Network Centrality Part 1

Mainack Mondal

CS 60017 Autumn 2021

Node centrality

• Relative importance of a node in a network

- Importance varies according to application
 - How influential a person is within a social network
 - How important a webpage is in the Web
 - Which persons to vaccinate when a disease is spreading

• There is an analogous concept of edge centrality, but we will focus on node centrality

Node centrality measures

- Many proposed centrality measures
 - Network structure based
 - Activity based (e.g., number of times a user is mentioned on Twitter or Facebook)
 - Temporal (e.g., Test-of-Time awards to research papers)
 - Hybrid
 - ... and more
- We will focus on the first two types of measures

Degree centrality

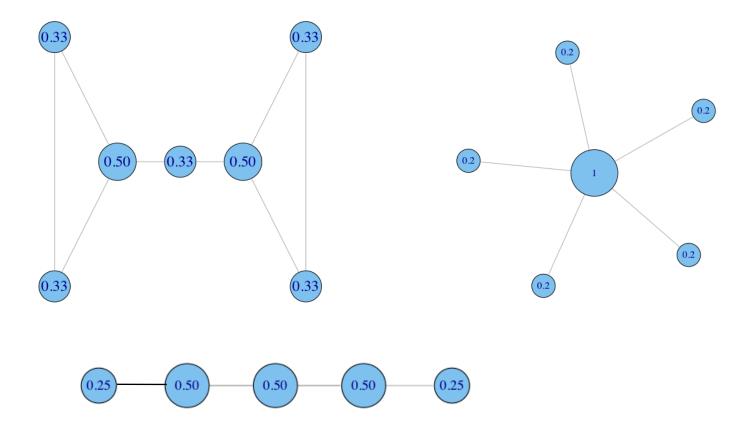
- Simply, centrality measured by degree of a node
 - A node of higher degree is more important

- Undirected graphs
 - Number of friends of a user in Facebook
 - Important stations in railway networks

- Directed graphs: usually indegree of node
 - Number of pages linking to a given page in the Web
 - Number of followers of a user in Twitter

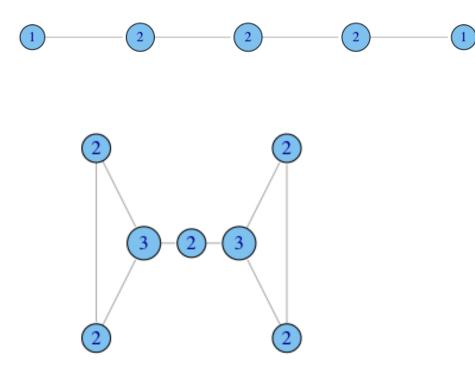
Normalized degree centrality

divide degree by the max. possible, i.e. (N-1)



When degree isn't everything

In what ways does degree fail to capture centrality in the following graphs?



• Ability to broker between groups

 Likelihood that information originating anywhere in the network reaches you...

Closeness centrality

- Intuition
 - Farness of node s : sum of its shortest distances to all other nodes
 - Closeness of node s : inverse of farness

Closeness centrality

Closeness is based on the length of the average shortest path between a vertex and all vertices in the graph

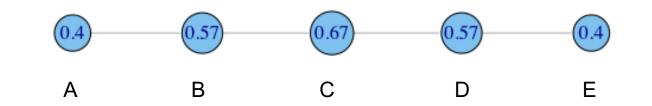
Closeness Centrality:

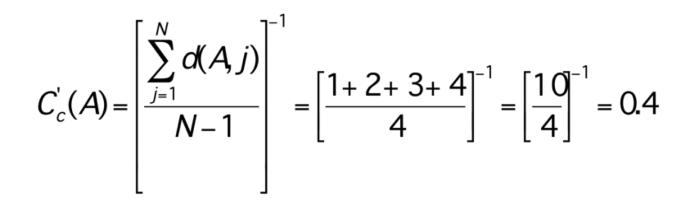
$$C_{c}(i) = \frac{1}{\sum_{\{j=1\}}^{N} d(i,j)}$$

Normalized Closeness Centrality

$$C'_{c}(i) = \frac{(N-1)}{\sum_{\{j=1\}}^{N} d(i,j)} = \left[\frac{\sum_{\{j=1\}}^{N} d(i,j)}{N-1}\right]^{-1}$$

Closeness centrality: toy example





Closeness centrality

• Higher the closeness centrality of *s*, the lower is its total distance to all other nodes

- Applications
 - Where to set up a hospital in a town?
 - How fast can information spread from s to all other nodes?

