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Subgraphs

* A subset of nodes and edges in a network

» Given a (social) network, what are some subgraphs of
interest?



Subgraphs

* A subset of nodes and edges in a network

« Given a (social) network, what are some subgraphs of
interest”?

» Singletons: Isolated nodes @ o
« Connected components

« Triads or triangles 0‘0 o
(E)

* Larger cligues



Egocentric networks

* From the perspective of a node (user)

« T1-degree egocentric network: a node and all its
connections to its neighbors




Egocentric networks

« 1.5-degree egocentric network: a node, all its
connections to its neighbors, and the connections
among the neighbors




Egocentric networks

« 2-degree egocentric network: a node, all its neighbors,
all neighbors of neighbors, and the connections among
all these nodes




Communities

« Community or network cluster

 Typically a group of nodes having more and / or
petter interactions among its members, than
between its members and the rest of the network

* No unique formal definition



COMMUNITY DETECTION



Community detection algorithms

« Lot of applications — identitying similar nodes, close
friends, recommendation, ...

« Challenging

« Communities are not well-defined
* Number of communities in a network is not known



Two broad types of algorithms

» Detection of disjoint communities

« Each community is a partition of the network

« Detection of overlapping communities

* A node can be members of multiple communities



Algorithm by Girvan & Newman

* Community structure in social and biological networks,
PNAS, 2002

* Focus on edges that are most “between” communities



Edge betweenness

* Edge betweenness of an edge e: fraction of shortest paths
between all pairs of vertices, which run through e

* Edges between communities are likely to have high
betweenness centrality

* Progressively remove edges having high betweenness
centrality, to separate communities from one another



Girvan-Newman algorithm

« Compute betweenness centrality for all edges

* Remove the edge with highest betweenness centrality

* Re-compute betweenness centrality for all edges affected by
the removal

* Repeat steps 2 and 3 until no edges remain

* Time complexity
« Graph of n vertices and m edges: betweenness centrality
of all edges can be computed in O(mn) time
« Hence, worst case time complexity: O(m?n)



How many communities?

« Community structure of a graph is hierarchical, with smaller
communities nested within larger ones

* Represented as a hierarchical clustering tree: dendrogram

* A fslice” through the tree at any level gives a certain number
of communities

 Which level 1o slice at?



An example dendrogram
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Hierarchical clustering algorithms

Agglomerative algorithms (bottom-up)

« Clusters / communities iteratively merged if their similarity
s sufficiently high

 Divisive algorithms (top-down)

« Clusters / communities iteratively split by removing edges

« Both can be represented by dendrograms

 Need some way to decide at what level to slice the
dendrogram — what is a good community structure?



What is a good community
structure?

« A few large communities, or many small communities?

» Often depends on the end application

« Example: find communities in an OSN for

« Application 1: personalized recommendation to users

« Application 2: map user-accounts to data centers
located in some places



Objective functions for Community
Detection (CD)

o Community or network cluster

 Typically a group of nodes having more and / or
petter interactions among its members, than
between its members and the rest of the network

« Typical CD algorithms
» Choose an objective function that captures the above
Intuition
» Optimize the objective function using heuristics or
approximation algorithms



OBJECTIVE FUNCTIONS
FOR COMMUNITY DETECTION

Empirical Comparison of Algorithms for Network
Community Detection, Leskovec et al., WWW 2010



Various objective functions

* [wo criteria of interest for measuring how well a
particular set S of nodes represents a community
* Number of edges among the nodes within S

* Number of edges between nodes in S and rest of
network

« Two types of objective functions

« Single criterion — considers any one of the above
criteria

o Multi criterion — considers both the above criteria



Multi-criterion scores

« (Consider both the criteria for measuring quality of a set
S of nodes

« Lower values of f(S) signify a more community-like set of
nodes



Notations

G = (V, E) is the network.

n = |V| = number of nodes
m = |E| = number of edges
d(u) = k, = degree of node u

S: set of nodes

ns = number of nodes in S

mg = number of edges within S (both nodes in S)
c, = number of edges on the boundary of S



Expansion

= Number of edges per node in S, that points
outside the set S



Internal density

F(S) = 1= qopias

ng(ns—1)/2

 Internal edge density of the set S



Cut Ratio

f8) = o

* Fraction of all possible edges leaving the set S



Conductance

f(S) = st

» Fraction of total edge volume that points outside the
cluster

* Edge volume = sum of node-degrees

 Denominator: total connection from nodes in S to all
nodes in graph G



Normalized Cut

() = s + mms

2mg—+cg 2(m—mg)+cg

 QOriginally proposed in “Normalized cuts and Image
Segmentation” by Shi et al, IEEE TPAMI, 2000

« Some doubts about the denominator of the second
term



Normalized cut — original definition

« Partition graph G = (V, E) into two partitions A
and B

cut(A, B) = Z w(u, v).

ucAveB

cut(A, B) cut(A, B)

2
assoc(A, V) * assoc(B, V)’ (2)

Ncut(A, B) =

where assoc(A,V) = > 4 w(u,t) is the total connection
from nodes in A to all nodes in the graph and assoc(B, V) is

similarly defined.



