Methods to measure usability of secure/private systems (contd.)

Mainack Mondal

CS 60081 Autumn 2020

Avoid order bias

- Ordering of questions change responses
 - Online survey: people pick top choice
 - On phone: they pick last choice

• Randomize questions and answers

Demographic questions and stereotyping

- Don't randomize the order in which demographic questions appear
 - Question affect the answer to later questions
 - Finding: Asking women and minorities about their demographics make them perform worse in maths

• Rule of thumb: Ask demographes questions at the end

Length/compensation for the survey

- Longer survey -> worse response
 - 20 minutes is a good rule of thumb
 - Think: How hard are the questions
 - Do piloting

Grounding your survey (data/interface/situation)

- Ask "How do you comfortable with privacy settings of your Facebook posts"
 - Most common answer "Its ok"

- Ask "Do you want to change the privacy settings of post X"
 - Answer will be a better reflection

6. Survey and question creation Questions to ask Biases to avoid Pre-testing / piloting

Pre-test your questions

- Automated tools
 - QUAID: http://quaid.cohmetrix.com/

Pre-test your questions

How To Use The Tool Unfamiliar Technical

Term

Vague or Imprecise

Relative Term

Vague or Ambiguous

Noun-phrase

Complex Syntax

Working Memory

Overload

Home

Do you update your software?	
Context:	
Enter context here	
Answer:	

software The following term may be unfamiliar to some

respondents: update, software, in sentence 1 in the Question.

1. Unfamiliar technical terms: update,

Submit

Pre-test your questions

- Automated tools
 - QUAID: http://quaid.cohmetrix.com/
- Cognitive interviews
 - Have respondents think aloud as they answer questions
 - Prompt them on terms that they may struggle with
- Expert review
- Piloting
 - Run a small sample of the survey
 - just because you get answers you like might not mean they are accurate

More on pilots

- Check wording
- Encourage pilot participants to tell you when there is ambiguity or uncertainty
- Verify that you're getting the measurements you thought and that your software works
- Have people talk through even protocols that will be conducted remotely

- 1. Define your research question
- 2. Identify your variables
- 3. Pick one/multiple study methods
- 4. Run your study
- 5. Evaluate the outcome

Logistics for a study

- How many participants?
 - Statistical power
 - Time, budget, participants' time
- What kind of participants?
 - Skills, background, interests
 - Their motivations
 - Often not a representative sample

Validity

- Internally valid: To what degree are we confident that X causes Y
- Externally valid: To what degree can we generalize about our results
 - What biases does our sample introduce?
- Ecological validity: Does it mirror real-life conditions and context?
- Balancing all of these is hard!

There might be factors you are not considering which are the primary explanatory variable for your observations

Confounds / biases

Potential confounds (1)

- Measurement accuracy / resolution
- Differences caused by different experimental platforms and conditions
- Time of day for recruiting matters
- Failing to account for study dropout or nonparticipation (very subtle!)

Potential confounds (2)

- Learning effect
 - Randomize order of tasks
 - Consider learning effect as a covariate
- Different instructions for different participants
- Biases of recruitment / representativeness
- Self-report biases
 - Don't ask people to rate expertise

Potential confounds (3)

- Different demographics in conditions
- Placebo effect
 - Why you need a control condition
- Hawthorne effect (changing behavior in response to being observed)
- Chilling effect
 - Fear of repurcassion
- Participants try to please experimenter
 - I like yours better!
 - Minimize knowledge of what's being tested

How to conduct the study?

- Deploy a study remotely (online), e.g., taking an online survey
- Ask participants to come to your lab
- Ask them to let you into their context
- Observe people (take their consent, if not possible, consider necessity of design)

How to recruit participants

- Recruitment mechanism
 - Craigslist, participant pools, representative sample, Mturk, Prolific
- How to compensate?
 - Too little vs. too much
- How to get informed consent?
- How to handle their data ethically?

How to recruit participants

- Recruitment mechanism
 - Craigslist, participant pools, representative sample, Mturk, Prolific
- How to compensate?
 - Too little vs. too much
- How to get informed consent?
- How to handle their data ethically?

Overall considerations for running a survey

- How do we distribute it?
- How long should it be?
- One-time survey? Longitudinal survey?
- Will you use personalized data?
- What will participants learn?
 - What can we randomize to minimize this?
- Can we randomize the answer choices?

Cover all answer choices

- With whom do you regularly share posts on social media?
 - Family
 - Friends
- Allow multiple answers?
- Include "other" option?

- I connect to Facebook using https: Yes No
 - What about I don't know?

Should we force an answer?

• What gender are you? (* required) \bigcirc Female \bigcirc Male

What gender are you?
 Female Male I prefer not to answer

With what gender do you identify?
 Female Male Male Non-binary I prefer to self describe I prefer not to answer

What demographics should we collect?

- Tech expertise, age, domain knowledge, gender, location, employment, etc.
- Don't ask people to self-rate expertise
 - Ask questions with concrete answers
 - e.g., Have you earned a degree in, or held a job in, computer science, IT, or...
 - Include a knowledge test if you want to know about expertise

- 1. Define your research question
- 2. Identify your variables
- 3. Pick one/multiple study methods
- 4. Run your study
- 5. Evaluate the outcome