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10.2

Data can be corrupted 
during transmission.

Some applications require that 
errors be detected and corrected.

Note



10.3

10-1   INTRODUCTION10-1   INTRODUCTION

Let us first discuss some issues related, directly or Let us first discuss some issues related, directly or 
indirectly, to error detection and correction.indirectly, to error detection and correction.

Types of Errors
Redundancy
Detection Versus Correction
Forward Error Correction Versus Retransmission
Coding
Modular Arithmetic

Topics discussed in this section:Topics discussed in this section:
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In a single-bit error, only 1 bit in the data 
unit has changed.

Note
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Figure 10.1  Single-bit error
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A burst error means that 2 or more bits 
in the data unit have changed.

Note
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Figure 10.2  Burst error of length 8
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To detect or correct errors, we need to 
send extra (redundant) bits with data.

Note
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Figure 10.3  The structure of encoder and decoder
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In this book, we concentrate on block 
codes; we leave convolution codes 

to advanced texts.

Note
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In modulo-N arithmetic, we use only the 
integers in the range 0 to N −1, 

inclusive.

Note
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Figure 10.4  XORing of two single bits or two words
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10-2   BLOCK CODING10-2   BLOCK CODING

In block coding, we divide our message into blocks, In block coding, we divide our message into blocks, 
each of k bits, called each of k bits, called datawordsdatawords. We add r redundant . We add r redundant 
bits to each block to make the length n = k + r. The bits to each block to make the length n = k + r. The 
resulting n-bit blocks are called resulting n-bit blocks are called codewordscodewords..

Error Detection
Error Correction
Hamming Distance
Minimum Hamming Distance

Topics discussed in this section:Topics discussed in this section:
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Figure 10.5  Datawords and codewords in block coding
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The 4B/5B block coding discussed in Chapter 4 is a good 
example of this type of coding. In this coding scheme, 
k = 4 and n = 5. As we saw, we have 2k = 16 datawords 
and 2n = 32 codewords. We saw that 16 out of 32 
codewords are used for message transfer and the rest are 
either used for other purposes or unused.

Example 10.1
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Figure 10.6  Process of error detection in block coding
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Let us assume that k = 2 and n = 3. Table 10.1 shows the 
list of datawords and codewords. Later, we will see 
how to derive a codeword from a dataword. 

Assume the sender encodes the dataword 01 as 011 and
sends it to the receiver. Consider the following cases:

1. The receiver receives 011. It is a valid codeword. The   
receiver extracts the dataword 01 from it.

Example 10.2
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2. The codeword is corrupted during transmission, and
     111 is received. This is not a valid codeword and is
     discarded.

3. The codeword is corrupted during transmission, and
     000 is received. This is a valid codeword. The receiver
     incorrectly extracts the dataword 00. Two corrupted
     bits have made the error undetectable.

Example 10.2 (continued)
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Table 10.1  A code for error detection (Example 10.2)
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An error-detecting code can detect 
only the types of errors for which it is 
designed; other types of errors may 

remain undetected.

Note
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Figure 10.7  Structure of encoder and decoder in error correction
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Let us add more redundant bits to Example 10.2 to see if 
the receiver can correct an error without knowing what 
was actually sent. We add 3 redundant bits to the 2-bit 
dataword to make 5-bit codewords. Table 10.2 shows the 
datawords and codewords. Assume the dataword is 01. 
The sender creates the codeword 01011. The codeword is 
corrupted during transmission, and 01001 is received. 
First, the receiver finds that the received codeword is not 
in the table. This means an error has occurred. The 
receiver, assuming that there is only 1 bit corrupted, uses 
the following strategy to guess the correct dataword.

Example 10.3
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1. Comparing the received codeword with the first 
codeword in the table (01001 versus 00000), the 
receiver decides that the first codeword is not the one 
that was sent because there are two different bits.

2. By the same reasoning, the original codeword cannot 
be the third or fourth one in the table.

3. The original codeword must be the second one in the 
table because this is the only one that differs from the 
received codeword by 1 bit. The receiver replaces 
01001 with 01011 and consults the table to find the 
dataword  01.

Example 10.3 (continued)
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Table 10.2  A code for error correction (Example 10.3)
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The Hamming distance between two 
words is the number of differences 

between corresponding bits.

Note
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Let us find the Hamming distance between two pairs of 
words.

1. The Hamming distance d(000, 011) is 2 because 
    

Example 10.4

2. The Hamming distance d(10101, 11110) is 3 because
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The minimum Hamming distance is the 
smallest Hamming distance between
 all possible pairs in a set of words.

Note
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Find the minimum Hamming distance of the coding 
scheme in Table 10.1.

Solution
We first find all Hamming distances.

Example 10.5

The dmin in this case is 2.
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Find the minimum Hamming distance of the coding 
scheme in Table 10.2.

Solution
We first find all the Hamming distances.

The dmin in this case is 3.

Example 10.6
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To guarantee the detection of up to s 
errors in all cases, the minimum

Hamming distance in a block 
code must be dmin = s + 1.

Note
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The minimum Hamming distance for our first code 
scheme (Table 10.1) is 2. This code guarantees detection 
of only a single error. For example, if the third codeword 
(101) is sent and one error occurs, the received codeword 
does not match any valid codeword. If two errors occur, 
however, the received codeword may match a valid 
codeword and the errors are not detected.

Example 10.7
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Our second block code scheme (Table 10.2) has dmin = 3. 
This code can detect up to two errors. Again, we see that 
when any of the valid codewords is sent, two errors create 
a codeword which is not in the table of valid codewords. 
The receiver cannot be fooled. 

However, some combinations of three errors change a 
valid codeword to another valid codeword. The receiver 
accepts the received codeword and the errors are 
undetected.

Example 10.8
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Figure 10.8  Geometric concept for finding dmin in error detection
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Figure 10.9  Geometric concept for finding dmin in error correction
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To guarantee correction of up to t errors 
in all cases, the minimum Hamming 

distance in a block code 
must be dmin = 2t + 1.

Note
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A code scheme has a Hamming distance dmin = 4. What is 
the error detection and correction capability of this 
scheme?

Solution
This code guarantees the detection of up to three errors
(s = 3), but it can correct up to one error. In other words, 
if this code is used for error correction, part of its capability 
is wasted. Error correction codes need to have an odd 
minimum distance (3, 5, 7, . . . ). 

Example 10.9
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10-3   LINEAR BLOCK CODES10-3   LINEAR BLOCK CODES

Almost all block codes used today belong to a subset Almost all block codes used today belong to a subset 
called called linear block codeslinear block codes. A linear block code is a code . A linear block code is a code 
in which the exclusive OR (addition modulo-2) of two in which the exclusive OR (addition modulo-2) of two 
valid codewords creates another valid codeword.valid codewords creates another valid codeword.

Minimum Distance for Linear Block Codes
Some Linear Block Codes

Topics discussed in this section:Topics discussed in this section:
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In a linear block code, the exclusive OR 
(XOR) of any two valid codewords 
creates another valid codeword.

Note
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Let us see if the two codes we defined in Table 10.1 and 
Table 10.2 belong to the class of linear block codes.

