Subgraphs and Community Structure of Networks

Mainack Mondal

CS 60017 Autumn 2021

Subgraphs

A subset of nodes and edges in a network

 Given a (social) network, what are some subgraphs of interest?

Subgraphs

A subset of nodes and edges in a network

Given a (social) network, what are some subgraphs of interest?

- Singletons: Isolated nodes
- Connected components
- Triads or triangles
- Larger cliques

Egocentric networks

- From the perspective of a node (user)
- 1-degree egocentric network: a node and all its connections to its neighbors

Egocentric networks

 1.5-degree egocentric network: a node, all its connections to its neighbors, and the connections among the neighbors

Egocentric networks

 2-degree egocentric network: a node, all its neighbors, all neighbors of neighbors, and the connections among all these nodes

Communities

- Community or network cluster
 - Typically a group of nodes having more and / or better interactions among its members, than between its members and the rest of the network

No unique formal definition

COMMUNITY DETECTION

Community detection algorithms

• Lot of applications – identifying similar nodes, close friends, recommendation, ...

- Challenging
 - Communities are not well-defined
 - Number of communities in a network is not known.

Two broad types of algorithms

- Detection of disjoint communities
 - Each community is a partition of the network

- Detection of overlapping communities
 - A node can be members of multiple communities

Algorithm by Girvan & Newman

- Community structure in social and biological networks, PNAS, 2002
- Focus on edges that are most "between" communities

Edge betweenness

 Edge betweenness of an edge e: fraction of shortest paths between all pairs of vertices, which run through e

 Edges between communities are likely to have high betweenness centrality

 Progressively remove edges having high betweenness centrality, to separate communities from one another

Girvan-Newman algorithm

- Compute betweenness centrality for all edges
- Remove the edge with highest betweenness centrality
- Re-compute betweenness centrality for all edges affected by the removal
- Repeat steps 2 and 3 until no edges remain

- Time complexity
 - Graph of n vertices and m edges: betweenness centrality of all edges can be computed in O(mn) time
 - Hence, worst case time complexity: O(m²n)

How many communities?

 Community structure of a graph is hierarchical, with smaller communities nested within larger ones

Represented as a hierarchical clustering tree: dendrogram

 A "slice" through the tree at any level gives a certain number of communities

Which level to slice at?

An example dendrogram

Hierarchical clustering algorithms

- Agglomerative algorithms (bottom-up)
 - Clusters / communities iteratively merged if their similarity is sufficiently high
- Divisive algorithms (top-down)
 - Clusters / communities iteratively split by removing edges

- Both can be represented by dendrograms
- Need some way to decide at what level to slice the dendrogram – what is a good community structure?

What is a good community structure?

- A few large communities, or many small communities?
- Often depends on the end application

- Example: find communities in an OSN for
 - Application 1: personalized recommendation to users
 - Application 2: map user-accounts to data centers located in some places

Objective functions for Community Detection (CD)

- Community or network cluster
 - Typically a group of nodes having more and / or better interactions among its members, than between its members and the rest of the network

- Typical CD algorithms
 - Choose an objective function that captures the above intuition
 - Optimize the objective function using heuristics or approximation algorithms

OBJECTIVE FUNCTIONS FOR COMMUNITY DETECTION

Empirical Comparison of Algorithms for Network Community Detection, Leskovec et al., WWW 2010

Various objective functions

- Two criteria of interest for measuring how well a particular set S of nodes represents a community
 - Number of edges among the nodes within S
 - Number of edges between nodes in S and rest of network

- Two types of objective functions
 - Single criterion considers any one of the above criteria
 - Multi criterion considers both the above criteria

Multi-criterion scores

 Consider both the criteria for measuring quality of a set S of nodes

 Lower values of f(S) signify a more community-like set of nodes

Notations

- G = (V, E) is the network.
- n = |V| = number of nodes
- m = |E| = number of edges
- $d(u) = k_u = \text{degree of node } u$
- S: set of nodes
- n_s = number of nodes in S
- m_s = number of edges within S (both nodes in S)
- c_s = number of edges on the boundary of S

Expansion

$$f(S) = \frac{c_S}{n_S}$$

 Number of edges per node in S, that points outside the set S

Internal density

$$f(S) = 1 - \frac{m_S}{n_S(n_S-1)/2}$$

Internal edge density of the set S

Cut Ratio

$$f(S) = \frac{c_S}{n_S(n-n_S)}$$

Fraction of all possible edges leaving the set S

Conductance

$$f(S) = \frac{c_S}{2m_S + c_S}$$

- Fraction of total edge volume that points outside the cluster
- Edge volume = sum of node-degrees
- Denominator: total connection from nodes in S to all nodes in graph G

Normalized Cut

$$f(S) = \frac{c_S}{2m_S + c_S} + \frac{c_S}{2(m - m_S) + c_S}$$

- Originally proposed in "Normalized cuts and Image Segmentation" by Shi et al, IEEE TPAMI, 2000
- Some doubts about the denominator of the second term

Normalized cut – original definition

 Partition graph G = (V, E) into two partitions A and B

$$cut(A,B) = \sum_{u \in A, v \in B} w(u,v).$$

$$Ncut(A,B) = \frac{cut(A,B)}{assoc(A,V)} + \frac{cut(A,B)}{assoc(B,V)},$$
 (2)

where $assoc(A, V) = \sum_{u \in A, t \in V} w(u, t)$ is the total connection from nodes in A to all nodes in the graph and assoc(B, V) is similarly defined.

