Subgraphs and Community Structure of Networks (part 2)

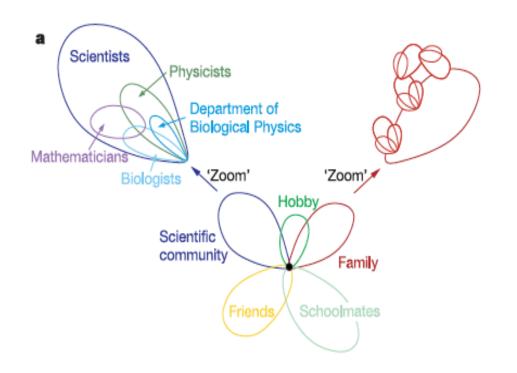
Mainack Mondal

CS 60017 Autumn 2021

OVERLAPPING COMMUNITY DETECTION

Overlapping communities

• Nodes in real networks are often parts of multiple overlapping communities



Two algorithms

- Clique Percolation Method
 - Uncovering the overlapping community structure of complex networks in nature and society, Palla et al., Nature Letters, vol. 435, 2005
- Link communities
 - Link communities reveal multiscale complexity in networks, Ahn et al., Nature Letters, vol. 466, 2010

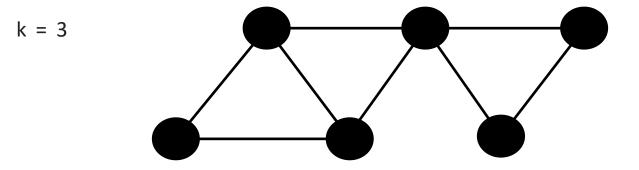
Clique Percolation Method (CPM)

- Concept:
 - Internal edges of communities likely to be part of cliques
 - Inter-community edges unlikely to be part of cliques

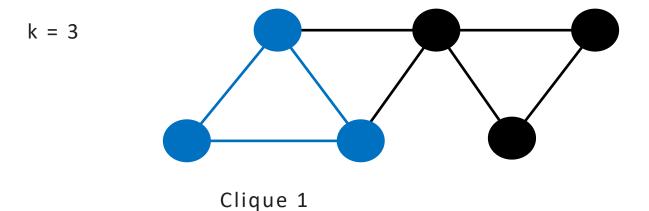
 Adjacent k-cliques: two k-cliques are adjacent if they share k-1 nodes

Some material on CPM borrowed from slides by Eugene Lim

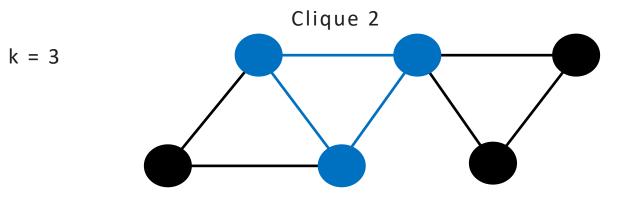
- Adjacent k-cliques
 - Two k-cliques are adjacent when they share <u>k-1</u> nodes



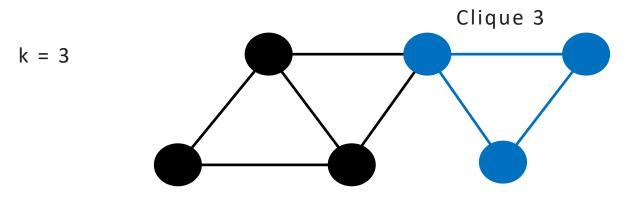
- Adjacent k-cliques
 - Two k-cliques are adjacent when they share <u>k-1</u> nodes



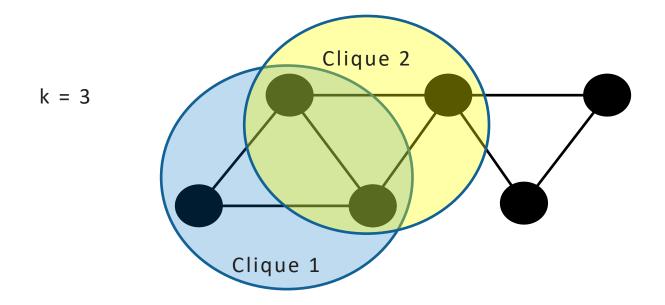
- Adjacent k-cliques
 - Two k-cliques are adjacent when they share <u>k-1</u> nodes



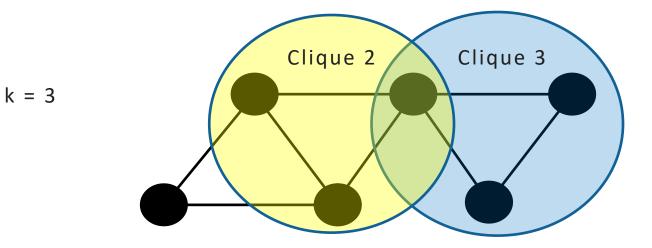
- Adjacent k-cliques
 - Two k-cliques are adjacent when they share <u>k-1</u> nodes



