
Network Centrality
Part 2

Mainack Mondal

CS 60017
Autumn 2021

Where gjk = number of geodesics (shortest paths) connecting jk
gjk (i) = the number of these geodesics that actor i is on.

Can be normalized by:

number of pairs of vertices
excluding the vertex itself

Recap: Betweenness centrality

Calculate Betweenness centrality
• Non-normalized

1 5

2

3

4

?

Calculate Betweenness centrality
• Non-normalized

1 5

2

3

4

?

1, 3 --> 0
1, 4 --> 0
1, 5 --> 1/3
3, 4 --> 0
3, 5 --> 0
4, 5 --> 0

Total = 1/3
Normalized = 1/3 x 1/(4C2) = 1/18

CENTRALITY IN LARGE DIRECTED
GRAPHS (WEB GRAPH)

Requirements for Web search
• Results of Web search need to consider

• Relevance to query

• Importance / authoritativeness

• Location / time of query

• Recency of page

• … and many others

• Initial days of the Web: only relevance to query was used to
rank webpages

• Ranking algorithms easily spammed by manipulating the
text on spam webpages

Need to consider authoritativeness
• Importance / authoritativeness – centrality on the Web graph

(webpages are nodes, hyperlinks are directed edges)

• An edge from node p to node q denotes endorsement

– Node p endorses/recommends/confirms the
authority/centrality/importance of node q

– May not be always true (e.g., all pages on a website linking
to the Copyright page) but mostly true

– Use the graph of recommendations to assign an authority
value to every node

The Web as a Directed Graph

Hypothesis 1: A hyperlink between pages denotes a conferral
of authority (quality signal)

Hypothesis 2: The text in the anchor of the hyperlink on page
A describes the target page B

Page A
hyperlink Page BAnchor

Sec. 21.1

How to compute node centrality on
Web?
• First attempt: indegree of webpages used to rank pages

according to importance

• Easily gamed by spammers creating their own webpages

• Subsequent better algorithms: HITS and PageRank

HITS ALGORITHM

HITS algorithm

• Hyperlink-Induced Topic Search, by Jon Kleinberg

• Two types of important pages on the Web

• Authority: has authoritative content on a topic
• Hub: pages which link to many authoritative pages, e.g., a

directory or catalog
• A good hub is one which links to many good authorities
• A good authority node is one which is pointed to by many

good hubs

The hope

 AT&T
 Alice

 ITIM
Bob
 O2

Mobile telecom companies

Hubs
Authorities

Sec. 21.3

HITS

• HITS computes two scores for each page p
• Authority score: sum of hub scores of all pages which

point to p
• Hub score: sum of authority scores of all pages which p

points to

• Iterative algorithm

• The definitions of hubs and authorities are “circular” in
nature

• A series of iterations run, until the scores of all pages
converge

HITS run on a query-dependent sub-graph
• Meant to run on a (sub)set of pages that are relevant to a

given query

– Top N pages relevant to query retrieved based on content à called the
root set

– Add to the root set all pages that are linked from it or that links to it à
base set

– Sub-graph of all nodes in base set à focused sub-graph

Root
set

Base set

HITS run on a query-dependent sub-
graph

• Why is the root set not sufficient?

• Motivation of building base set

• A good authority page may not contain the query term
• Hubs describe authorities through the anchor text / text

surrounding hyperlinks

Visualization: hubs & authorities

hubs authorities

HITS Algorithm

Find focused sub-graph G of pages relevant to given query

for each page p in G:

p.auth ß 1, p.hub ß 1

do until convergence

for each page p in G

p.hub ß Σ r.auth for all pages r which p links to
p.auth ß Σ q.hub for all pages q which link to p

Normalize hub and auth scores for all pages

Check convergence of scores

Output pages with highest authority scores and hub scores

p

p

Normalization of scores

• Scores need to be normalized after each iteration

• Different normalization schemes proposed

• Normalize so that score vectors sum to 1

• Normalization factor F: square root of sum of squares of
current scores of all pages; divide score of each page by
F at the end of each iteration

Checking for convergence

• Various convergence criteria used

• Fixed number of iterations

• Iterate until scores do not change appreciably from one
iteration to the next (compute difference of score vectors
from previous and current iterations)

• Iterate until rankings of pages do not change

HITS Algorithm (again)

Find focused sub-graph G of pages relevant to given query

for each page p in G:

p.auth ß 1, p.hub ß 1

do until convergence

for each page p in G

p.hub ß Σ r.auth for all pages r which p links to
p.auth ß Σ q.hub for all pages q which link to p

Normalize hub and auth scores for all pages

Check convergence of scores

p

p

Matrix version of HITS

• Matrices / vectors

• A: adjacency matrix of web graph. (u, v)-th element is 1 if
page u links to page v

