Recap: Betweenness centrality

\[C_B(i) = \sum_{j<k} g_{jk}(i) / g_{jk} \]

Where \(g_{jk} \) = number of geodesics (shortest paths) connecting \(jk \)
\(g_{jk}(i) \) = the number of these geodesics that actor \(i \) is on.

Can be normalized by:

\[C'_B(i) = C_B(i) / [(n-1)(n-2)/2] \]
Calculate Betweenness centrality

• Non-normalized
Calculate Betweenness centrality

• Non-normalized

1, 3 → 0
1, 4 → 0
1, 5 → 1/3
3, 4 → 0
3, 5 → 0
4, 5 → 0

Total = 1/3
Normalized = 1/3 × 1/(4C2) = 1/18
CENTRALITY IN LARGE DIRECTED GRAPHS (WEB GRAPH)
Requirements for Web search

- Results of Web search need to consider
 - Relevance to query
 - Importance / authoritativeness
 - Location / time of query
 - Recency of page
 - … and many others

- Initial days of the Web: only relevance to query was used to rank webpages
 - Ranking algorithms easily spammed by manipulating the text on spam webpages
Need to consider authoritativeness

- Importance / authoritativeness – centrality on the Web graph (webpages are nodes, hyperlinks are directed edges)

- An edge from node \(p \) to node \(q \) denotes endorsement
 - Node \(p \) endorses/recommends/confirm the authority/centrality/importance of node \(q \)
 - May not be always true (e.g., all pages on a website linking to the Copyright page) but mostly true
 - Use the graph of recommendations to assign an authority value to every node
Hypothesis 1: A hyperlink between pages denotes a conferral of authority (quality signal)

Hypothesis 2: The text in the anchor of the hyperlink on page A describes the target page B
How to compute node centrality on Web?

• First attempt: indegree of webpages used to rank pages according to importance
 • Easily gamed by spammers creating their own webpages

• Subsequent better algorithms: HITS and PageRank
HITS ALGORITHM
HITS algorithm

• Hyperlink-Induced Topic Search, by Jon Kleinberg

• Two types of important pages on the Web
 • Authority: has authoritative content on a topic
 • Hub: pages which link to many authoritative pages, e.g., a directory or catalog
 • A good hub is one which links to many good authorities
 • A good authority node is one which is pointed to by many good hubs
The hope

Mobile telecom companies

Hubs

Alice ➔ AT&T

Bob ➔ ITIM ➔ O2

Authorities ➔
HITS

- HITS computes two scores for each page p
 - Authority score: sum of hub scores of all pages which point to p
 - Hub score: sum of authority scores of all pages which p points to

- Iterative algorithm
 - The definitions of hubs and authorities are “circular” in nature
 - A series of iterations run, until the scores of all pages converge
HITS run on a query-dependent sub-graph

- Meant to run on a (sub)set of pages that are relevant to a given query
 - Top N pages relevant to query retrieved based on content → called the root set
 - Add to the root set all pages that are linked from it or that links to it → base set
 - Sub-graph of all nodes in base set → focused sub-graph
HITS run on a query-dependent sub-graph

• Why is the root set not sufficient?

• Motivation of building base set
 • A good authority page may not contain the query term
 • Hubs describe authorities through the anchor text / text surrounding hyperlinks
Visualization: hubs & authorities
HITS Algorithm

Find focused sub-graph G of pages relevant to given query

for each page p in G:

\[\text{p.auth} \leftarrow 1, \; \text{p.hub} \leftarrow 1 \]

do until convergence

for each page p in G

\[\text{p.hub} \leftarrow \sum \text{r.auth} \; \text{for all pages r which p links to} \]

\[\text{p.auth} \leftarrow \sum \text{q.hub} \; \text{for all pages q which link to p} \]

Normalize hub and auth scores for all pages

Check convergence of scores

Output pages with highest authority scores and hub scores
Normalization of scores

• Scores need to be normalized after each iteration

• Different normalization schemes proposed
 • Normalize so that score vectors sum to 1

• Normalization factor F: square root of sum of squares of current scores of all pages; divide score of each page by F at the end of each iteration
Checking for convergence

• Various convergence criteria used
 • Fixed number of iterations

• Iterate until scores do not change appreciably from one iteration to the next (compute difference of score vectors from previous and current iterations)

• Iterate until rankings of pages do not change
HITS Algorithm (again)

Find **focused sub-graph** \(G \) of pages relevant to given query

for each page \(p \) in \(G \):

\[
\text{p.auth} \leftarrow 1, \quad \text{p.hub} \leftarrow 1
\]

do until convergence

for each page \(p \) in \(G \)

\[
\text{p.hub} \leftarrow \Sigma \text{r.auth} \quad \text{for all pages } r \text{ which } p \text{ links to}
\]

\[
\text{p.auth} \leftarrow \Sigma \text{q.hub} \quad \text{for all pages } q \text{ which link to } p
\]