Betweenness centrality

- Intuition
 - How many pairs of individuals would have to go through you in order to reach one another in the minimum number of hops?
- Betweenness of node s:
 - For each pair of vertices (u, v), find the shortest paths between them (u or v is not s itself)
 - Compute the fraction of these shortest paths which pass through node s
 - Sum this fraction for all pairs of nodes (u, v)

Betweenness centrality: definition $C_B(i) = \sum_{j < k} g_{jk}(i) / g_{jk}$

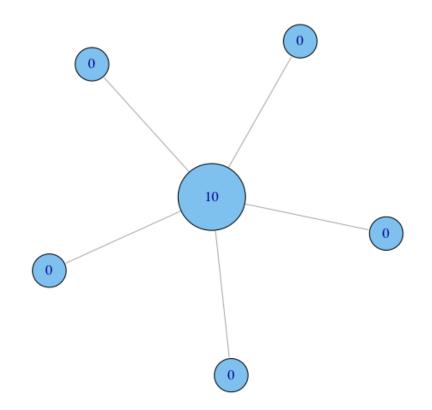
Where g_{jk} = the number of geodesics connecting *jk*, and g_{jk} (i) = the number of these geodesics that actor *i* is on.

Can be normalized by:

$$C'_B(i) = C_B(i) / [(n-1)(n-2)/2]$$
number of pairs of vertices excluding the vertex itself

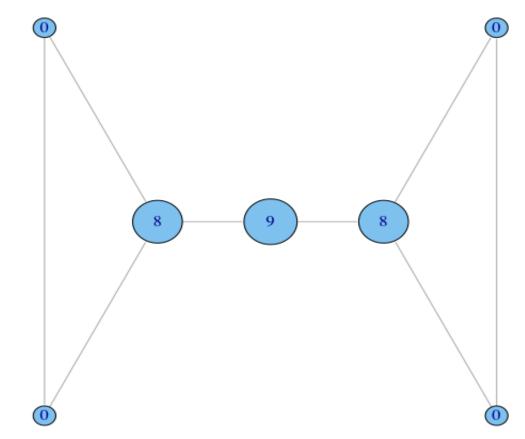
Betweenness on toy networks

• non-normalized version:

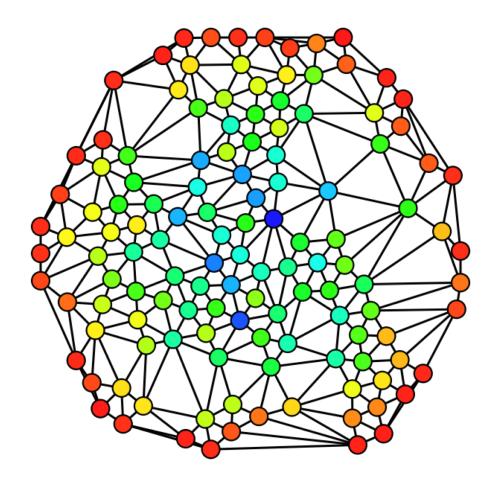


Betweenness on toy networks

• non-normalized version:



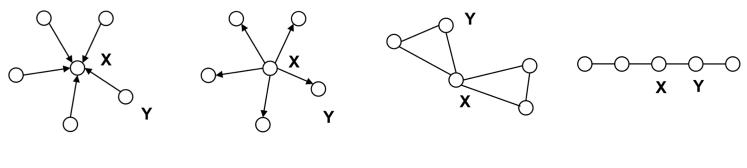
Example of betweenness centrality



Betweenness centrality coded by color

Red: 0 betweenness Blue: maximum betweenness

Centrality measures - visual comparison



indegree

outdegree

betweenness

closeness

In each of the following networks, X has higher centrality than Y according to a particular measure