• h: vector of hub scores of all pages

• a: vector of authority scores of all pages

• In Matrix notation, each step of the algorithm becomes

• h ß A x a

• a ß AT x h

• Normalize h and a

Convergence of HITS

• HITS will converge (h/a in iteration t = h/a in iteration (t + 1))
Recall:

h ß A x a
a ß AT x h

• Thus at stationary state:

c’ . h = A x AT x h
c’’ . a = AT x A x a

c’ and c’’ are normalizations
in the algorithm

Convergence of HITS

• HITS will converge (h/a in iteration t = h/a in iteration (t + 1))
Recall:

h ß A x a
a ß AT x h

• Thus at stationary state:

c’ . h = A x AT x h
c’’ . a = AT x A x a

c’ and c’’ are normalizations
in the algorithm

In stationary state / convergence authority/hub scores are
eigenvectors of ATA and AAT with largest eigenvalue

HITS – summary

• HITS is guaranteed to converge

• Reasonably efficient for large Web-scale graphs, since
updates involve local operations only

• Still, not very popularly used. Why?

HITS – summary

• HITS is guaranteed to converge

• Reasonably efficient for large Web-scale graphs, since
updates involve local operations only

• Still, not very popularly used. Why?

• Easy for a spam page to obtain high hub score (just by
following many authorities)

• Hubs often transit to authorities
• Search engines themselves become hubs

PAGERANK ALGORITHM

PageRank
• By Larry Page and Sergey Brin

• Problem in measuring importance by indegree
• Not all in-links are same
• How important are those pages which link to page p?

• PageRank of a page
• A measure of the ‘authority value’ of the page
• Independent of query
• One of many factors used by Google to rank pages

Idea of PageRank
• Good authorities should be pointed to by other good

authorities

– PRv of page (node) v is a function of the sum of PRs of all
those pages which point to v

• Each node u distributes its authority value equally among all
those nodes to which u points

– If page u links to 4 pages, u contributes PRu /4 to the PR
of each of those 4 pages

Equations for PR (here wv ~ PRv)

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

Iterative algorithm used to solve
such a system of equations
(multiple iterations until
convergence)

PageRank computation
/* initialization */

for all nodes u in G: d(u) ß 1/N, where N = #nodes

for all nodes u in G: PR(u) ß d(u)
/* iteration */

do until PR vector converges

for all nodes u in G

for all nodes v that links to u
t = Σ PR(v) / out-degree(v)

PR(u) ß α * t + (1 – α) * d(u)
normalize scores

check for convergence

end

//α to be explained later

Theoretical basis of PageRank
• Random walks on a graph

• Start from a node chosen uniformly at random with prob
!
"

• Move to the node

• From the node your are in, pick one of the outgoing links
uniformly at random

• Move to the destination node of the chosen link

• Repeat

• The “Random surfer model”
• Users wander on the web, following hyperlinks
• Nodes visited most frequently in this random walk are web-

pages with higher PR

Example

• Step 0

Example

• Step 0

Example

• Step 1

Example

• Step 1

Example

• Step 2

Example

• Step 2

Example

• Step 3

Example

• Step 3

Example

• Step 4…

Equations for Random Walk

The equations are the same as those for the
PageRank computation

Equations for PR (again)

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

Iterative algorithm used to solve
such a system of equations
(multiple iterations until
convergence)

Theoretical basis of PageRank

• The random walk defines a Markov chain

• A discrete time stochastic process following Markov property
(next state depends only on current state)

• N states corresponding to the N nodes; chain is at one of the
states at any given time-step

• N x N transition probability matrix P : Pij is the probability that
state at next time-step is j, given current state is i

•

An example

An example

• P is a stochastic matrix

• Every element is in [0, 1]
• Sum of every row is 1
• Largest eigenvalue is 1
• Has a principal left eigenvector corresponding to its

largest eigenvalue

Another example

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

0210021
00313131
00010
10000
0021210

P

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

01001
00111
00010
10000
00110

A

Transition matrix for random surfer

• How to derive the transition matrix for the random surfer on
the Web graph?

• Adjacency matrix of Web graph

• Aij = 1 if there is a hyperlink from page i to page j
• Aij = 0 otherwise

• Derive transition matrix P of Markov chain from A

Some practical challenges

• Web graph (or any graph) can have

• Dead-ends or sink nodes – nodes with no out-edges

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

0210021
00313131
00010
00000
0021210

P

Some practical challenges

• Web graph (or any graph) can have

• Loops

Transition matrix for random surfer

• Derive transition matrix P of Markov chain from A
• If a row of A has no 1’s, replace each element by 1/N
• For all other rows: divide each 1 by the number of 1’s in

the row

• Multiply the resulting matrix by α
• Add (1-α)/N to every entry of the resulting matrix

Dealing with sink nodes

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

0210021
00313131
00010
00000
0021210

P

Dealing with sink nodes

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

0210021
00313131
00010
5151515151
0021210

P'

As if synthetic edges are inserted from the sink node to every
other node in the graph

Dealing with loops
• As if synthetic edges are inserted to enable jump from any node

to any other node in the graph

• Teleportation: jump to any random node with probability 1/N

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-+

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

5151515151
5151515151
5151515151
5151515151
5151515151

2100021
00313131
00010
5151515151
0021210

'P')1(aa

Why teleportation?