- Adjacent k-cliques
 - Two k-cliques are adjacent when they share <u>k-1</u> nodes



- Adjacent k-cliques
 - Two k-cliques are adjacent when they share <u>k-1</u> nodes

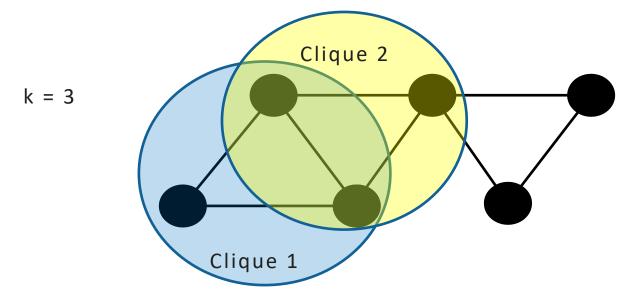


- k-clique community
 - Union of all k-cliques that can be reached from each other

through a series of adjacent k-cliques

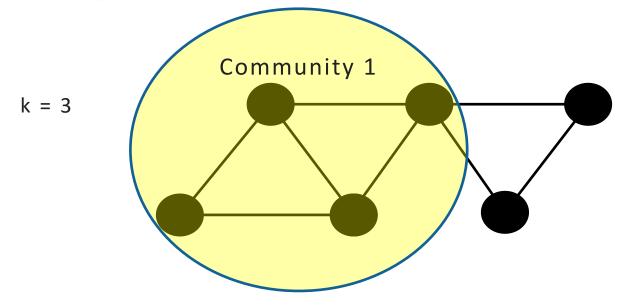
- k-clique community
 - Union of all k-cliques that can be reached from each other

through a series of adjacent k-cliques



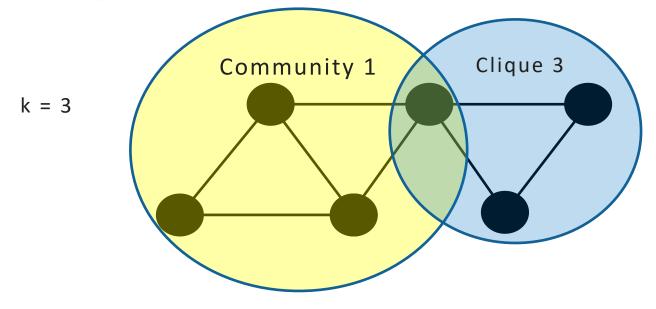
- k-clique community
 - Union of all k-cliques that can be reached from each other

through a series of adjacent k-cliques



- k-clique community
 - Union of all k-cliques that can be reached from each other

through a series of adjacent k-cliques



- k-clique community
 - Union of all k-cliques that can be reached from each other

through a series of adjacent k-cliques



Algorithm

- Locate maximal cliques
- Convert from cliques to k-clique communities

Locate Maximal Cliques

 Largest possible clique size can be determined from degrees of vertices

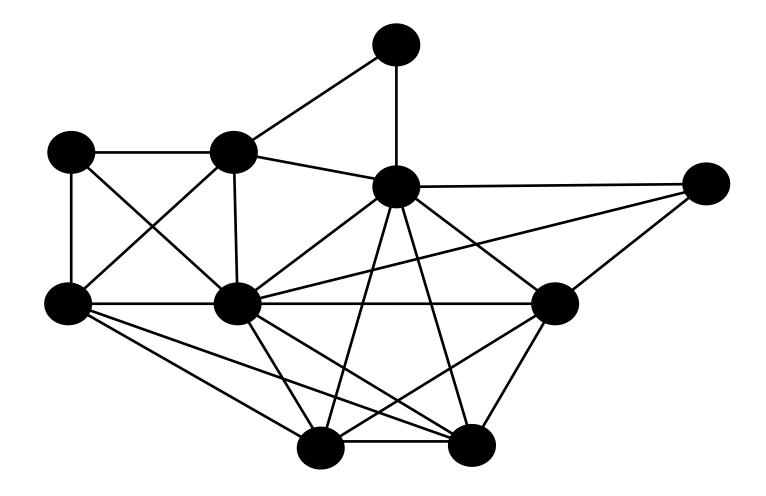
 Starting from this size, find all cliques, then reduce size by 1 and repeat

