142 | 9/15/61 | female | democrat |  |
|   |                |               |           |       |         |        |          |  |

Figure *k* -dentifying anonymous data by linking to external data

Public voter dataset

## **Quasi-Identifiers**

#### Key attributes

- Name, address, phone number uniquely identifying!
- Always removed before release
- Quasi-identifiers
  - (5-digit ZIP code, birth date, gender) uniquely identify 87% of the population in the U.S.
  - Can be used for linking anonymized dataset with other datasets

## **Classification of Attributes**

#### Sensitive attributes

- Medical records, salaries, etc.
- These attributes is what the analysts need, so they are always released directly

| Key Attribute | Qı      | uasi-identif | Sensitive attribute |               |
|---------------|---------|--------------|---------------------|---------------|
| Name          | DOB     | Gender       | Zipcode             | Disease       |
| Andre         | 1/21/76 | Male         | 53715               | Heart Disease |
| Beth          | 4/13/86 | Female       | 53715               | Hepatitis     |
| Carol         | 2/28/76 | Male         | 53703               | Brochitis     |
| Dan           | 1/21/76 | Male         | 53703               | Broken Arm    |
| Ellen         | 4/13/86 | Female       | 53706               | Flu           |
| Eric          | 2/28/76 | Female       | 53706               | Hang Nail     |
|               |         |              |                     |               |

# **K-Anonymity: Intuition**

- The information for each person contained in the released table cannot be distinguished from at least k-1 individuals whose information also appears in the release
  - Example: you try to identify a man in the released table, but the only information you have is his birth date and gender. There are k men in the table with the same birth date and gender.

 Any quasi-identifier present in the released table must appear in at least k records

## Generalization

#### Goal of k-Anonymity

- Each record is indistinguishable from at least k-1 other records
- These k records form an equivalence class

 Generalization: replace quasi-identifiers with less specific, but semantically consistent values



# Achieving k-Anonymity

#### Generalization

- Replace specific quasi-identifiers with less specific values until get k identical values
- Partition ordered-value domains into intervals

## Example of a k-Anonymous Table

|     | Race  | Birth | Gender | ZIP   | Problem      |
|-----|-------|-------|--------|-------|--------------|
| t1  | Black | 1965  | m      | 0214* | short breath |
| t2  | Black | 1965  | m      | 0214* | chest pain   |
| t3  | Black | 1965  | Í      | 0213* | hypertension |
| t4  | Black | 1965  | f      | 0213* | hypertension |
| t5  | Black | 1964  | f      | 0213* | obesity      |
| tб  | Black | 1964  | f      | 0213* | chest pain   |
| t7  | White | 1964  | m      | 0213* | chest pain   |
| t8  | White | 1964  | m      | 0213* | obesity      |
| t9  | White | 1964  | m      | 0213* | short breath |
| t10 | White | 1967  | m      | 0213* | chest pain   |
| t11 | White | 1967  | m      | 0213* | chest pain   |

Figure 2 Example of k-anonymity, where k=2 and Ql={Race, Birth, Gender, ZIP}

At least two people With same attributes

At least two people QI = quasi identifier tuple

## **Curse of Dimensionality**

#### [Aggarwal VLDB '05]

- Generalization fundamentally relies on spatial locality
  - Each record must have k close neighbors
- Real-world datasets are very sparse
  - Many attributes (dimensions)
    - Amazon customer records: several million dimensions
  - Not possible to create k close neighbors
- ◆ Projection to low dimensions loses all info ⇒ k-anonymized datasets are useless



# Two (and a Half) Interpretations

 Membership disclosure: Attacker cannot tell that a given person in the dataset

- Sensitive attribute disclosure: Attacker cannot tell that a given person has a certain sensitive attribute
- Identity disclosure: Attacker cannot tell which record corresponds to a given person

This interpretation is correct, assuming the attacker does not know anything other than quasi-identifiers <u>But this does not imply any privacy!</u> Example: k clinical records, all HIV+

## Attacks on k-Anonymity

k-Anonymity does not provide privacy if

- Sensitive values in an equivalence class lack diversity
- The attacker has background knowledge