1. The scheme in Table 10.1 is a linear block code
     because the result of XORing any codeword with any
     other codeword is a valid codeword. For example, the
     XORing of the second and third codewords creates the
     fourth one.

2. The scheme in Table 10.2 is also a linear block code.
     We can create all four codewords by XORing two
     other codewords.

Example 10.10
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In our first code (Table 10.1), the numbers of 1s in the 
nonzero codewords are 2, 2, and 2. So the minimum 
Hamming distance is dmin = 2. In our second code (Table 
10.2), the numbers of 1s in the nonzero codewords are 3, 
3, and 4. So in this code we have dmin = 3.

Example 10.11
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A simple parity-check code is a 
single-bit error-detecting 

code in which 
n = k + 1 with dmin = 2.

Note
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Table 10.3  Simple parity-check code C(5, 4)
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Figure 10.10  Encoder and decoder for simple parity-check code
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Let us look at some transmission scenarios. Assume the 
sender sends the dataword 1011. The codeword created 
from this dataword is 10111, which is sent to the receiver. 
We examine five cases:

1.  No error occurs; the received codeword is 10111. The
      syndrome is 0. The dataword 1011 is created.
2.  One single-bit error changes a1 . The received
     codeword is 10011. The syndrome is 1. No dataword
     is created.
3. One single-bit error changes r0 . The received codeword
     is 10110. The syndrome is 1. No dataword is created. 

Example 10.12
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4. An error changes r0 and a second error changes a3 .
    The received codeword is 00110. The syndrome is 0.
    The dataword 0011 is created at the receiver. Note that
    here the dataword is  wrongly created due to the
    syndrome value. 
5. Three bits—a3, a2, and a1—are changed by errors.
    The received codeword is 01011. The syndrome is 1.
    The dataword is not created. This shows that the simple
    parity check, guaranteed to detect one single error, can
    also find any odd number of errors.

Example 10.12  (continued)
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A simple parity-check code can detect 
an odd number of errors.

Note
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All Hamming codes discussed in this 
book have dmin = 3.

The relationship between m and n in 
these codes is n = 2m − 1.

Note
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Figure 10.11  Two-dimensional parity-check code
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Figure 10.11  Two-dimensional parity-check code
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Figure 10.11  Two-dimensional parity-check code
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Table 10.4  Hamming code C(7, 4)
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Figure 10.12  The structure of the encoder and decoder for a Hamming code
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Table 10.5  Logical decision made by the correction logic analyzer
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Let us trace the path of three datawords from the sender 
to the destination:
1. The dataword 0100 becomes the codeword 0100011.
     The codeword 0100011 is received. The syndrome is
     000, the final dataword is 0100.
2. The dataword 0111 becomes the codeword 0111001.
    The syndrome is 011. After  flipping b2 (changing the 1
     to 0), the final dataword is 0111.
3. The dataword 1101 becomes the codeword 1101000.
    The syndrome is 101. After flipping b0, we get 0000,
    the wrong dataword. This shows that our code cannot
    correct two errors.

Example 10.13
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We need a dataword of at least 7 bits. Calculate values of 
k and n that satisfy this requirement.

Solution
We need to make k = n − m greater than or equal to 7, or  
2m − 1 − m ≥ 7.
1. If we set m = 3, the result is n = 23 − 1 and k = 7 − 3,
    or 4, which is not acceptable.
2. If we set m = 4, then n = 24 − 1 = 15 and k = 15 − 4 =
    11, which satisfies the condition. So the code is

Example 10.14

C(15, 11) 
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Figure 10.13  Burst error correction using Hamming code
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10-4   CYCLIC CODES10-4   CYCLIC CODES

Cyclic codesCyclic codes are special linear block codes with one  are special linear block codes with one 
extra property. In a cyclic code, if a codeword is extra property. In a cyclic code, if a codeword is 
cyclically shifted (rotated), the result is another cyclically shifted (rotated), the result is another 
codeword.codeword.

Cyclic Redundancy Check
Hardware Implementation
Polynomials
Cyclic Code Analysis
Advantages of Cyclic Codes
Other Cyclic Codes

Topics discussed in this section:Topics discussed in this section:
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Table 10.6  A CRC code with C(7, 4)
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Figure 10.14  CRC encoder and decoder
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Figure 10.15  Division in CRC encoder
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Figure 10.16  Division in the CRC decoder for two cases
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Figure 10.17  Hardwired design of the divisor in CRC
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Figure 10.18  Simulation of division in CRC encoder
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Figure 10.19  The CRC encoder design using shift registers
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Figure 10.20  General design of encoder and decoder of a CRC code
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Figure 10.21   A polynomial to represent a binary word
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Figure 10.22  CRC division using polynomials
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The divisor in a cyclic code is normally 
called the generator polynomial

or simply the generator.

Note
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In a cyclic code,
If s(x) ≠ 0, one or more bits is corrupted.
If s(x) = 0, either

   a. No bit is corrupted. or
   b. Some bits are corrupted, but the
       decoder failed to detect them.

Note
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In a cyclic code, those e(x) errors that 
are divisible by g(x) are not caught.

Note
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If the generator has more than one term 
and the coefficient of x0 is 1, 

all single errors can be caught.

Note
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Which of the following g(x) values guarantees that a 
single-bit error is caught? For each case, what is the 
error that cannot be caught?
a.  x + 1       b. x3            c. 1

Solution
a. No xi can be divisible by x + 1. Any single-bit error can
    be caught.
b. If i is equal to or greater than 3, xi is divisible by g(x).
   All single-bit errors in positions 1 to 3 are caught.
c. All values of i make xi divisible by g(x). No single-bit
    error can be caught. This  g(x) is useless.

Example 10.15
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Figure 10.23  Representation of two isolated single-bit errors using polynomials
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If a generator cannot divide xt + 1 
(t between 0 and n – 1),

then all isolated double errors 
can be detected.

Note
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Find the status of the following generators related to two 
isolated, single-bit errors.
a. x + 1      b. x4 + 1      c. x7 + x6 + 1      d. x15 + x14 + 1

Solution
a. This is a very poor choice for a generator. Any two
    errors next to each other cannot be detected.
b. This generator cannot detect two errors that are four
     positions apart.
c. This is a good choice for this purpose.
d. This polynomial cannot divide xt + 1 if t is less than
     32,768. A codeword with two isolated errors up to
     32,768 bits apart can be detected by this generator.

Example 10.16
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A generator that contains a factor of 
x + 1 can detect all odd-numbered 

errors.

Note
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❏ All burst errors with L ≤ r will be
     detected.
❏ All burst errors with L = r + 1 will be
    detected with probability 1 – (1/2)r–1.
❏ All burst errors with L > r + 1 will be
     detected with probability 1 – (1/2)r.

Note
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Find the suitability of the following generators in relation 
to burst errors of different lengths.
a. x6 + 1         b. x18 + x7 + x + 1        c. x32 + x23 + x7 + 1

Solution
a. This generator can detect all burst errors with a length
    less than or equal to 6 bits; 3 out of 100 burst errors
    with length 7 will slip by; 16 out of 1000 burst errors of
    length 8 or more will slip by.