• Convergence of PageRank is guaranteed only if

• The transition probability matrix P is irreducible, i.e., all
transitions have a non-zero probability

• In other words, if the graph (on which random surfing is
taking place) is strongly connected

• To ensure convergence

• To nodes with out-degree 0, add an outgoing edge to
every node

• Damp the walk by factor α, by adding a complete set of
outgoing edges, with weight (1-α)/N, to all nodes

Transition matrix for random surfer: Recap

• Derive transition matrix P of Markov chain from A
• If a row of A has no 1’s, replace each element by 1/N
• For all other rows: divide each 1 by the number of 1’s in

the row

• Multiply the resulting matrix by α
• Add (1-α)/N to every entry of the resulting matrix

Given P, how to compute
PageRank?
• Vector x (dimension N): probability distribution of surfer’s

position at any time

• At t = 0: one entry in x is 1, rest are 0

• At t = 1: xP

• At t = 2: (xP)P = xP2

• …

• Steady-state x = П gives the PageRank scores

• At steady-state: ПP = П
• In other words, at steady state: ПP = 1.П

Given P, how to compute PageRank?
• Vector x (dimension N): probability distribution of surfer’s

position at any time

– At t = 0: one entry in x is 1, rest are 0

– At t = 1: xP

– At t = 2: (xP)P = xP2

– …

• Steady-state x = П gives the PageRank scores

• PageRank scores obtained as the principal left eigenvector of
P (corresponding to eigenvalue 1)

PageRank computation

• Need to compute principal left eigenvector of a stochastic
matrix

• Several numerical methods, e.g., power iteration

• Difficult to compute for matrices of the size of the Web graph;
iterative method (already discussed) can be more efficient

Theoretical basis of PageRank: Recap

• Random surfer model

• Start at a node, execute a random walk on Web graph

• At each step, proceed from current node u to a randomly
chosen node that u links to

• Teleport: jump to any random node with probability 1/N

• At a node with no outgoing links, teleport

• At a node that has outgoing links

• Follow standard random walk with probability α where 0<α<1

• Teleport with probability (1-α)

• Nodes visited more frequently in this random walk are web-
pages with higher PR

PageRank computation: Recap
/* initialization */

for all nodes u in G: d(u) ß 1/N, where N = #nodes

for all nodes u in G: PR(u) ß d(u)
/* iteration */

do until PR vector converges

for all nodes u in G

for all nodes v that links to u
t = Σ PR(v) / out-degree(v)

PR(u) ß α * t + (1 – α) * d(u)
normalize scores

check for convergence

end

Practical challenges
• All links uà v do not signify a vote for v

• E.g., links to a copyright page from all pages in a website

• Attempts to spam PageRank: link spam farms or link farms

• A target page (whose PR the spammer wants to boost)
• A number of boosting pages, which link to the target

page, link to each other and also to external pages
• Hijacked links – links accumulated from pages outside the

link farm

Example link farm

VARIATIONS OF PAGERANK

PageRank computation
/* initialization */

for all nodes u in G: d(u) ß 1/N, where N = #nodes

for all nodes u in G: PR(u) ß d(u)
/* iteration */

do until PR vector converges

for all nodes u in G

for all nodes v that links to u
t = Σ PR(v) / out-degree(v)

PR(u) ß α * t + (1 – α) * d(u)
normalize scores

check for convergence

end

Biased PageRank
• Instead of using the uniform vector d(u) ß 1/N for all nodes

u, use a non-uniform preference vector:

d(u) = 1 / |S|, for all u ε S

= 0 otherwise

• Implication for random surfer:

• With probability α, follow standard random walk

• With probability (1-α), teleport to a node in S, where the
particular node in S is chosen randomly

Biased PageRank
• Instead of using the uniform vector d(u) ß 1/N for all nodes

u, use a non-uniform preference vector:

d(u) = 1 / |S|, for all u ε S

= 0 otherwise

• Implication for random surfer:

• With probability α, follow standard random walk

• With probability (1-α), teleport to a node in S, where the
particular node in S is chosen randomly

• Bias the ranks towards nodes that are closer to nodes with a
larger value in the preference vector

Topic-sensitive PageRank [Haveliwala, WWW 2002]

• Webpages are classified into various topics (16 Open
Directory Project high-level categories)

• Computes PageRank for a particular topic of interest

• For category cj
– Tj is the set of websites for category cj
– Modified teleportation function

TrustRank [Gyongyi, VLDB 2004]

• Aims to rank trusted pages higher, and push untrusted pages
down in the rankings

• Assumes

• A way of knowing trusted nodes: oracle

• Trusted (good) nodes will only link to other good nodes
but this assumption is violated in the real Web

• Bad nodes will link to other bad nodes and good nodes

• Run PageRank by biasing the preference vector towards a
set of trusted nodes

TrustRank vs. PageRank