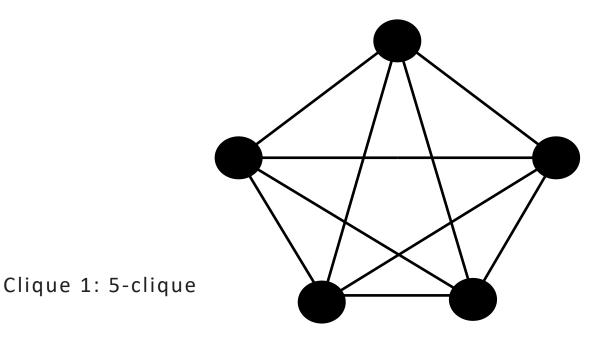
Finding all cliques: brute-force

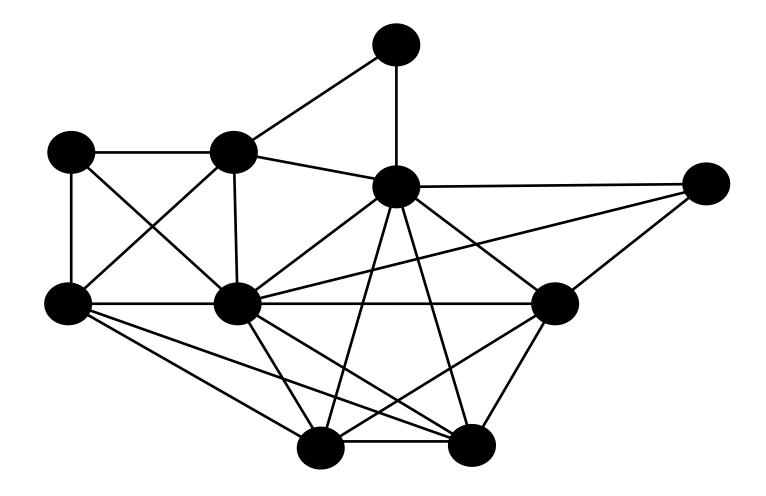
- Set A initially contains vertex v, Set B contains neighbors of v
- Transfer one vertex w from B to A
- Remove vertices that are not neighbors of w from B
- Repeat until A reaches desired size
- If fail, step back and try other possibilities