Example 10.17
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b. This generator can detect all burst errors with a length
    less than or equal to 18 bits; 8 out of 1 million burst
    errors with length 19 will slip by; 4 out of 1 million
    burst errors of length 20 or more will slip by.

c. This generator can detect all burst errors with a length
    less than or equal to 32 bits; 5 out of 10 billion burst
    errors with length 33 will slip by; 3 out of 10 billion
    burst errors of length 34 or more will slip by.

Example 10.17 (continued)
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A good polynomial generator needs to 
have the following characteristics:
1. It should have at least two terms.
2. The coefficient of the term x0 should
    be 1.
3. It should not divide xt + 1, for t
    between 2 and n − 1.
4. It should have the factor x + 1.

Note
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Table 10.7  Standard polynomials
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10-5   CHECKSUM10-5   CHECKSUM

The last error detection method we discuss here is The last error detection method we discuss here is 
called the checksum. The checksum is used in the called the checksum. The checksum is used in the 
Internet by several protocols although not at the data Internet by several protocols although not at the data 
link layer. However, we briefly discuss it here to link layer. However, we briefly discuss it here to 
complete our discussion on error checkingcomplete our discussion on error checking

Idea
One’s Complement
Internet Checksum

Topics discussed in this section:Topics discussed in this section:
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Suppose our data is a list of five 4-bit numbers that we 
want to send to a destination. In addition to sending these 
numbers, we send the sum of the numbers. For example, 
if the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12, 
0, 6, 36), where 36 is the sum of the original numbers. 
The receiver adds the five numbers and compares the 
result with the sum. If the two are the same, the receiver 
assumes no error, accepts the five numbers, and discards 
the sum. Otherwise, there is an error somewhere and the 
data are not accepted.

Example 10.18
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We can make the job of the receiver easier if we send the 
negative (complement) of the sum, called the checksum. 
In this case, we send (7, 11, 12, 0, 6, −36). The receiver 
can add all the numbers received (including the 
checksum). If the result is 0, it assumes no error; 
otherwise, there is an error.

Example 10.19
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How can we represent the number 21 in one’s 
complement arithmetic using only four bits?

Solution
The number 21 in binary is 10101 (it needs five bits). We 
can wrap the leftmost bit and add it to the four rightmost 
bits. We have (0101 + 1) = 0110 or 6.

Example 10.20



10.86

How can we represent the number −6 in one’s 
complement arithmetic using only four bits?

Solution
In one’s complement arithmetic, the negative or 
complement of a number is found by inverting all bits. 
Positive 6 is 0110; negative 6 is 1001. If we consider only 
unsigned numbers, this is 9. In other words, the 
complement of 6 is 9. Another way to find the complement 
of a number in one’s complement arithmetic is to subtract 
the number from 2n − 1 (16 − 1 in this case).

Example 10.21
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Let us redo Exercise 10.19 using one’s complement 
arithmetic. Figure 10.24 shows the process at the sender 
and at the receiver. The sender initializes the checksum 
to 0 and adds all data items and the checksum (the 
checksum is considered as one data item and is shown in 
color). The result is 36. However, 36 cannot be expressed 
in 4 bits. The extra two bits are wrapped and added with 
the sum to create the wrapped sum value 6. In the figure, 
we have shown the details in binary. The sum is then 
complemented, resulting in the checksum value 9 (15 − 6 
= 9). The sender now sends six data items to the receiver 
including the checksum 9. 

Example 10.22
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The receiver follows the same procedure as the sender. It 
adds all data items (including the checksum); the result 
is 45. The sum is wrapped and becomes 15. The wrapped 
sum is complemented and becomes 0. Since the value of 
the checksum is 0, this means that the data is not 
corrupted. The receiver drops the checksum and keeps 
the other data items. If the checksum is not zero, the 
entire packet is dropped.

Example 10.22 (continued)
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Figure 10.24  Example 10.22
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Sender site:
1. The message is divided into 16-bit words.
2. The value of the checksum word is set to 0.
3. All words including the checksum are
    added using one’s complement addition.
4. The sum is complemented and becomes the
     checksum.
5. The checksum is sent with the data.

Note
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Receiver site:
1. The message (including checksum) is
    divided into 16-bit words.
2. All words are added using one’s
    complement addition.
3. The sum is complemented and becomes the
    new checksum.
4. If the value of checksum is 0, the message
    is accepted; otherwise, it is rejected.

Note
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Let us calculate the checksum for a text of 8 characters 
(“Forouzan”). The text needs to be divided into 2-byte 
(16-bit) words. We use ASCII (see Appendix A) to change 
each byte to a 2-digit hexadecimal number. For example, 
F is represented as 0x46 and o is represented as 0x6F. 
Figure 10.25 shows how the checksum is calculated at the 
sender and receiver sites. In part a of the figure, the value 
of partial sum for the first column is 0x36. We keep the 
rightmost digit (6) and insert the leftmost digit (3) as the 
carry in the second column. The process is repeated for 
each column. Note that if there is any corruption, the 
checksum recalculated by the receiver is not all 0s. We 
leave this an exercise.

Example 10.23
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Figure 10.25  Example 10.23
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Chapter 11

Data Link Control

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
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11-1   FRAMING11-1   FRAMING

The data link layer needs to pack bits into The data link layer needs to pack bits into framesframes, so , so 
that each frame is distinguishable from another. Our that each frame is distinguishable from another. Our 
postal system practices a type of framing. The simple postal system practices a type of framing. The simple 
act of inserting a letter into an envelope separates one act of inserting a letter into an envelope separates one 
piece of information from another; the envelope serves piece of information from another; the envelope serves 
as the delimiter. as the delimiter. 

Fixed-Size Framing
Variable-Size Framing

Topics discussed in this section:Topics discussed in this section:
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Figure 11.1  A frame in a character-oriented protocol



11.4

Figure 11.2  Byte stuffing and unstuffing
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Byte stuffing is the process of adding 1 
extra byte whenever there is a flag or 

escape character in the text.

Note
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Figure 11.3  A frame in a bit-oriented protocol
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Bit stuffing is the process of adding one 
extra 0 whenever five consecutive 1s 

follow a 0 in the data, so that the 
receiver does not mistake

the pattern 0111110 for a flag.

Note
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Figure 11.4  Bit stuffing and unstuffing
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11-2   FLOW AND ERROR CONTROL11-2   FLOW AND ERROR CONTROL

The most important responsibilities of the data link The most important responsibilities of the data link 
layer are layer are flow controlflow control and  and error controlerror control. Collectively, . Collectively, 
these functions are known as these functions are known as data link controldata link control..

Flow Control
Error Control

Topics discussed in this section:Topics discussed in this section:
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Flow control refers to a set of procedures 
used to restrict  the amount of data

that the sender can send  before
waiting for acknowledgment.

Note



11.11

Error control in the data link layer is 
based on automatic repeat request, 
which is the retransmission of data.