# k-Anonymity Considered Harmful

#### Syntactic

- Focuses on data transformation, not on what can be learned from the anonymized dataset
- "k-anonymous" dataset can leak sensitive information
- "Quasi-identifier" fallacy
  - Assumes a priori that attacker will not know certain information about his target
- Relies on locality
  - Destroys utility of many real-world datasets

## What are we going to talk about?

- Mechanisms for hiding privacy sensitive attributes in databases
  - K-anonymity
  - Differential privacy

- Slides heavily borrowed from
  - Vitaly Smatikov from Cornell
  - Li Xiong from Emory

## Statistical Databases



## **Statistical Data Privacy**

- Non-interactive vs interactive
- Privacy goal: individual is protected
- Utility goal: statistical information useful for analysis



- Promise: an individual will not be affected, adversely or otherwise, by allowing his/her data to be used in any study or analysis, no matter what other studies, datasets, or information sources, are available"
- Paradox: learning nothing about an individual while learning useful statistical information about a population

• Statistical outcome is indistinguishable regardless whether a particular user (record) is included in the data



• Statistical outcome is indistinguishable regardless whether a particular user (record) is included in the data



#### **Differential privacy: an example**



**Original records** 

**Original histogram** 

Perturbed histogram with differential privacy



## Why all pairs of datasets ...?



# Guarantee holds no matter what the other records are.

# Why all outputs?

Should not be able to distinguish whether input was  $D_1$  or  $D_2$  no matter what the output



#### Privacy Parametere



Controls the degree to which  $D_1$  and  $D_2$  can be distinguished. Smaller the  $\varepsilon$  more the privacy (and better the utility)

#### Can deterministic algorithms satisfy differential privacy?

## **Output Randomization**



- Add noise to answers such that:
  - Each answer does not leak too much information about the database.
  - Noisy answers are close to the original answers.

#### [DMNS 06]

## Laplace Mechanism



## Laplace Distribution

• PDF: 
$$f(x \mid \mu, b) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$$

- Denoted as Lap(b) when u=0
- Mean u
- Variance 2b<sup>2</sup>



# How much noise for privacy?

[Dwork et al., TCC 2006]

Sensitivity: Consider a query q: I → R. S(q) is the smallest number s.t. for any neighboring tables D, D',

$$|q(D) - q(D')| \leq S(q)$$

**Theorem**: If **sensitivity** of the query is **S**, then the algorithm  $A(D) = q(D) + Lap(S(q)/\epsilon)$  guarantees  $\epsilon$ -differential privacy

## Sensitivity

- Semantically Sensitivity is
  - Given a query, what the maximum amount that the output will change by adding a row?

## Example 1

- Let's consider a simple count query
  - Number of people clicking on an ad / having a disease?
  - What is the sensitivity?

## Example: COUNT query

- Number of people having disease
- Sensitivity = 1

- Solution: 3 + η, where η is drawn from Lap(1/ε)
  - Mean = 0
  - Variance =  $2/\epsilon^2$



## Example 2

- Let's consider another count query
  - Number of people clicking on an ad / having a disease rounded to nearest multiple of 10?
  - What is the sensitivity?

## Privacy of Laplace Mechanism

- Consider neighboring databases D and D'
- Consider some output O

$$\frac{\Pr\left[A(D)=O\right]}{\Pr\left[A(D')=O\right]} = \frac{\Pr\left[q(D)+\eta=O\right]}{\Pr\left[q(D')+\eta=O\right]} \qquad \lambda = \text{variance} = S(q)/\epsilon$$
$$= \frac{e^{-|O-q(D)|/\lambda}}{e^{-|O-q(D')|/\lambda}}$$

$$\leq e^{|q(D)-q(D')|/\lambda} \leq e^{S(q)/\lambda} = e^{\varepsilon}$$

## Utility of Laplace Mechanism

- Laplace mechanism works for any function that returns a real number
- Error: E(true answer noisy answer)<sup>2</sup>
  = Var( Lap(S(q)/ε) )
  = 2\*S(q)<sup>2</sup> / ε<sup>2</sup>

- Where is there room for improvement?
  - The Laplace mechanism adds independent noise to every coordinate...
  - What happens if the user asks (essentially) the same question in every coordinate?
  - Read [Dinur,Nissim03]: a computationally efficient attack that gives blatant non-privacy for a mechanism that adds noise bounded by  $o(\sqrt{n})$