T ¢ + Data Communications
.L j and NEtWﬂrkiﬂg i Forouzan

Chapter 10

Error Detection
and
Correction

]_O .]_ Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1

‘ Note I

Data can be corrupted
during transmission.

Some applications require that
errors be detected and corrected.

10.2

Let us first discuss some issues related, directly or
indirectly, to error detection and correction.

ics di d in thi jon:
Types of Errors
Redundancy
Detection Versus Correction
Forward Error Correction Versus Retransmission
Coding
Modular Arithmetic

10.3

T

‘ Note I

In a single-bit error, only 1 bit in the data
unit has changed.

10.4

Figure 10.1 Single-bit error

10.5

0 changedto 1
e N
0|0 O——>{0|0|(0O|0OfT1]0O
Sent Received

T

‘ Note I

A burst error means that 2 or more bits
in the data unit have changed.

10.6

Figure 10.2 Burst error of length 8

Length of burst

error (8 bits)

Sent ~ >
oOf1]0|0f0O|1|[0[0]O 00|00

l l l lCorruptec bits
Of1]O01f1|1(0|1]0 1({0|0|0|1
Received

10.7

T

‘ Note I

To detect or correct errors, we need to
send extra (redundant) bits with data.

10.8

Figure 10.3 The structure of encoder and decoder

Sender

Encoder

Message

l

Generator

Message and redundancy

Unreliable transmission

Receijver

Decoder

Message

Correct or
discard

Checker

»! Received information

10.9

T

‘ Note I

In this book, we concentrate on block
codes; we leave convolution codes
to advanced texts.

10.10

T

‘ Note I

In modulo-N arithmetic, we use only the
Integers in the range 0 to N -1,
inclusive.

10.11

Figure 10.4 XORing of two single bits or two words

0®0=0 1 ®1 =0
. . 1 0 1 1 0
a. Two bits are the same, the result is O. @ 1 1 1 0 0
0 1 0 1 0

0 D1 =1 1 @0 =1
b. Two bits are different, the result is 1. c. Result of XORing two patterns

10.12

10-2 BLOCK CODING

In block coding, we divide our message into blocks,
each of k bits, called datawords. We add r redundant
bits to each block to make the length n = k + r. The
resulting n-bit blocks are called codewords.

ics di in
Error Detection
Error Correction

Hamming Distance
Minimum Hamming Distance

n.

10.13

Figure 10.5 Datawords and codewords in block coding

k bits k bits cee k bits

2K Datawords, each of k bits

n bits n bits oo n bits

2" Codewords, each of n bits (only 2 of them are valid)

10.14

| Example 10.1

The 4B/5B block coding discussed in Chapter 4 is a good
example of this type of coding. In this coding scheme,
k =4 and n = 5. As we saw, we have 2 = 16 datawords
and 2" = 32 codewords. We saw that 16 out of 32
codewords are used for message transfer and the rest are
either used for other purposes or unused.

10.15

Figure 10.6 Process of error detection in block coding

Sender
Encoder
k bits| Dataword
Generator
n bits Codeword

Unreliable transmission

Receiver

Decoder

Dataword

k bits

T Extract

Checker

Discard

> Codeword

n bits

10.16

| Example 10.2

Let us assume that k = 2 and n = 3. Table 10.1 shows the
list of datawords and codewords. Later, we will see
how to derive a codeword from a dataword.

Assume the sender encodes the dataword 01 as 011 and
sends it to the receiver. Consider the following cases:

1. The receiver receives 011. It is a valid codeword. The
receiver extracts the dataword 01 from it.

10.17

| Example 10.2 (continued)

2. The codeword is corrupted during transmission, and
111 is received. This is not a valid codeword and is
discarded.

3. The codeword is corrupted during transmission, and
000 is received. This is a valid codeword. The receiver
incorrectly extracts the dataword 00. Two corrupted

bits have made the error undetectable.

10.18

Table 10.1 A code for error detection (Example 10.2)

Datawords Codewords
00 000
01 011
10 101
11 110

10.19

T

‘ Note I

An error-detecting code can detect
only the types of errors for which it is
designed; other types of errors may
remain undetected.

10.20

Figure 10.7 Structure of encoder and decoder in error correction

Sender
Encoder
k bits | Dataword
Generator
n bits Codeword

Unreliable transmission

Receiver

Decoder

Dataword

k bits

T Correct

Checker

» Codeword

n bits

10.21

| Example 10.3

Let us add more redundant bits to Example 10.2 to see if
the receiver can correct an error without knowing what
was actually sent. We add 3 redundant bits to the 2-bit
dataword to make 5-bit codewords. Table 10.2 shows the
datawords and codewords. Assume the dataword is 01.
The sender creates the codeword 01011. The codeword is
corrupted during transmission, and 01001 is received.
First, the receiver finds that the received codeword is not
in the table. This means an error has occurred. The
receiver, assuming that there is only 1 bit corrupted, uses
the following strateqgy to guess the correct dataword.