Note
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11-3   PROTOCOLS11-3   PROTOCOLS

Now let us see how the data link layer can combine Now let us see how the data link layer can combine 
framing, flow control, and error control to achieve the framing, flow control, and error control to achieve the 
delivery of data from one node to another. The delivery of data from one node to another. The 
protocols are normally implemented in software by protocols are normally implemented in software by 
using one of the common programming languages. To using one of the common programming languages. To 
make our discussions language-free, we have written make our discussions language-free, we have written 
in pseudocode a version of each protocol that in pseudocode a version of each protocol that 
concentrates mostly on the procedure instead of concentrates mostly on the procedure instead of 
delving into the details of language rules.delving into the details of language rules.
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Figure 11.5  Taxonomy of protocols discussed in this chapter
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11-4   NOISELESS CHANNELS11-4   NOISELESS CHANNELS

Let us first assume we have an ideal channel in which Let us first assume we have an ideal channel in which 
no frames are lost, duplicated, or corrupted. We no frames are lost, duplicated, or corrupted. We 
introduce two protocols for this type of channel.introduce two protocols for this type of channel.

Simplest Protocol
Stop-and-Wait Protocol

Topics discussed in this section:Topics discussed in this section:
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Figure 11.6  The design of the simplest protocol with no flow or error control
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Algorithm 11.1  Sender-site algorithm for the simplest protocol



11.17

Algorithm 11.2  Receiver-site algorithm for the simplest protocol
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Figure 11.7 shows an example of communication using 
this protocol. It is very simple. The sender sends a 
sequence of frames without even thinking about the 
receiver. To send three frames, three events occur at the 
sender site and three events at the receiver site. Note that 
the data frames are shown by tilted boxes; the height of 
the box defines the transmission time difference between
the first bit and the last bit in the frame.

Example 11.1
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Figure 11.7  Flow diagram for Example 11.1
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Figure 11.8  Design of Stop-and-Wait Protocol
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Algorithm 11.3  Sender-site algorithm for Stop-and-Wait Protocol
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Algorithm 11.4  Receiver-site algorithm for Stop-and-Wait Protocol
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Figure 11.9 shows an example of communication using 
this protocol. It is still very simple. The sender sends one 
frame and waits for feedback from the receiver. When the 
ACK arrives, the sender sends the next frame. Note that 
sending two frames in the protocol involves the sender in 
four events and the receiver in two events.

Example 11.2
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Figure 11.9  Flow diagram for Example 11.2
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11-5   NOISY CHANNELS11-5   NOISY CHANNELS

Although the Stop-and-Wait Protocol gives us an idea Although the Stop-and-Wait Protocol gives us an idea 
of how to add flow control to its predecessor, noiseless of how to add flow control to its predecessor, noiseless 
channels are nonexistent. We discuss three protocols channels are nonexistent. We discuss three protocols 
in this section that use error control.in this section that use error control.

Stop-and-Wait Automatic Repeat Request
Go-Back-N Automatic Repeat Request
Selective Repeat Automatic Repeat Request

Topics discussed in this section:Topics discussed in this section:
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Error correction in Stop-and-Wait ARQ is 
done by keeping a copy of the sent 

frame and retransmitting of the frame 
when the timer expires.

Note
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In Stop-and-Wait ARQ, we use sequence 
numbers to number the frames.

The sequence numbers are based on 
modulo-2 arithmetic.

Note
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In Stop-and-Wait ARQ, the 
acknowledgment number always 

announces in modulo-2 arithmetic the 
sequence number of the next frame 

expected.

Note
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Figure 11.10  Design of the Stop-and-Wait ARQ Protocol
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Algorithm 11.5  Sender-site algorithm for Stop-and-Wait ARQ

(continued)
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Algorithm 11.5  Sender-site algorithm for Stop-and-Wait ARQ (continued)
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Algorithm 11.6  Receiver-site algorithm for Stop-and-Wait ARQ Protocol
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Figure 11.11 shows an example of Stop-and-Wait ARQ. 
Frame 0 is sent and acknowledged. Frame 1 is lost and 
resent after the time-out. The resent frame 1 is 
acknowledged and the timer stops. Frame 0 is sent and 
acknowledged, but the acknowledgment is lost. The 
sender has no idea if the frame or the acknowledgment 
is lost, so after the time-out, it resends frame 0, which is 
acknowledged.

Example 11.3
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Figure 11.11  Flow diagram for Example 11.3
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Assume that, in a Stop-and-Wait ARQ system, the 
bandwidth of the line is 1 Mbps, and 1 bit takes 20 ms to 
make a round trip. What is the bandwidth-delay product? 
If the system data frames are 1000 bits in length, what is 
the utilization percentage of the link?

Solution
The bandwidth-delay product is

Example 11.4
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The system can send 20,000 bits during the time it takes 
for the data to go from the sender to the receiver and then 
back again. However, the system sends only 1000 bits. We 
can say that the link utilization is only 1000/20,000, or 5 
percent. For this reason, for a link with a high bandwidth 
or long delay, the use of Stop-and-Wait ARQ wastes the 
capacity of the link.

Example 11.4 (continued)
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What is the utilization percentage of the link in 
Example 11.4 if we have a protocol that can send up to 
15 frames before stopping and worrying about the 
acknowledgments?

Solution
The bandwidth-delay product is still 20,000 bits. The 
system can send up to 15 frames or 15,000 bits during a 
round trip. This means the utilization is 15,000/20,000, or 
75 percent. Of course, if there are damaged frames, the 
utilization percentage is much less because frames have to 
be resent.

Example 11.5
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In the Go-Back-N Protocol, the sequence 
numbers are modulo 2m,

where m is the size of the sequence 
number field in bits.

Note
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Figure 11.12  Send window for Go-Back-N ARQ
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The send window is an abstract concept 
defining an imaginary box of size 2m − 1 

with three variables: Sf, Sn, and Ssize.

Note
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The send window can slide one
or more slots when a valid 
acknowledgment arrives.

Note
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Figure 11.13  Receive window for Go-Back-N ARQ
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The receive window is an abstract 
concept defining an imaginary box 

of size 1 with one single variable  Rn. 
The window slides

when a correct frame has arrived; 
sliding occurs one slot at a time.

Note
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Figure 11.14  Design of Go-Back-N ARQ
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Figure 11.15  Window size for Go-Back-N ARQ
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In Go-Back-N ARQ, the size of the send 
window must be less than 2m;

the size of the receiver window 
is always 1.

Note
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Algorithm 11.7  Go-Back-N sender algorithm

(continued)
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Algorithm 11.7  Go-Back-N sender algorithm (continued)
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Algorithm 11.8  Go-Back-N receiver algorithm
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Example 11.6

Figure 11.16 shows an example of Go-Back-N. This is an 
example of a case where the forward channel is reliable, 
but the reverse is not. No data frames are lost, but some 
ACKs are delayed and one is lost. The example also 
shows how cumulative acknowledgments can help if 
acknowledgments are delayed or lost. After initialization, 
there are seven sender events. Request events are 
triggered by data from the network layer; arrival events 
are triggered by acknowledgments from the physical 
layer. There is no time-out event here because all 
outstanding frames are acknowledged before the timer 
expires. Note that although ACK 2 is lost, ACK 3 serves as 
both ACK 2 and ACK 3.
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Figure 11.16  Flow diagram for Example 11.6
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Figure 11.17 shows what happens when a frame is lost. 
Frames 0, 1, 2, and 3 are sent. However, frame 1 is lost. 
The receiver receives frames 2 and 3, but they are 
discarded because they are received out of order. The 
sender receives no acknowledgment about frames 1, 2, or 
3. Its timer finally expires. The sender sends all 
outstanding frames (1, 2, and 3) because it does not know 
what is wrong. Note that the resending of frames 1, 2, and 
3 is the response to one single event. When the sender is 
responding to this event, it cannot accept the triggering of 
other events. This means that when ACK 2 arrives, the 
sender is still busy with sending frame 3. 