Maximum Out Degree Fraction (ODF)

{(u,v):v& S}

ImMaxqyes d(’u,)

« Maximum fraction of edges of a node in S, that points
outside the set S



Average ODF

_ 1 { (u,v):vgS }
f(S) = ng Z<ucS d(u)

« Average fraction of edges of nodes in S, that points
outside S



Flake ODF

f(S) : |{quS,|{(u,v)UES}|<d(u)/2}|

’TLS.

« Fraction of nodes in S that have fewer edges pointing
inside S, than to outside S



Observations by Leskovec et al.

 Internal density and Maximum-ODF are not good
measures for community quality

— Does not show much variation, except for very small
communities

 (Cut ratio has high variance

— communities of similar sizes can have very different
numbers of edges pointing outside

* Both very low variance and very high variance
undesirable for objective functions for CD



Observations by Leskovec et al.

» Flake-ODF prefers larger communities

« (Conductance, expansion, normalized cut, average-ODF
all exhibit qualitatively similar behavior and give best
scores to similar clusters



Single-criterion scores

« (Consider only one of the two criteria for measuring
quality of a set S of nodes

Two simple single-criterion scores:

« Volume: Sum of degrees of the nodes in S

« Edges Cut: cg: Number of edges needed to be

removed to disconnect nodes in S from the rest of
the network



Modularity-based measures

* A set of nodes is a good community if the numlber of
edges within the set is significantly more than what can
be expected by random chance

« Modularity Q = 1/K* (ms—E(m,) )

« Number of edges mg within set S, minus expected
number of edges within the set S

 KIis a constant, used for normalization



Modularity ratio

mg

E(mg)

» Alternative measure of how well set S represents a
community

« Ratio of the number of edges among nodes in S, and
expected number of such edges



Expected number of edges

* Null model: Erdos-Renyi random network having the
same node degree sequence as given network

« Randomized realization of a given network, realized in
practice using Configuration Model
« Cut each edge into two half-edges or stubs
« Randomly connect each stub to any stub
* Expected to have no community structure



Mathematical definition of Modularity

* [For two particular nodes/andj :

« Number of edges between the nodes: A;
« Degrees: Kk, K;
* Expected number of links between i and j: k; k; /2m

* Do the nodes / and j have more edges than expected by
random chance”

Aj—kik: /2m



Modularity for a given network

1 kik; |
Q=_—)_ (A,-j - ) 5(Gi. G)

1

* The delta function is 1 if both nodes j and j are in the
same community (C; = C)), O otherwise

e (Consider a network with two communities c1, c2

« Qs the fraction of edges that fall within c1 or c2,
minus the expected number of edges within ¢1 and
c2 for a random graph with the same node degree
distribution as the given network



Using modularity for CD

* Approach 1: use Modularity to decide at which level to
slice the dendrogram
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Using modularity for CD

« Approach 1: use Modularity to decide at which level to
slice the dendrogram

« Approach 2: Optimize modularity

« Exhaustive maximization is NP-hard
* Heuristics and approximations used



Greedy algorithm for maximizing Q

» [ast algorithm for detecting community structure in networks,
Newman, PRE 69(6), 2004

« (Greedy agglomerative hierarchical clustering

« Start with n clusters, each containing a single node

« Add edges such that the new partitioning gives the
maximum increase (Minimum decrease) of modularity wrt

the previous partitioning
« A total of n partitionings found, with number of clusters
varying from n to 1

« Select the partitioning having highest modularity



Most popular Q optimization algorithm

* Louvain algorithm:

» https://perso.uclouvain.be/vincent.blondel/research/louvai
n.html

* QOptimization in two steps

« Step 1: look for small communities - optimizing Q locally

e Step 2: aggregate nodes in the same community and
build a new network whose nodes are the communities

* Repeat iteratively until a maximum of modularity is
attained and a hierarchy of communities is produced

* Time: approx O(n log n)


https://perso.uclouvain.be/vincent.blondel/research/louvain.html

For reading

* Many subsequent works have suggested improvements
for maximizing modularity
* Reducing time complexity

» Normalizing with number of edges to minimize bias
towards larger communities

« Read “Community detection in graphs” by Fortunato,
Physics Reports, 2010.