Maximum Out Degree Fraction (ODF)

$$\max_{u \in S} \frac{|\{(u,v): v \notin S\}|}{d(u)}$$

 Maximum fraction of edges of a node in S, that points outside the set S

Average ODF

$$f(S) = \frac{1}{n_S} \sum_{u \in S} \frac{|\{(u,v): v \notin S\}|}{d(u)}$$

Average fraction of edges of nodes in S, that points outside S

Flake ODF

$$f(S) = \frac{|\{u:u \in S, |\{(u,v):v \in S\}| < d(u)/2\}|}{n_S}$$

 Fraction of nodes in S that have fewer edges pointing inside S, than to outside S

Observations by Leskovec et al.

- Internal density and Maximum-ODF are not good measures for community quality
 - Does not show much variation, except for very small communities
- Cut ratio has high variance
 - communities of similar sizes can have very different numbers of edges pointing outside

 Both very low variance and very high variance undesirable for objective functions for CD

Observations by Leskovec et al.

Flake-ODF prefers larger communities

 Conductance, expansion, normalized cut, average-ODF all exhibit qualitatively similar behavior and give best scores to similar clusters

Single-criterion scores

 Consider only one of the two criteria for measuring quality of a set S of nodes

- Two simple single-criterion scores:
 - Volume: Sum of degrees of the nodes in S
 - Edges Cut: c_s: Number of edges needed to be removed to disconnect nodes in S from the rest of the network

Modularity-based measures

 A set of nodes is a good community if the number of edges within the set is significantly more than what can be expected by random chance

• Modularity $Q = 1/K * (m_s - E(m_s))$

- Number of edges m_s within set S, minus expected number of edges within the set S
- K is a constant, used for normalization

Modularity ratio

$$\frac{m_S}{E(m_S)}$$

- Alternative measure of how well set S represents a community
- Ratio of the number of edges among nodes in S, and expected number of such edges

Expected number of edges

 Null model: Erdos-Renyi random network having the same node degree sequence as given network

- Randomized realization of a given network, realized in practice using Configuration Model
 - Cut each edge into two half-edges or stubs
 - Randomly connect each stub to any stub
 - Expected to have no community structure

Mathematical definition of Modularity

- For two particular nodes i and j:
 - Number of edges between the nodes: A_{ij}
 - Degrees: k_i, k_i
 - Expected number of links between i and j: k_i k_j /2m
- Do the nodes i and j have more edges than expected by random chance?

$$A_{ij} - k_i k_j /2m$$

Modularity for a given network

$$Q = \frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(C_i, C_j)$$

- The delta function is 1 if both nodes i and j are in the same community ($C_i = C_j$), 0 otherwise
- Consider a network with two communities c1, c2
 - Q is the fraction of edges that fall within c1 or c2, minus the expected number of edges within c1 and c2 for a random graph with the same node degree distribution as the given network

Using modularity for CD

 Approach 1: use Modularity to decide at which level to slice the dendrogram

Using modularity for CD

 Approach 1: use Modularity to decide at which level to slice the dendrogram

- Approach 2: Optimize modularity
 - Exhaustive maximization is NP-hard
 - Heuristics and approximations used

Greedy algorithm for maximizing Q

• Fast algorithm for detecting community structure in networks, Newman, PRE 69(6), 2004

- Greedy agglomerative hierarchical clustering
 - Start with n clusters, each containing a single node
 - Add edges such that the new partitioning gives the maximum increase (minimum decrease) of modularity wrt the previous partitioning
 - A total of n partitionings found, with number of clusters varying from n to 1
 - Select the partitioning having highest modularity

Most popular Q optimization algorithm

- Louvain algorithm:
 - https://perso.uclouvain.be/vincent.blondel/research/louvain.html

- Optimization in two steps
 - Step 1: look for small communities optimizing Q locally
 - Step 2: aggregate nodes in the same community and build a new network whose nodes are the communities
 - Repeat iteratively until a maximum of modularity is attained and a hierarchy of communities is produced
 - Time: approx O(n log n)

For reading

- Many subsequent works have suggested improvements for maximizing modularity
 - Reducing time complexity
 - Normalizing with number of edges to minimize bias towards larger communities

• . . .

 Read "Community detection in graphs" by Fortunato, Physics Reports, 2010.