Example 11.7
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The physical layer must wait until this event is completed 
and the data link layer goes back to its sleeping state. We 
have shown a vertical line to indicate the delay. It is the 
same story with ACK 3; but when ACK 3 arrives, the 
sender is busy responding to ACK 2. It happens again 
when ACK 4 arrives. Note that before the second timer 
expires, all outstanding frames have been sent and the 
timer is stopped.

Example 11.7 (continued)
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Figure 11.17  Flow diagram for Example 11.7
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Stop-and-Wait ARQ is a special case of 
Go-Back-N ARQ in which the size of the 

send window is 1.

Note
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Figure 11.18  Send window for Selective Repeat ARQ



11.57

Figure 11.19  Receive window for Selective Repeat ARQ
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Figure 11.20  Design of Selective Repeat ARQ
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Figure 11.21  Selective Repeat ARQ, window size
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In Selective Repeat ARQ, the size of the 
sender and receiver window

must be at most one-half of 2m.

Note
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Algorithm 11.9  Sender-site Selective Repeat algorithm

(continued)
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Algorithm 11.9  Sender-site Selective Repeat algorithm (continued)

(continued)
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Algorithm 11.9  Sender-site Selective Repeat algorithm (continued)
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Algorithm 11.10  Receiver-site Selective Repeat algorithm
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Algorithm 11.10  Receiver-site Selective Repeat algorithm
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Figure 11.22  Delivery of data in Selective Repeat ARQ
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This example is similar to Example 11.3 in which frame 1 
is lost. We show how Selective Repeat behaves in this 
case. Figure 11.23 shows the situation. One main 
difference is the number of timers. Here, each frame sent 
or resent needs a timer, which means that the timers need 
to be numbered (0, 1, 2, and 3). The timer for frame 0 
starts at the first request, but stops when the ACK for this 
frame arrives. The timer for frame 1 starts at the second 
request, restarts when a NAK arrives, and finally stops 
when the last ACK arrives. The other two timers start 
when the corresponding frames are sent and stop at the 
last arrival event.

Example 11.8
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At the receiver site we need to distinguish between the 
acceptance of a frame and its delivery to the network 
layer. At the second arrival, frame 2 arrives and is stored 
and marked, but it cannot be delivered because frame 1 is 
missing. At the next arrival, frame 3 arrives and is 
marked and stored, but still none of the frames can be 
delivered. Only at the last arrival, when finally a copy of 
frame 1 arrives, can frames 1, 2, and 3 be delivered to the 
network layer. There are two conditions for the delivery of 
frames to the network layer: First, a set of consecutive 
frames must have arrived. Second, the set starts from the 
beginning of the window. 

Example 11.8 (continued)
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Another important point is that a NAK is sent after the 
second arrival, but not after the third, although both 
situations look the same. The reason is that the protocol 
does not want to crowd the network with unnecessary 
NAKs and unnecessary resent frames. The second NAK 
would still be NAK1 to inform the sender to resend frame 
1 again; this has already been done. The first NAK sent is 
remembered (using the nakSent variable) and is not sent 
again until the frame slides. A NAK is sent once for each 
window position and defines the first slot in the window.

Example 11.8 (continued)
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The next point is about the ACKs. Notice that only two 
ACKs are sent here. The first one acknowledges only the 
first frame; the second one acknowledges three frames. In 
Selective Repeat, ACKs are sent when data are delivered to 
the network layer. If the data belonging to n frames are 
delivered in one shot, only one ACK is sent for all of them.

Example 11.8 (continued)
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Figure 11.23  Flow diagram for Example 11.8
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Figure 11.24  Design of piggybacking in Go-Back-N ARQ
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11-6   HDLC11-6   HDLC

High-level Data Link Control (HDLC)High-level Data Link Control (HDLC) is a  is a bit-orientedbit-oriented  
protocol for communication over point-to-point and protocol for communication over point-to-point and 
multipoint links. It implements the ARQ mechanisms multipoint links. It implements the ARQ mechanisms 
we discussed in this chapter.we discussed in this chapter.

Configurations and Transfer Modes
Frames
Control Field

Topics discussed in this section:Topics discussed in this section:
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Figure 11.25  Normal response mode
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Figure 11.26  Asynchronous balanced mode
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Figure 11.27  HDLC frames
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Figure 11.28  Control field format for the different frame types
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Table 11.1  U-frame control command and response
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Figure 11.29 shows how U-frames can be used for 
connection establishment and connection release. Node A 
asks for a connection with a set asynchronous balanced 
mode (SABM) frame; node B gives a positive response 
with an unnumbered acknowledgment (UA) frame. After 
these two exchanges, data can be transferred between the 
two nodes (not shown in the figure). After data transfer, 
node A sends a DISC (disconnect) frame to release the 
connection; it is confirmed by node B responding with a 
UA (unnumbered acknowledgment).

Example 11.9
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Figure 11.29  Example of connection and disconnection
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Figure 11.30 shows an exchange using piggybacking. 
Node A begins the exchange of information with an 
I-frame numbered 0 followed by another I-frame 
numbered 1. Node B piggybacks its acknowledgment of 
both frames onto an I-frame of its own. Node B’s first 
I-frame is also numbered 0 [N(S) field] and contains a 2 
in its N(R) field, acknowledging the receipt of A’s frames 
1 and 0 and indicating that it expects frame 2 to arrive 
next. Node B transmits its second and third I-frames 
(numbered 1 and 2) before accepting further frames from 
node A. 

Example 11.10
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Its N(R) information, therefore, has not changed: B 
frames 1 and 2 indicate that node B is still expecting A’s 
frame 2 to arrive next. Node A has sent all its data. 
Therefore, it cannot piggyback an acknowledgment onto 
an I-frame and sends an S-frame instead. The RR code 
indicates that A is still ready to receive. The number 3 in 
the N(R) field tells B that frames 0, 1, and 2 have all been 
accepted and that A is now expecting frame number 3.

Example 11.10 (continued)
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Figure 11.30  Example of piggybacking without error
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Figure 11.31 shows an exchange in which a frame is lost. 
Node B sends three data frames (0, 1, and 2), but frame 1 
is lost. When node A receives frame 2, it discards it and 
sends a REJ frame for frame 1. Note that the protocol 
being used is Go-Back-N with the special use of an REJ 
frame as a NAK frame. The NAK frame does two things 
here: It confirms the receipt of frame 0 and declares that 
frame 1 and any following frames must be resent. Node 
B, after receiving the REJ frame, resends frames 1 and 2. 
Node A acknowledges the receipt by sending an RR frame 
(ACK) with acknowledgment number 3.

Example 11.11
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Figure 11.31  Example of piggybacking with error
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11-7   POINT-TO-POINT PROTOCOL11-7   POINT-TO-POINT PROTOCOL

Although HDLC is a general protocol that can be used Although HDLC is a general protocol that can be used 
for both point-to-point and multipoint configurations, for both point-to-point and multipoint configurations, 
one of the most common protocols for point-to-point one of the most common protocols for point-to-point 
access is the access is the Point-to-Point Protocol (PPP). Point-to-Point Protocol (PPP). PPP is a PPP is a 
byte-orientedbyte-oriented protocol. protocol.