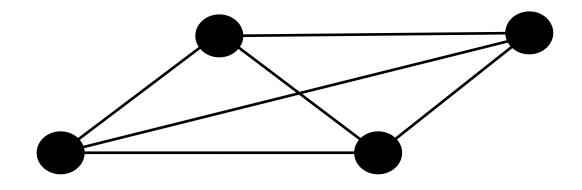
Algorithm

- Locate maximal cliques
- Convert from cliques to k-clique communities

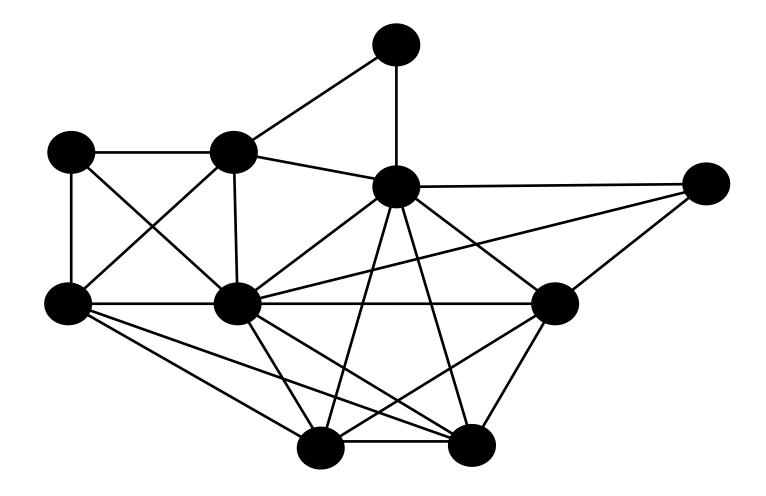




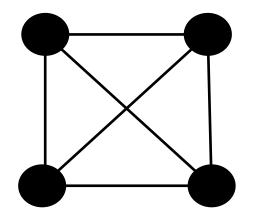


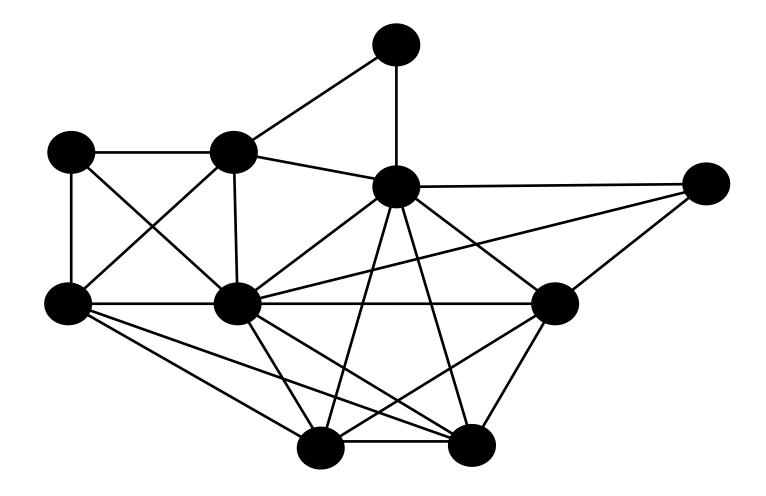


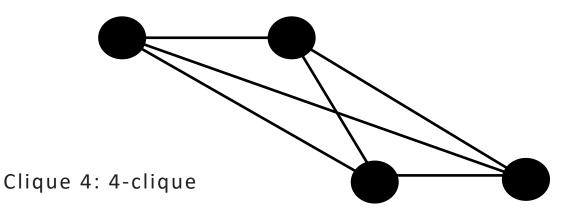
Clique 2: 4-clique

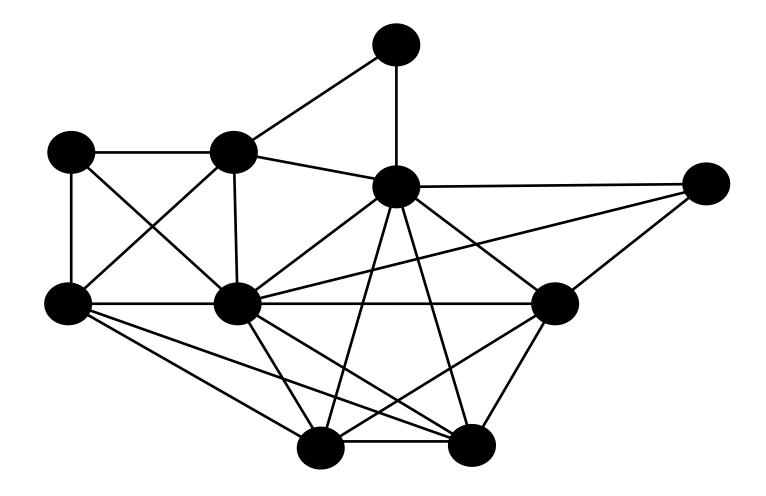


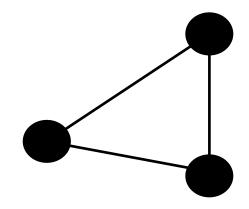
Clique 3: 4-clique



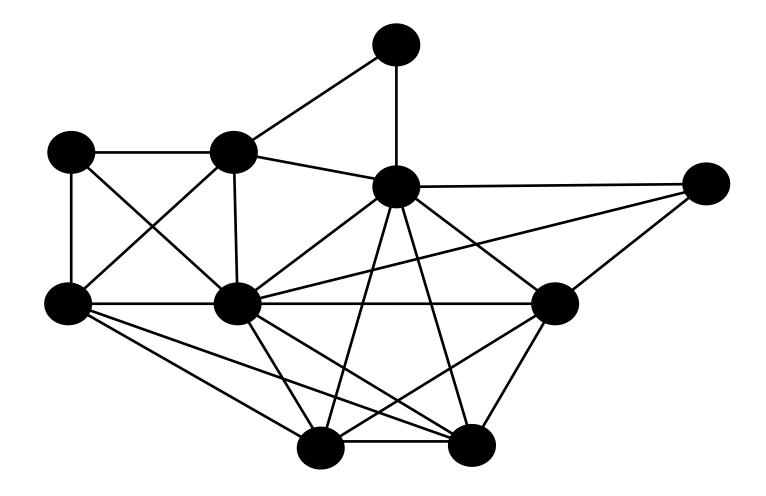




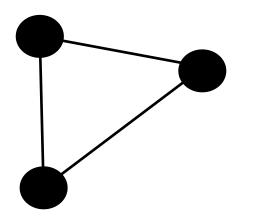




Clique 5: 3-clique



Clique 6: 3-clique

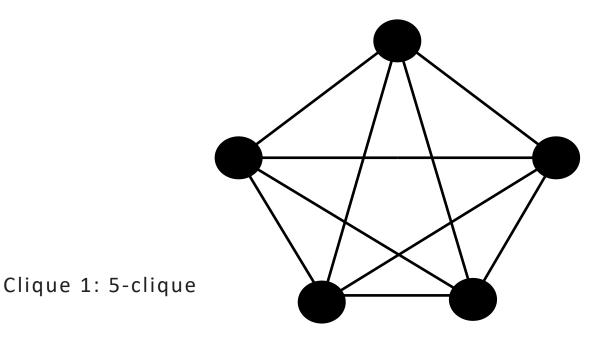


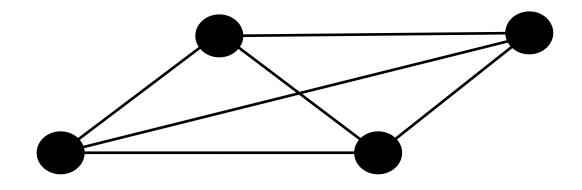
Clique-Clique overlap matrix

1					
ž	4				
3		4			
4			4		
5				3	
6					3

Clique-Clique overlap matrix

1	5		1			2
<u>2</u>	3	4	1	1		2
3	1		4	2		2
4	3	1	2	4	0	1
5	1	1	1	0	3	2
6	2	2	2	1	2	3





Clique 2: 4-clique

Clique-Clique overlap matrix

1	5	3	1			2
2	3	4	1	1	1	2
3	1		4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	3	2
6	2	2	2	1	2	3

Intuition of the algorithm

- First find all cliques of size k in the graph
- Then create graph where nodes are cliques of size k
- Add edges if two nodes (cliques) share k-1 common nodes
- Each connected component is a community