10.22

‘ Example 10.3 (continued)

1. Comparing the received codeword with the first
codeword in the table (01001 versus 00000), the
receiver decides that the first codeword is not the one
that was sent because there are two different bits.

2. By the same reasoning, the original codeword cannot
be the third or fourth one in the table.

3. The original codeword must be the second one in the
table because this is the only one that differs from the
received codeword by 1 bit. The receiver replaces
01001 with 01011 and consults the table to find the
dataword 01.

10.23

Table 10.2 A code for error correction (Example 10.3)

Dataword Codeword
00 00000
01 01011
10 10101
11 11110

10.24

T

‘ Note I

The Hamming distance between two
words is the number of differences
between corresponding bits.

10.25

| Example 10.4

Let us find the Hamming distance between two pairs of
words.

1. The Hamming distance d(000, 011) is 2 because

000 @ 011 is 011 (two 1s)

2. The Hamming distance d(10101, 11110) is 3 because

10101 @ 111101s 01011 (three 1s)

10.26

T

‘ Note I

The minimum Hamming distance is the
smallest Hamming distance between
all possible pairs in a set of words.

10.27

| Example 10.5

Find the minimum Hamming distance of the coding
scheme in Table 10.1.

Solution
We first find all Hamming distances.

The d . in this case is 2.

10.28

| Example 10.6

Find the minimum Hamming distance of the coding
scheme in Table 10.2.

Solution
We first find all the Hamming distances.

The d_. in this case is 3.

10.29

T

‘ Note I

To guarantee the detection of up to s
errors In all cases, the minimum
Hamming distance in a block
code mustbed, A =s + 1.

10.30

Example 10.7

The minimum Hamming distance for our first code
scheme (Table 10.1) is 2. This code guarantees detection
of only a single error. For example, if the third codeword
(101) is sent and one error occurs, the received codeword
does not match any valid codeword. If two errors occur,
however, the received codeword may match a valid
codeword and the errors are not detected.

10.31

Example 10.8

Our second block code scheme (Iable 10.2) has d_. = 3.

This code can detect up to two errors. Again, we see that
when any of the valid codewords is sent, two errors create
a codeword which is not in the table of valid codewords.
The receiver cannot be fooled.

However, some combinations of three errors change a
valid codeword to another valid codeword. The receiver
accepts the received codeword and the errors are
undetected.

10.32

Figure 10.8 Geometric concept for finding d.,,;, in error detection

Legend

. Any valid codeword

® Any corrupted codeword
with O to s errors

10.33

Figure 10.9 Geometric concept for finding d..;, in error correction

Territory of x Territory of y

Legend

. Any valid codeword

® Any corrupted codeword
with 1 to t errors

min ~ 2t [

10.34

T

‘ Note I

To guarantee correction of up to t errors
In all cases, the minimum Hamming
distance in a block code
must be d ., = 2t + 1.

10.35

| Example 10.9

A code scheme has a Hamming distance d.;, = 4. What is
the error detection and correction capability of this
scheme?

Solution

This code guarantees the detection of up to three errors
(s = 3), but it can correct up to one error. In other words,
if this code is used for error correction, part of its capability
is wasted. Error correction codes need to have an odd
minimum distance (3, 5, 7, . . .).

10.36

Almost all block codes used today belong to a subset
called linear block codes. A linear block code is a code

in which the exclusive OR (addition modulo-2) of two
valid codewords creates another valid codeword.

ics di in thi jon.
Minimum Distance for Linear Block Codes
Some Linear Block Codes

10.37

T

‘ Note I

In a linear block code, the exclusive OR
(XOR) of any two valid codewords
creates another valid codeword.

10.38

| Example 10.10

Let us see if the two codes we defined in Table 10.1 and
Table 10.2 belong to the class of linear block codes.

1. The scheme in Table 10.1 is a linear block code
because the result of XORing any codeword with any
other codeword is a valid codeword. For example, the
XORing of the second and third codewords creates the
fourth one.

2. The scheme in Table 10.2 is also a linear block code.
We can create all four codewords by XORing two
other codewords.

10.39

| Example 10.11

In our first code (Table 10.1), the numbers of 1s in the
nonzero codewords are 2, 2, and 2. So the minimum
Hamming distance is d,;, = 2. In our second code (Table

10.2), the numbers of 1s in the nonzero codewords are 3,
3, and 4. So in this code we have d . = 3.

10.40

T

‘ Note I

A simple parity-check code is a
single-bit error-detecting
code in which
n=k+1withd,, = 2.