Framing
Transition Phases
Multiplexing
Multilink PPP

Topics discussed in this section:Topics discussed in this section:
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Figure 11.32  PPP frame format
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PPP is a byte-oriented protocol using 
byte stuffing with the escape byte 

01111101.

Note
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Figure 11.33  Transition phases
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Figure 11.34  Multiplexing in PPP
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Figure 11.35  LCP packet encapsulated in a frame
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Table 11.2  LCP packets
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Table 11.3  Common options
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Figure 11.36  PAP packets encapsulated in a PPP frame
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Figure 11.37  CHAP packets encapsulated in a PPP frame
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Figure 11.38  IPCP packet encapsulated in PPP frame
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Table 11.4  Code value for IPCP packets
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Figure 11.39  IP datagram encapsulated in a PPP frame
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Figure 11.40  Multilink PPP
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Let us go through the phases followed by a network layer 
packet as it is transmitted through a PPP connection. 
Figure 11.41 shows the steps. For simplicity, we assume 
unidirectional movement of data from the user site to the 
system site (such as sending an e-mail through an ISP). 

The first two frames show link establishment. We have 
chosen two options (not shown in the figure): using PAP 
for authentication and suppressing the address control 
fields. Frames 3 and 4 are for authentication. Frames 5 
and 6 establish the network layer connection using IPCP.

Example 11.12
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The next several frames show that some IP packets are 
encapsulated in the PPP frame. The system (receiver) 
may have been running several network layer protocols, 
but it knows that the incoming data must be delivered to 
the IP protocol because the NCP protocol used before the 
data transfer was IPCP.

After data transfer, the user then terminates the data link 
connection, which is acknowledged by the system. Of 
course the user or the system could have chosen to 
terminate the network layer IPCP and keep the data link 
layer running if it wanted to run another NCP protocol.

Example 11.12 (continued)
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Figure 11.41  An example
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Figure 11.41  An example (continued)
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Chapter 12

Multiple Access

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
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Figure 12.1  Data link layer divided into two functionality-oriented sublayers
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Figure 12.2  Taxonomy of multiple-access protocols discussed in this chapter
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12-1   RANDOM ACCESS12-1   RANDOM ACCESS

In In random accessrandom access or  or contentioncontention methods, no station is  methods, no station is 
superior to another station and none is assigned the superior to another station and none is assigned the 
control over another. No station permits, or does not control over another. No station permits, or does not 
permit, another station to send. At each instance, a permit, another station to send. At each instance, a 
station that has data to send uses a procedure defined station that has data to send uses a procedure defined 
by the protocol to make a decision on whether or not to by the protocol to make a decision on whether or not to 
send. send. 

ALOHA
Carrier Sense Multiple Access
Carrier Sense Multiple Access with Collision Detection
Carrier Sense Multiple Access with Collision Avoidance

Topics discussed in this section:Topics discussed in this section:
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Figure 12.3  Frames in a pure ALOHA network
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Figure 12.4  Procedure for pure ALOHA protocol
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The stations on a wireless ALOHA network are a 
maximum of 600 km apart. If we assume that signals 
propagate at 3 × 108 m/s,  we find  
                         Tp = (600 × 105 ) / (3 × 108 ) = 2 ms. 
Now we can find the value of TB for different values of 
K .

a. For K = 1, the range is {0, 1}. The station needs to|
     generate a random number with a value of 0 or 1. This
     means that TB is either 0 ms (0 × 2) or 2 ms (1 × 2),
     based on the outcome of the random variable.

Example 12.1
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b. For K = 2, the range is {0, 1, 2, 3}. This means that TB

      can be 0, 2, 4, or 6 ms, based on the outcome of the
     random variable.

c. For K = 3, the range is {0, 1, 2, 3, 4, 5, 6, 7}. This
     means that TB can be 0, 2, 4, . . . , 14 ms, based on the
     outcome of the random variable.

d. We need to mention that if K > 10, it is normally set to
     10.

Example 12.1 (continued)



12.9

Figure 12.5  Vulnerable time for pure ALOHA protocol
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A pure ALOHA network transmits 200-bit frames on a 
shared channel of 200 kbps. What is the requirement to 
make this frame collision-free?

Example 12.2

Solution
Average frame transmission time Tfr is 200 bits/200 kbps or 
1 ms. The vulnerable time is  2 × 1 ms = 2 ms. This means 
no station should send later than 1 ms before this station 
starts transmission and no station should start sending 
during the one 1-ms period that this station is sending.
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The throughput for pure ALOHA is 
S = G × e −2G  .

The maximum throughput
Smax = 0.184 when G= (1/2).

Note
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A pure ALOHA network transmits 200-bit frames on a 
shared channel of 200 kbps. What is the throughput if the 
system (all stations together) produces
a. 1000 frames per second    b. 500 frames per second
c. 250 frames per second.

Example 12.3

Solution
The frame transmission time is 200/200 kbps or 1 ms.
a. If the system creates 1000 frames per second, this is 1
    frame per millisecond. The load is 1. In this case 
    S = G× e−2 G or S = 0.135 (13.5 percent). This means
    that the throughput is 1000 × 0.135 = 135 frames. Only
    135 frames out of 1000 will probably survive.
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Example 12.3 (continued)

b. If the system creates 500 frames per second, this is
    (1/2) frame per millisecond. The load is (1/2). In this
    case S = G × e −2G or S = 0.184 (18.4 percent). This
    means that the throughput is 500 × 0.184 = 92 and that
    only 92 frames out of 500 will probably survive. Note
    that this is the maximum throughput case,
    percentagewise.

c. If the system creates 250 frames per second, this is (1/4)
    frame per millisecond. The load is (1/4). In this case 
    S = G × e −2G or S = 0.152 (15.2 percent). This means
    that the throughput is 250 × 0.152 = 38. Only 38
    frames out of 250 will probably survive.
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Figure 12.6  Frames in a slotted ALOHA network
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The throughput for slotted ALOHA is 
S = G × e−G .

The maximum throughput 
Smax = 0.368 when G = 1.

Note



12.16

Figure 12.7  Vulnerable time for slotted ALOHA protocol
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A slotted ALOHA  network transmits 200-bit frames on a 
shared channel of 200 kbps. What is the throughput if the 
system (all stations together) produces
a. 1000 frames per second    b. 500 frames per second
c. 250 frames per second.