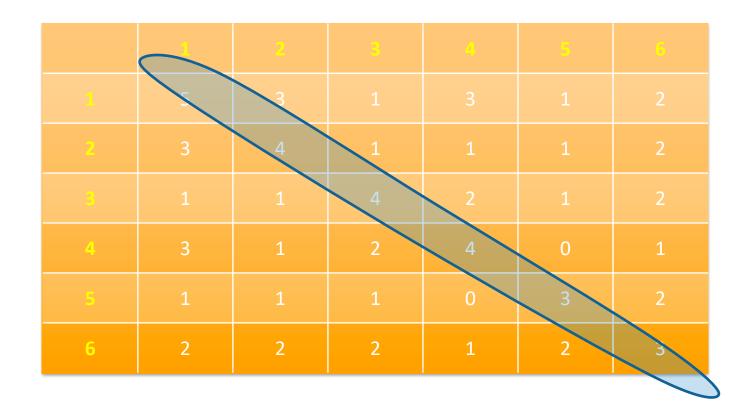
- For a given value of k, k-clique communities:
 - Connected clique components in which neighboring cliques linked to each other by at least k-1 common nodes

- How to find k-clique communities from the clique-clique overlap matrix?
 - Erase every diagonal element smaller than k
 - Erase every off-diagonal element smaller than k-1
 - Replace remaining elements by 1
 - Carry out a component analysis of this matrix

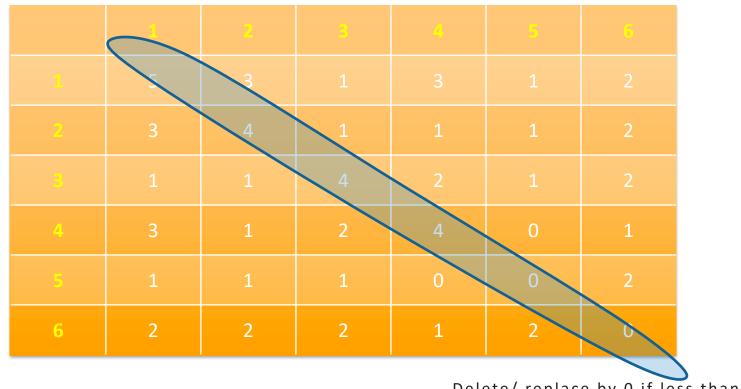
k=4

	1	2	3	4	5	6
1	5				1	2
8	3	4	1		1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	3	2
6	2	2	2	1	2	3

k=4



k=4

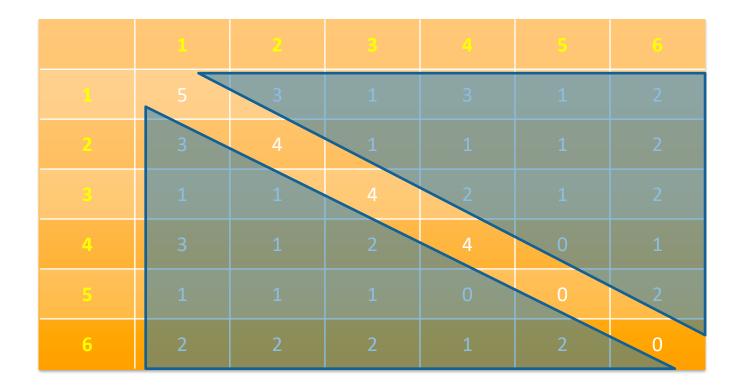


Delete/ replace by 0 if less than k

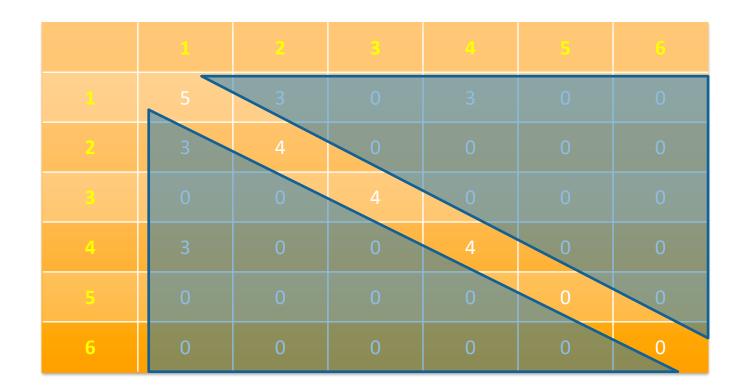
k=4

	1	2	3	4	5	6
1						2
2	3	4	1	1	1	2
3			4			2
4	3	1	2	4	0	1
5	1	1	1	0	0	2
6	2	2	2	1	2	0

k=4



k=4



Delete/ replace with 0 if less than k-1

k=4

	1	2	3	4	5	6
1	5		0		0	0
2	3	4	0	0	0	0
3			4		0	0
4	3	0	0	4	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