Normalize hub and auth scores for all pages

Check convergence of scores
Matrix version of HITS

- Matrices / vectors
 - A: adjacency matrix of web graph. (u, v)-th element is 1 if page u links to page v
 - h: vector of hub scores of all pages
 - a: vector of authority scores of all pages

- In Matrix notation, each step of the algorithm becomes
 - $h \leftarrow A \times a$
 - $a \leftarrow A^T \times h$
 - Normalize h and a
Convergence of HITS

- HITS will converge \((h/a \text{ in iteration } t = h/a \text{ in iteration } (t + 1))\)

 Recall:

 \[
 h \leftarrow A \times a \\
 a \leftarrow A^T \times h
 \]

- Thus at stationary state:

 \[
 c' \cdot h = A \times A^T \times h \\
 c'' \cdot a = A^T \times A \times a
 \]

 \(c'\) and \(c''\) are normalizations in the algorithm
Convergence of HITS

- HITS will converge \((h/a \text{ in iteration } t = h/a \text{ in iteration } (t + 1))\)

Recall:

\[
h \leftarrow A \times a \\
a \leftarrow A^T \times h
\]

- Thus at stationary state:

\[
c' \cdot h = A \times A^T \times h \\
c'' \cdot a = A^T \times A \times a
\]

\(c'\) and \(c''\) are normalizations in the algorithm

In stationary state / convergence authority/hub scores are eigenvectors of \(A^T A\) and \(AA^T\) with largest eigenvalue
HITS – summary

- HITS is guaranteed to converge

- Reasonably efficient for large Web-scale graphs, since updates involve local operations only

- Still, not very popularly used. Why?
HITS – summary

• HITS is guaranteed to converge

• Reasonably efficient for large Web-scale graphs, since updates involve local operations only

• Still, not very popularly used. Why?
 • Easy for a spam page to obtain high hub score (just by following many authorities)
 • Hubs often transit to authorities
 • Search engines themselves become hubs
PAGERANK ALGORITHM
PageRank

- By Larry Page and Sergey Brin

- Problem in measuring importance by indegree
 - Not all in-links are same
 - How important are those pages which link to page p?

- PageRank of a page
 - A measure of the ‘authority value’ of the page
 - Independent of query
 - One of many factors used by Google to rank pages
Idea of PageRank

- Good authorities should be pointed to by other good authorities
 - PR_v of page (node) v is a function of the sum of PRs of all those pages which point to v

- Each node u distributes its authority value equally among all those nodes to which u points
 - If page u links to 4 pages, u contributes $PR_u/4$ to the PR of each of those 4 pages

$$PR_v = \sum_{u \rightarrow v} \frac{1}{d_{out}(u)} PR_u$$
Equations for PR (here $w_v \sim PR_v$)

\[w_1 = \frac{1}{3} w_4 + \frac{1}{2} w_5 \]
\[w_2 = \frac{1}{2} w_1 + w_3 + \frac{1}{3} w_4 \]
\[w_3 = \frac{1}{2} w_1 + \frac{1}{3} w_4 \]
\[w_4 = \frac{1}{2} w_5 \]
\[w_5 = w_2 \]

\[w_v = \sum_{u \rightarrow v} \frac{1}{d_{out}(u)} w_u \]

Iterative algorithm used to solve such a system of equations (multiple iterations until convergence)
PageRank computation

/* initialization */
for all nodes u in G: $d(u) \leftarrow 1/N$, where $N = \#\text{nodes}$
for all nodes u in G: $PR(u) \leftarrow d(u)$

/* iteration */
do until PR vector converges
 for all nodes u in G
 for all nodes v that links to u
 $t = \Sigma PR(v) / \text{out-degree}(v)$
 $PR(u) \leftarrow \alpha * t + (1 - \alpha) * d(u)$ \hspace{1cm} // α to be explained later
 normalize scores
 check for convergence
 end
end
Theoretical basis of PageRank

- Random walks on a graph
 - Start from a node chosen uniformly at random with prob $\frac{1}{N}$
 - Move to the node
 - From the node you are in, pick one of the outgoing links uniformly at random
 - Move to the destination node of the chosen link
 - Repeat

- The “Random surfer model”
 - Users wander on the web, following hyperlinks
 - Nodes visited most frequently in this random walk are web-pages with higher PR
Example

- Step 0
Example

• Step 0
Example

• Step 1
Example

• Step 1
Example

• Step 2
Example

• Step 2
Example

• Step 3
Example

• Step 3
Example

• Step 4...
Equations for Random Walk

- **Question:** what is the probability p_i^t of being at node i after t steps?