Example 12.4

Solution
The frame transmission time is 200/200 kbps or 1 ms.
a. If the system creates 1000 frames per second, this is 1
    frame per millisecond. The load is 1. In this case 
    S = G× e−G or S = 0.368 (36.8 percent). This means
    that the throughput is 1000 × 0.0368 = 368 frames.
    Only 386 frames out of 1000 will probably survive.
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Example 12.4 (continued)

b. If the system creates 500 frames per second, this is
    (1/2) frame per millisecond. The load is (1/2). In this
    case S = G × e−G or S = 0.303 (30.3 percent). This
    means that the throughput is 500 × 0.0303 = 151. 
    Only 151 frames out of 500 will probably survive.

c. If the system creates 250 frames per second, this is (1/4)
    frame per millisecond. The load is (1/4). In this case 
    S = G × e −G or S = 0.195 (19.5 percent). This means
    that the throughput is 250 × 0.195 = 49. Only 49
    frames out of 250 will probably survive.
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Figure 12.8  Space/time model of the collision in CSMA
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Figure 12.9  Vulnerable time in CSMA
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Figure 12.10  Behavior of three persistence methods
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Figure 12.11  Flow diagram for three persistence methods
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Figure 12.12  Collision of the first bit in CSMA/CD
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Figure 12.13 Collision and abortion in CSMA/CD
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A network using CSMA/CD has a bandwidth of 10 Mbps. 
If the maximum propagation time (including the delays in 
the devices and ignoring the time needed to send a 
jamming signal, as we see later) is 25.6 μs, what is the 
minimum size of the frame?

Example 12.5

Solution
The frame transmission time is Tfr = 2 × Tp = 51.2 μs. 
This means, in the worst case, a station needs to transmit 
for a period of 51.2 μs to detect the collision. The 
minimum size of the frame is 10 Mbps × 51.2 μs = 512 
bits or 64 bytes. This is actually the minimum size of the 
frame for Standard Ethernet.
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Figure 12.14  Flow diagram for the CSMA/CD
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Figure 12.15  Energy level during transmission, idleness, or collision
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Figure 12.16  Timing in CSMA/CA
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In CSMA/CA, the IFS can also be used to 
define the priority of a station or a 

frame.

Note
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In CSMA/CA, if the station finds the 
channel busy, it does not restart the 

timer of the contention window;
it stops the timer and restarts it when 

the channel becomes idle.

Note
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Figure 12.17  Flow diagram for CSMA/CA
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12-2   CONTROLLED ACCESS12-2   CONTROLLED ACCESS

In In controlled accesscontrolled access, the stations consult one another , the stations consult one another 
to find which station has the right to send. A station to find which station has the right to send. A station 
cannot send unless it has been authorized by other cannot send unless it has been authorized by other 
stations. We discuss three popular controlled-access stations. We discuss three popular controlled-access 
methods.methods.

Reservation
Polling
Token Passing

Topics discussed in this section:Topics discussed in this section:
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Figure 12.18  Reservation access method
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Figure 12.19  Select and poll functions in polling access method
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Figure 12.20  Logical ring and physical topology in token-passing access method
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12-3   CHANNELIZATION12-3   CHANNELIZATION

ChannelizationChannelization is a multiple-access method in which  is a multiple-access method in which 
the available bandwidth of a link is shared in time, the available bandwidth of a link is shared in time, 
frequency, or through code, between different stations. frequency, or through code, between different stations. 
In this section, we discuss three channelization In this section, we discuss three channelization 
protocols.protocols.

Frequency-Division Multiple Access (FDMA)
Time-Division Multiple Access (TDMA)
Code-Division Multiple Access (CDMA)

Topics discussed in this section:Topics discussed in this section:
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We see the application of all these 
methods in Chapter 16 when

we discuss cellular phone systems.

Note
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Figure 12.21  Frequency-division multiple access (FDMA)
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In FDMA, the available bandwidth 
of the common channel is divided into 

bands that are separated by guard 
bands.

Note
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Figure 12.22  Time-division multiple access (TDMA)
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In TDMA, the bandwidth is just one 
channel that is timeshared between 

different stations.

Note
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In CDMA, one channel carries all 
transmissions simultaneously.

Note
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Figure 12.23  Simple idea of communication with code
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Figure 12.24  Chip sequences
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Figure 12.25  Data representation in CDMA
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Figure 12.26  Sharing channel in CDMA
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Figure 12.27  Digital signal created by four stations in CDMA
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Figure 12.28  Decoding of the composite signal for one in CDMA
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Figure 12.29  General rule and examples of creating Walsh tables



12.50

The number of sequences in a Walsh 
table needs to be N = 2m.

Note
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Find the chips for a network with
a. Two stations           b. Four stations

Example 12.6

Solution
We can use the rows of W2 and W4 in Figure 12.29:
a. For a two-station network, we have 
                           [+1 +1] and [+1 −1].

b. For a four-station network we have 
                       [+1 +1 +1 +1], [+1 −1 +1 −1], 
                 [+1 +1 −1 −1],  and   [+1 −1 −1 +1].
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What is the number of sequences if we have 90 stations in 
our network?

Example 12.7

Solution
The number of sequences needs to be 2m. We need to 
choose m = 7 and N = 27 or 128. We can then use 90 
of the sequences as the chips.
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Prove that a receiving station can get the data sent by a 
specific sender if it multiplies the entire data on the 
channel by the sender’s chip code and then divides it by 
the number of stations.

Example 12.8

Solution
Let us prove this for the first station, using our previous 
four-station example. We can say that the data on the 
channel 
      D = (d1  c⋅ 1 + d2  c⋅ 2 + d3  c⋅ 3 + d4  c⋅ 4). 
The receiver which wants to get the data sent by station 1 
multiplies these data by c1.
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Example 12.8 (continued)

When we divide the result by N, we get d1 .
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Chapter 13

Wired LANs: Ethernet

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
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13-1   IEEE STANDARDS13-1   IEEE STANDARDS

In 1985, the Computer Society of the IEEE started a In 1985, the Computer Society of the IEEE started a 
project, called Project 802, to set standards to enable project, called Project 802, to set standards to enable 
intercommunication among equipment from a variety intercommunication among equipment from a variety 
of manufacturers. Project 802 is a way of specifying of manufacturers. Project 802 is a way of specifying 
functions of the physical layer and the data link layer functions of the physical layer and the data link layer 
of major LAN protocols.of major LAN protocols.

Data Link Layer
Physical Layer

Topics discussed in this section:Topics discussed in this section:
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Figure 13.1  IEEE standard for LANs
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Figure 13.2  HDLC frame compared with LLC and MAC frames
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13-2   STANDARD ETHERNET13-2   STANDARD ETHERNET

The original Ethernet was created in 1976 at Xerox’s The original Ethernet was created in 1976 at Xerox’s 
Palo Alto Research Center (PARC). Since then, it has Palo Alto Research Center (PARC). Since then, it has 
gone through four generations. We briefly discuss the gone through four generations. We briefly discuss the 
Standard (or traditional) EthernetStandard (or traditional) Ethernet in this section.  in this section. 

MAC Sublayer
Physical Layer

Topics discussed in this section:Topics discussed in this section:
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Figure 13.3  Ethernet evolution through four generations
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Figure 13.4  802.3 MAC frame
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Figure 13.5  Minimum and maximum lengths
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Frame length:
Minimum: 64 bytes (512 bits) 

Maximum: 1518 bytes (12,144 bits)

Note
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Figure 13.6  Example of an Ethernet address in hexadecimal notation



13.11

Figure 13.7  Unicast and multicast addresses
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The least significant bit of the first byte 
defines the type of address.

If the bit is 0, the address is unicast;
otherwise, it is multicast.

Note
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The broadcast destination address is a 
special case of the multicast address in 

which all bits are 1s.