k=4

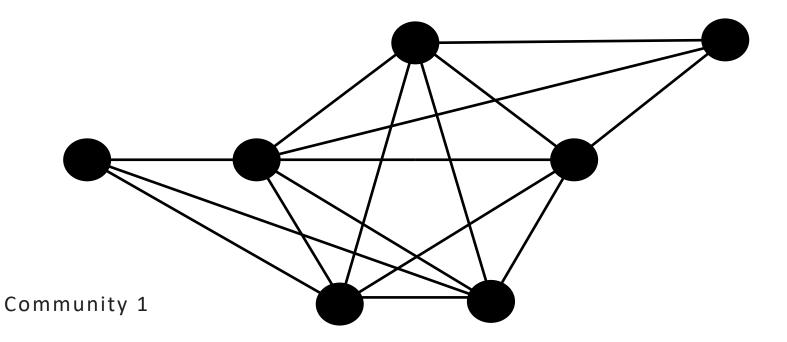
	1	2	3	4	5	6
1					0	0
2	1	1	0	0	0	0
3	0	0	1	0	0	0
4	1	0	0	1	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

Change all non-zeros to 1

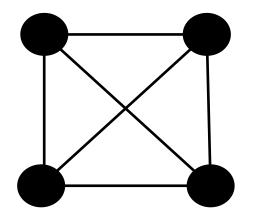
k=4

	1	2	3	4	5	6
1	1				0	0
2	1	1	0	0	0	0
3	0	0	1	0	0	0
4	1	0	0	1	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

k=4



k=4



Community 2

Clique Percolation Method: Analysis

- Believed to be non-polynomial
- No closed formula can be given
- However, claimed to be efficient on real systems

- Limitations
 - Fail to give meaningful covers for graph with few cliques
 - With too many cliques, might give a trivial community structure

Link communities

- A node might belong to multiple communities
 - For a person: family, co-workers, friends, ...

- A link often exists for one dominant reason
 - Two people are in the same family, or are co-workers
- Link community: a set of closely inter-related links

Identifying Link communities

- Hierarchical clustering with a similarity between links to build a dendrogram
 - Each leaf of the dendrogram is a link from the original network
 - Branches of the dendrogram are link communities

- Slice the dendrogram at a suitable level
- Each link placed in a single community
- Each node inherits membership of the communities of all its links

For hierarchical clustering

• Two questions to be answered

• How to measure similarity between items (e.g., links)?

• At which level to slice the dendrogram?

Similarity measure between links

• Node *i* and its neighboring nodes: $n_+(i)$

- Similarity measured only between pairs of links which share a node
- Similarity between e_{ik} and e_{jk} :

 $S(e_{ik}, e_{jk}) = |n_+(i) \cap n_+(j)| / |n_+(i) \cup n_+(j)|$

Which level to slice the dendrogram?

- Measure: Partition density D
 - Total number of links in network: M
 - { P_1, P_2, \ldots, P_C }: partition of links into C subsets
 - P_c has n_c nodes and m_c links

$$D_c = \frac{m_c - (n_c - 1)}{n_c (n_c - 1)/2 - (n_c - 1)}$$

- Partition density is average of D_c weighted by the fraction of links present in P_c

$$D = \frac{2}{M} \sum_{c} m_{c} \frac{m_{c} - (n_{c} - 1)}{(n_{c} - 2)(n_{c} - 1)}$$

Going from non-overlapping to overlapping algorithms

- Simple "partition + growth" approach
 - Partition: First detect partition of the network using a *good* community detection algorithm
 - Growth: Next consider nodes in each community as seed set and add nodes which are highly connected to seed

Going from non-overlapping to overlapping algorithms

- Simple "partition + growth" approach
 - Partition: First detect partition of the network using a good community detection algorithm
 - Growth: Next consider nodes in each community as seed set, add nodes which are highly connected to seed

Going from non-overlapping to overlapping algorithms

- Simple "partition + growth" approach
 - Partition: First detect partition of the network using a *good* community detection algorithm
 - Growth: Next consider nodes in each community as seed set, add nodes which are highly connected to seed

• You are who you know: Inferring user profiles in online social networks, by Mislove et al (http://www.ccs.neu.edu/home/amislove/publications/Inferring-WSDM.pdf)

Definition: Conductance

• How strong is a particular community A?

Conductance previously proposed

$$f(S) = \frac{c_S}{2m_S + c_S}$$

• But, biased towards large communities

Definition: Normalized conductance

• Metric: Normalized conductance C

$$C = \frac{e_{AA}}{e_{AA} + e_{AB}} - \frac{e_A e_A}{e_A e_A + e_A e_B}$$

- Fraction of A's links within A Relative to a random graph
- Range is [-1,1]
- 0 represents no stronger than random

Growth algorithm

- Given seed users, find a community by
 - Adding users
 - Stopping at some point
- At each step, add user who increases normalized conductance by the most

• Stop when no user increases normalized conductance

Partition + Growth algorithm in action

- Finding friendlists from 1-hop subgraph in Facebook
- Used Louvain's modularity-based algorithm to find partitions
- Then grow each community by normalized conductance based growth algorithm
- Provide final overlapping communities to users in an App— Friendlist Manager

 Simplifying Friendlist Management , by Liu et al, WWW Demo 2012 (https://cse.iitkgp.ac.in/~mainack/publications/Friendlist-WWW-Demo.pdf)

Partition + Growth algorithm in action

How to evaluate a CD algorithm?