\[
\begin{align*}
 p_1^0 &= \frac{1}{5} \\
 p_2^0 &= \frac{1}{5} \\
 p_3^0 &= \frac{1}{5} \\
 p_4^0 &= \frac{1}{5} \\
 p_5^0 &= \frac{1}{5} \\
 p_1^t &= \frac{1}{3} p_4^{t-1} + \frac{1}{2} p_5^{t-1} \\
 p_2^t &= \frac{1}{2} p_1^{t-1} + p_3^{t-1} + \frac{1}{3} p_4^{t-1} \\
 p_3^t &= \frac{1}{2} p_1^{t-1} + \frac{1}{3} p_4^{t-1} \\
 p_4^t &= \frac{1}{2} p_5^{t-1} \\
 p_5^t &= p_2^{t-1}
\end{align*}
\]

The equations are the same as those for the PageRank computation.
Equations for PR (again)

\[w_1 = \frac{1}{3} w_4 + \frac{1}{2} w_5 \]
\[w_2 = \frac{1}{2} w_1 + w_3 + \frac{1}{3} w_4 \]
\[w_3 = \frac{1}{2} w_1 + \frac{1}{3} w_4 \]
\[w_4 = \frac{1}{2} w_5 \]
\[w_5 = w_2 \]

\[w_v = \sum_{u \rightarrow v} \frac{1}{d_{out}(u)} w_u \]

Iterative algorithm used to solve such a system of equations (multiple iterations until convergence)
Theoretical basis of PageRank

• The random walk defines a Markov chain
 • A discrete time stochastic process following Markov property (next state depends only on current state)

• N states corresponding to the N nodes; chain is at one of the states at any given time-step

• $N \times N$ transition probability matrix $P : P_{ij}$ is the probability that state at next time-step is j, given current state is i

\[\forall i, j, \ P_{ij} \in [0, 1] \quad \forall i, \sum_{j=1}^{N} P_{ij} = 1. \]
An example
An example

- P is a stochastic matrix
 - Every element is in $[0, 1]$
 - Sum of every row is 1
 - Largest eigenvalue is 1
 - Has a principal left eigenvector corresponding to its largest eigenvalue
Another example

\[A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \]

\[P = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \end{bmatrix} \]
Transition matrix for random surfer

• How to derive the transition matrix for the random surfer on the Web graph?

• Adjacency matrix of Web graph
 • $A_{ij} = 1$ if there is a hyperlink from page i to page j
 • $A_{ij} = 0$ otherwise

• Derive transition matrix P of Markov chain from A
Some practical challenges

- Web graph (or any graph) can have
 - Dead-ends or sink nodes – nodes with no out-edges

\[
P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0 \\
\end{bmatrix}
\]
Some practical challenges

- Web graph (or any graph) can have
 - Loops
Transition matrix for random surfer

- Derive transition matrix P of Markov chain from A
 - If a row of A has no 1’s, replace each element by $1/N$
 - For all other rows: divide each 1 by the number of 1’s in the row
 - Multiply the resulting matrix by α
 - Add $(1-\alpha)/N$ to every entry of the resulting matrix
Dealing with sink nodes

\[
P = \begin{bmatrix}
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\
\end{bmatrix}
\]
Dealing with sink nodes

As if synthetic edges are inserted from the sink node to every other node in the graph

\[P' = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0 \\
\end{bmatrix} \]
Dealing with loops

• As if synthetic edges are inserted to enable jump from any node to any other node in the graph

• Teleportation: jump to any random node with probability $1/N$

$$P'' = \alpha \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix} + (1 - \alpha) \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}$$
Why teleportation?

- Convergence of PageRank is guaranteed only if
 - The transition probability matrix P is irreducible, i.e., all transitions have a non-zero probability
 - In other words, if the graph (on which random surfing is taking place) is strongly connected

- To ensure convergence
 - To nodes with out-degree 0, add an outgoing edge to every node
 - Damp the walk by factor α, by adding a complete set of outgoing edges, with weight $(1-\alpha)/N$, to all nodes
Transition matrix for random surfer: Recap

- Derive transition matrix \(P \) of Markov chain from \(A \)
 - If a row of \(A \) has no 1’s, replace each element by \(1/N \)
 - For all other rows: divide each 1 by the number of 1’s in the row
 - Multiply the resulting matrix by \(\alpha \)
 - Add \((1-\alpha)/N \) to every entry of the resulting matrix
Given P, how to compute PageRank?

- Vector x (dimension N): probability distribution of surfer’s position at any time
 - At $t = 0$: one entry in x is 1, rest are 0
 - At $t = 1$: xP
 - At $t = 2$: $(xP)P = xP^2$
 - ...