Note
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Define the type of the following destination addresses:
a.  4A:30:10:21:10:1A               b.  47:20:1B:2E:08:EE
c.  FF:FF:FF:FF:FF:FF

Solution
To find the type of the address, we need to look at the 
second hexadecimal digit from the left. If it is even, the 
address is unicast. If it is odd, the address is multicast. If 
all digits are F’s, the address is broadcast. Therefore, we 
have the following:
a.  This is a unicast address because A in binary is 1010.
b.  This is a multicast address because 7 in binary is 0111.
c.  This is a broadcast address because all digits are F’s.

Example 13.1



13.15

Show how the address 47:20:1B:2E:08:EE is sent out on 
line.

Solution
The address is sent left-to-right, byte by byte; for each 
byte, it is sent right-to-left, bit by bit, as shown below:

Example 13.2



13.16

Figure 13.8  Categories of Standard Ethernet



13.17

Figure 13.9  Encoding in a Standard Ethernet implementation



13.18

Figure 13.10  10Base5 implementation



13.19

Figure 13.11  10Base2 implementation



13.20

Figure 13.12  10Base-T implementation



13.21

Figure 13.13  10Base-F implementation



13.22

Table 13.1  Summary of Standard Ethernet implementations



13.23

13-3   CHANGES IN THE STANDARD13-3   CHANGES IN THE STANDARD

The 10-Mbps Standard Ethernet has gone through The 10-Mbps Standard Ethernet has gone through 
several changes before moving to the higher data several changes before moving to the higher data 
rates. These changes actually opened the road to the rates. These changes actually opened the road to the 
evolution of the Ethernet to become compatible with evolution of the Ethernet to become compatible with 
other high-data-rate LANs. other high-data-rate LANs. 

Bridged Ethernet
Switched Ethernet
Full-Duplex Ethernet

Topics discussed in this section:Topics discussed in this section:



13.24

Figure 13.14  Sharing bandwidth



13.25

Figure 13.15  A network with and without a bridge



13.26

Figure 13.16  Collision domains in an unbridged network and a bridged network



13.27

Figure 13.17  Switched Ethernet



13.28

Figure 13.18  Full-duplex switched Ethernet



13.29

13-4   FAST ETHERNET13-4   FAST ETHERNET

Fast Ethernet was designed to compete with LAN Fast Ethernet was designed to compete with LAN 
protocols such as FDDI or Fiber Channel. IEEE protocols such as FDDI or Fiber Channel. IEEE 
created Fast Ethernet under the name 802.3u. Fast created Fast Ethernet under the name 802.3u. Fast 
Ethernet is backward-compatible with Standard Ethernet is backward-compatible with Standard 
Ethernet, but it can transmit data 10 times faster at a Ethernet, but it can transmit data 10 times faster at a 
rate of 100 Mbps. rate of 100 Mbps. 

MAC Sublayer
Physical Layer

Topics discussed in this section:Topics discussed in this section:



13.30

Figure 13.19  Fast Ethernet topology



13.31

Figure 13.20  Fast Ethernet implementations



13.32

Figure 13.21  Encoding for Fast Ethernet implementation



13.33

Table 13.2  Summary of Fast Ethernet implementations



13.34

13-5   GIGABIT ETHERNET13-5   GIGABIT ETHERNET

The need for an even higher data rate resulted in the The need for an even higher data rate resulted in the 
design of the Gigabit Ethernet protocol (1000 Mbps). design of the Gigabit Ethernet protocol (1000 Mbps). 
The IEEE committee calls the standard 802.3z.The IEEE committee calls the standard 802.3z.

MAC Sublayer
Physical Layer
Ten-Gigabit Ethernet

Topics discussed in this section:Topics discussed in this section:



13.35

In the full-duplex mode of Gigabit 
Ethernet, there is no collision;

the maximum length of the cable is 
determined  by the signal attenuation 

in the cable.

Note



13.36

Figure 13.22  Topologies of Gigabit Ethernet



13.37

Figure 13.23  Gigabit Ethernet implementations



13.38

Figure 13.24  Encoding in Gigabit Ethernet implementations



13.39

Table 13.3  Summary of Gigabit Ethernet implementations



13.40

Table 13.4  Summary of Ten-Gigabit Ethernet implementations



14.1

Chapter 14

Wireless LANs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



14.2

14-1   IEEE 802.1114-1   IEEE 802.11

IEEE has defined the specifications for a wireless IEEE has defined the specifications for a wireless 
LAN, called IEEE 802.11, which covers the physical LAN, called IEEE 802.11, which covers the physical 
and data link layers.and data link layers.

Architecture
MAC Sublayer
Physical Layer

Topics discussed in this section:Topics discussed in this section:



14.3

A BSS without an AP is called an ad hoc 
network;

a BSS with an AP is called an 
infrastructure network.

Note



14.4

Figure 14.1  Basic service sets (BSSs)



14.5

Figure 14.2  Extended service sets (ESSs)



14.6

Figure 14.3  MAC layers in IEEE 802.11 standard



14.7

Figure 14.4  CSMA/CA flowchart



14.8

Figure 14.5  CSMA/CA and NAV



14.9

Figure 14.6  Example of repetition interval



14.10

Figure 14.7  Frame format



14.11

Table 14.1  Subfields in FC field



14.12

Figure 14.8  Control frames



14.13

Table 14.2  Values of subfields in control frames



14.14

Table 14.3  Addresses



14.15

Figure 14.9  Addressing mechanisms



14.16

Figure 14.10  Hidden station problem



14.17

The CTS frame in CSMA/CA handshake 
can prevent collision from 

a hidden station.

Note



14.18

Figure 14.11  Use of handshaking to prevent hidden station problem



14.19

Figure 14.12  Exposed station problem



14.20

Figure 14.13  Use of handshaking in exposed station problem



14.21

Table 14.4  Physical layers



14.22

Figure 14.14  Industrial, scientific, and medical (ISM) band



14.23

Figure 14.15  Physical layer of IEEE 802.11 FHSS



14.24

Figure 14.16  Physical layer of IEEE 802.11 DSSS



14.25

Figure 14.17  Physical layer of IEEE 802.11 infrared



14.26

Figure 14.18  Physical layer of IEEE 802.11b



14.27

14-2   BLUETOOTH14-2   BLUETOOTH

BluetoothBluetooth is a wireless LAN technology designed to  is a wireless LAN technology designed to 
connect devices of different functions such as connect devices of different functions such as 
telephones, notebooks, computers, cameras, printers, telephones, notebooks, computers, cameras, printers, 
coffee makers, and so on. A Bluetooth LAN is an ad coffee makers, and so on. A Bluetooth LAN is an ad 
hoc network, which means that the network is formed hoc network, which means that the network is formed 
spontaneously. spontaneously. 

Architecture
Bluetooth Layers
Baseband Layer
L2CAP

Topics discussed in this section:Topics discussed in this section:



14.28

Figure 14.19  Piconet



14.29

Figure 14.20  Scatternet



14.30

Figure 14.21  Bluetooth layers



14.31

Figure 14.22  Single-secondary communication



14.32

Figure 14.23  Multiple-secondary communication



14.33

Figure 14.24  Frame format types



14.34

Figure 14.25  L2CAP data packet format
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