- Assume a known community structure $X = \{x_1, x_2, ..., x_l\}$
- An algorithm finds a community structure $Y = \{y_1, y_2, \dots, y_J\}$
- How close is Y to X?
- Several existing measures
 - Purity
 - Rand index
 - Normalized Mutual Information (NMI) [has been extended to overlapping communities]
- Generalized Measures for the Evaluation of Community Detection Methods, by Labatut (https://arxiv.org/abs/1303.5441)

DIFFERENT TYPES OF GROUPS IN A SOCIAL NETWORK

Different methods to identify groups

Identifying groups based on network structure – community detection algorithms

• How about identifying groups based on content, e.g., text or profile attributes?

• Deep Twitter Diving: Exploring Topical Groups in Microblogs at Scale, Bhattacharya et al., CSCW 2014

Identified topical groups in Twitter

Topical Groups = Experts + Seekers

Experts: Users who have expertise on the topic Seekers: Users who are interested in the topic

@BarackObama
Expert on Politics

@BarackObama
Seeker on Basketball

Identifying topical groups at scale

• Crawled data for first 38 million users in Twitter

• 88 Million lists, 1.5 Billion social links

• Identified 36 thousand topical groups

Diversity: Topics and Group Size

No. of	Number of experts							
seekers	< 100	100 - 500	500 – 1K	1K – 5K	5K – 10K	>10K		
< 1K	(5416) geology, karate, malaria, neurology, tsunami, psychiatry, radiology, pediatrics, dermatology, dentistry	(132) volleyball, philosophers, tarot, perfume, florists, copy- writers, taxi, esperanto						
1K – 5K	(915) biology, chem- istry, swimmers, astrophysics, multi- media, semiconductor, renewable-energy, breast-cancer, judaism	(428) painters, astrol- ogy, sociology, geogra- phy, forensics, anthro- pology, genealogy, ar- chaeology, gluten, dia- betes, neuroscience	(17) architects, insur- ance, second-life, po- lice, progressives, cre- ativity					
5K – 10K	(166) <i>malware</i> , gnu, robot, chicago-sports, gospel-music, space- exploration, wall-street	(202) horror, agricul- ture, atheism, attorneys, furniture, art-galleries, ubuntu	(34) <i>psychology</i> , po- etry, catholic, hospitals, autism, jazz	(2) coffee, dealers				
10K – 50K	(174) ipod, ipad, virus, Liverpool-FC, choreographers, heavy- metal, backstreet-boys, world-cup,	(312) olympics, physics, theology, earthquake, opera, makeup, Adobe, wrestlers, typography, american-idol	(146) tennis, linux, as- tronomy, yoga, anima- tion, manga, doctors, realtors, wildlife, rugby, forex, php, java,	(67) <i>law</i> , <i>history</i> , <i>beer</i> , <i>golf</i> , librari- ans, theatre, military, poker, conservatives, vegan				
50K- 100K	(7) bbc-radio, UK- celebs, christian- leaders, superstars	(61) hackers, pro- grammers, bicycle, GOP, fantasy-football, NCAA, wwe, sci-fi	(35) <i>medicine</i> , <i>cyclists</i> , investors, recipes, NHL, xbox, triathlon, Google	(37) hotels, mu- seums, hockey, architecture, chari- ties, weather, space				
> 100K	(3) headlines, brits	(49) pop-culture, gospel, BBC, reality-tv, bollywood	(58) <i>religion</i> , actresses, gadgets, graphic- design, directors, lifestyle, gossip, com- mentators, youtube	(140) books, govern- ment, comedy, en- vironment, baseball, soccer, hollywood, iphone, economics, money	(25) fashion, education, wine, photog- raphy, radio, restaurants, science, SEO	(17) music, tech, business, politics, food, sports, celebs, health, media, bloggers, travel, writers		