- Steady-state $x = \Pi$ gives the PageRank scores
 - At steady-state: $\Pi P = \Pi$
 - In other words, at steady state: $\Pi P = 1.\Pi$
Given P, how to compute PageRank?

- Vector x (dimension N): probability distribution of surfer’s position at any time
 - At $t = 0$: one entry in x is 1, rest are 0
 - At $t = 1$: xP
 - At $t = 2$: $(xP)P = xP^2$
 - ...

- Steady-state $x = \Pi$ gives the PageRank scores

- PageRank scores obtained as the principal left eigenvector of P (corresponding to eigenvalue 1)
PageRank computation

• Need to compute principal left eigenvector of a stochastic matrix

• Several numerical methods, e.g., power iteration

• Difficult to compute for matrices of the size of the Web graph; iterative method (already discussed) can be more efficient
Theoretical basis of PageRank: Recap

- Random surfer model
 - Start at a node, execute a random walk on Web graph
 - At each step, proceed from current node u to a randomly chosen node that u links to
 - **Teleport**: jump to any random node with probability $1/N$
 - At a node with no outgoing links, teleport
 - At a node that has outgoing links
 - Follow standard random walk with probability α where $0 < \alpha < 1$
 - Teleport with probability $(1-\alpha)$
- Nodes visited more frequently in this random walk are web-pages with higher PR
PageRank computation: Recap

/* initialization */
for all nodes u in G: \(d(u) \leftarrow 1/N \), where \(N = \#\text{nodes} \)
for all nodes u in G: \(PR(u) \leftarrow d(u) \)

/* iteration */
do until PR vector converges
 for all nodes u in G
 for all nodes v that links to u
 \(t = \sum PR(v) / \text{out-degree}(v) \)
 \(PR(u) \leftarrow \alpha \times t + (1 - \alpha) \times d(u) \)
 normalize scores
 check for convergence
end
Practical challenges

• All links \(u \rightarrow v \) do not signify a vote for \(v \)
 • E.g., links to a copyright page from all pages in a website

• Attempts to spam PageRank: link spam farms or link farms
 • A target page (whose PR the spammer wants to boost)
 • A number of boosting pages, which link to the target page, link to each other and also to external pages
• Hijacked links – links accumulated from pages outside the link farm
Example link farm

Figure 2: A web of good (white) and bad (black) nodes.
VARIATIONS OF PAGERANK
PageRank computation

/* initialization */
for all nodes u in G: $d(u) \leftarrow 1/N$, where $N = \#\text{nodes}$
for all nodes u in G: $PR(u) \leftarrow d(u)$

/* iteration */
do until PR vector converges
 for all nodes u in G
 for all nodes v that links to u
 $t = \sum PR(v) / \text{out-degree}(v)$
 $PR(u) \leftarrow \alpha \times t + (1 - \alpha) \times d(u)$
 normalize scores
 check for convergence
 end
end
Biased PageRank

• Instead of using the uniform vector $d(u) \leftarrow 1/N$ for all nodes u, use a non-uniform preference vector:

\[
d(u) = \frac{1}{|S|}, \text{ for all } u \in S
\]

\[
= 0 \text{ otherwise}
\]

• Implication for random surfer:
 • With probability α, follow standard random walk
 • With probability $(1-\alpha)$, teleport to a node in S, where the particular node in S is chosen randomly
Biased PageRank

• Instead of using the uniform vector $d(u) \leftarrow 1/N$ for all nodes u, use a non-uniform preference vector:

$$d(u) = \frac{1}{|S|}, \text{ for all } u \in S$$

$$= 0 \text{ otherwise}$$

• Implication for random surfer:
 • With probability α, follow standard random walk
 • With probability $(1-\alpha)$, teleport to a node in S, where the particular node in S is chosen randomly

• Bias the ranks towards nodes that are closer to nodes with a larger value in the preference vector
Topic-sensitive PageRank [Haveliwala, WWW 2002]

- Webpages are classified into various topics (16 Open Directory Project high-level categories)
- Computes PageRank for a particular topic of interest

- For category c_j
 - T_j is the set of websites for category c_j
 - Modified teleportation function

\[
 v_{ji} = \begin{cases}
 \frac{1}{|T_j|} & i \in T_j, \\
 0 & i \notin T_j.
 \end{cases}
\]
TrustRank [Gyongyi, VLDB 2004]

- Aims to rank trusted pages higher, and push untrusted pages down in the rankings

- Assumes
 - A way of knowing trusted nodes: oracle
 - Trusted (good) nodes will only link to other good nodes but this assumption is violated in the real Web
 - Bad nodes will link to other bad nodes and good nodes

- Run PageRank by biasing the preference vector towards a set of trusted nodes
TrustRank vs. PageRank

Figure 10: Bad sites in PageRank and TrustRank buckets.