A Small Number of Very Popular Groups

No. of	. of Number of experts								
seekers	< 100	100 - 500	500 – 1K	1K – 5K	5K – 10K	> 10K			
< 1K	(5416) geology, karate,	(132) volleyball,	500 - IK	IK – JK	JK-IOK	> 10K			
	malaria, neurology,	philosophers, tarot,							
	<i>tsunami</i> , psychiatry,	perfume, florists, copy-							
	radiology pediatrics	writers taxi esperanto				_			
	dermate (37) h	otels, mu-							
1K – 5K	(915) istry, seums,	hockey,							
JIX	a stup mla								
	media, architec	ture, chari-							
	renewal ties, weat	ather, space							
5K –	Ulcast-C	· 1			1	-			
10K	(140) bc	ooks, govern-	(25) <i>fashio</i>	$m, \mid (1) m$	usic, tech,				
		comedy, en-	education,	busines	s, politics,				
	exploral	•			· · ·				
10K –		nt, baseball,	wine, photo	g- <i>food</i> ,	sports,				
50K	virus, choreos SOCCE ,	hollywood,	raphy, radi	o. <i>celebs</i> .	health.				
	ana a fa 1				· · · · · · · · · · · · · · · · · · ·				
	world-q <i>iphone</i> ,	economics,	restaurants,	media,	bloggers,				
50K- 100K	(7) b money		science, SEO	travel, v	writers				
1001	leaders, superstars	GOP, fantasy-football,	xbox, triathlon, Google	architecture, chari-					
		NCAA, wwe, sci-fi		ties, weather, space					
>	(3) headlines, brits	(49) pop-culture,	(58) religion, actresses,	(140) books, govern-	(25) fashion,	(17) <i>music</i> , <i>tech</i> ,			
100K		gospel, BBC, reality-tv,	gadgets, graphic-	ment, comedy, en-	education,	business, politics,			
		bollywood	design, directors,	vironment, baseball,	wine, photog-	food, sports,			
			lifestyle, gossip, com-	soccer, hollywood,	raphy, radio,	celebs, health,			
			mentators, youtube	iphone, economics,	restaurants,	media, bloggers,			
				money	science, SEO	travel, writers			

Thousands of Specialized Niche Groups

No. of			Ni	how of over out			
NO. OI seekers	< 100	100 - 500	100 - 1K	ber of expert	s 1K – 5K	5K – 10K	> 10K
< 1K	< 100 (5416) geology, karate,		500 - IK		IK – JK	JK - IUK	> 10K
$\langle IK \rangle$	<i>malaria, neurology,</i>	philosophers, tarot,					
		prinosophers, tarot,					
	radiology, per (54	416) geology, k	arate,	(132)	volley	/ball,	
	dermatology dei				-	-	
1K –		ılaria, neur	ology,	philos	ophers,	tarot,	
5K	<i>istry, swi</i> astrophysics, <i>tsu</i>	<i>nami</i> , psycl	hiatry,	perfur	ne, florists, c	copy-	
	······································	· · · · · · · · · · · · · · · · · · ·	• • •	•		· · ·	
	renewable-energ	liology, pedi		writer	s, taxi, espera	into	
	breast-cancer, ju det	rmatology, dent	istry				
5K – 10K	(100) <i>maiware</i>		-	(430)		1	
IUK	robot, chicago (9) gospel-music,	15) biology,	cnem-	(428)	painters, as	strol-	
	exploration, wall <i>ist</i>	ry, swim	imers.	ogy, s	ociology, geo	ogra-	
10K –	(174) incd	•		0.	0.00	<u> </u>	
50K	virus, Liverp ast	rophysics, i	multi-	phy, j	<i>forensics</i> , an	thro-	
	choreographers, me	edia, semicond	luctor	nolog	y, genealogy	ar-	
	mouri, ouekstiev		· · · · ·	_			
5017	world-cup, ren	newable-energy,		chaeo	logy, gluten,	dia-	
50K- 100K	(7) $DDC-radio,$						
TOOK	leaders, supersta	east-cancer, juda	aisiii	beles,	neuroscience		
	ioucors, superstate	NCAA, wwe, sci-fi		,	ties, weather, space		
>	(3) headlines, brits	(49) pop-culture,	(58) religion	<i>i</i> , actresses,	(140) books, govern-	(25) fashion,	(17) music, tech,
100K		gospel, BBC, reality-tv,	gadgets,	graphic-	ment, comedy, en-	education,	business, politics,
		bollywood	design,	directors,	vironment, baseball,	wine, photog-	food, sports,
			lifestyle, go		soccer, hollywood,	raphy, radio,	celebs, health,
			mentators, y	outube	iphone, economics,	restaurants,	media, bloggers,
					money	science, SEO	travel, writers

Breaking the Twitter stereotype

- Twitter stereotype
 - Popular news on few topics such as sports, entertainment, politics, technology
 - Celebrity gossip, current news, and chatter
- Breaking the stereotype
 - Majority of the population discuss few popular topics, but
 - Smaller groups interested in thousands of niche, specialized topics

Why do groups form?

- "Common Identity and Bond Theory"
 - Prentice et. al. "Asymmetries in Attachments to Groups and to Their Members: Distinguishing Between Common-Identity and Common-Bond Groups", Personality and Social Psychology Bulletin, 1994

Identity based groups

• Bond based groups

Common Identity and Bond Theory

Identity Based Groups

Low Reciprocity

Low Personal Interactions

High Topicality of discussions

Examples: Fans at a football match, Attendees at a conference

Bond Based Groups

High Reciprocity High Personal Interactions Low Topicality of discussions

> Examples: Family, personal friends

Analysis of 50 topical groups

• Low reciprocity among members

• Few one-to-one interactions

• Most tweets posted by experts are related to topic