10.41

Table 10.3 Simple parity-check code C(5, 4)

Datawords Codewords Datawords Codewords
0000 00000 1000 10001
0001 00011 1001 10010
0010 00101 1010 10100
0011 00110 1011 10111
0100 01001 1100 11000
0101 01010 1101 11011
0110 01100 1110 11101
0111 OIT11 1111 11110

10.42

Figure 10.10 Encoder and decoder for simple parity-check code

Sender Receiver
Encoder Decoder
Dataword Dataword
dz|dx|aq(dag dz|dx(aq|ag
AcceptT T T T
. —— T
Decision —> ©
logic _*—* A
Syndrome|Sg| -
¢ AAAA
Generator
9
Parity bit Unreliabl 11
nreliable
YYVYY transmission T
az|az(aq|ap|fo > b3 (b,|bq|bg|dg
Codeword Codeword

10.43

| Example 10.12

Let us look at some transmission scenarios. Assume the
sender sends the dataword 1011. The codeword created
from this dataword is 10111, which is sent to the receiver.
We examine five cases:

1. No error occurs; the received codeword is 10111. The
syndrome is 0. The dataword 1011 is created.

2. One single-bit error changes a,. The received
codeword is 10011. The syndrome is 1. No dataword
Is created.

3. One single-bit error changes r,. The received codeword

is 10110. The syndrome is 1. No dataword is created.
10.44

| Example 10.12 (continued)

4. An error changes r, and a second error changes a;.
The received codeword is 00110. The syndrome is 0.
The dataword 0011 is created at the receiver. Note that
here the dataword is wrongly created due to the
syndrome value.

5. Three bits—aj;, a,, and a,—are changed by errors.

The received codeword is 01011. The syndrome is 1.
The dataword is not created. This shows that the simple
parity check, guaranteed to detect one single error, can
also find any odd number of errors.

10.45

T

‘ Note I

A simple parity-check code can detect
an odd number of errors.

10.46

1

‘ Note I

All Hamming codes discussed in this
book have d,,, = 3.

The relationship between m and n in
these codesis n=2m - 1.

10.47

Figure 10.11 Two-dimensional parity-check code

Row parities

o
=
—_
—_
o
o O O
—_
o

0 1 0 1 0 1 0 1
Column parities

a. Design of row and column parities

10.48

Figure 10.11 Two-dimensional parity-check code

—
—
—_
o

o O o

| -

o 1T o0 1 0 1

}

o
—
—
—
o
o o o

o 1T o0 1T 0 1

b

b. One error affects two parities

10.49

c. Two errors affect two parities

Figure 10.11 Two-dimensional parity-check code

1T |1 O 0 1 1 1 | -€— T 1 O [Of |1 1
T 0 1 1 1 0 1 | - T 0 1 1 1 0
0 1 1 1 O 0 1 0 - 0 1 1 1 O O
0 1 0 1 O 0 1 1 0 1 0 1 0O O
o 1 0 1 0 1 O 1 o 1 0 1 0 1
d. Three errors affect four parities e. Four errors cannot be detected

10.50

Table 10.4 Hamming code C(7, 4)

Datawords Codewords Datawords Codewords
0000 0000000 1000 1000110
0001 0001101 1001 1001011
0010 0010111 1010 1010001
0011 0011010 1011 1011100
0100 0100011 1100 1100101
0101 0101110 1101 1101000
0110 0110100 1110 1110010
0111 0111001 1111 1111111

10.51

Figure 10.12 The structure of the encoder and decoder for a Hamming code

Unreliable
transmission

Receiver

Decoder

Dataword

dz|azfa|Qdg

Correction

I logic
Syndrome [S5(51[So AAA A
Checker

10.52

Sender
Encoder

Dataword
dz(az|aq|dg

>r—

[|

[
YYYYYYY
dag|az|ay|ag| || Fp

Codeword

d;

di

Codeword

Table 10.5 Logical decision made by the correction logic analyzer

Syndrome 000 001 010 OlI1 100 101 110 111

Error None q0 qd1 b2 q> bo b3 bl

10.53

| Example 10.13

Let us trace the path of three datawords from the sender

to the destination:

1. The dataword 0100 becomes the codeword 0100011.
The codeword 0100011 is received. The syndrome is
000, the final dataword is 0100.

2. The dataword 0111 becomes the codeword 0111001.
The syndrome is 011. After flipping b, (changing the 1
to 0), the final dataword is 0111.

3. The dataword 1101 becomes the codeword 1101000.
The syndrome is 101. After flipping b,, we get 0000,
the wrong dataword. This shows that our code cannot
correct two errors.

10.54

| Example 10.14

We need a dataword of at least 7 bits. Calculate values of
k and n that satisfy this requirement.

Solution

We need to make k = n — m greater than or equal to 7, or

2m—1-m 2 7.

1. If we setm = 3, theresultisn=23-1andk =7 - 3,
or 4, which is not acceptable.

2. If wesetm=4,thenn=24-1=15andk =15 -4 =
11, which satisfies the condition. So the code is

10.55

Figure 10.13 Burst error correction using Hamming code

Sender Receiver
0l0[0|[1]|1|0|1]|Codeword4 Codeword4|0[0|0|[1]|0|0|1
0|l1[1]/0|1|0|0 |Codeword3 Codeword3|0|1|1[/0]0|0(O0O
110(0|0|1([1]0|Codeword?2 Codeword2|110(0|1[1([1]0
11 (1]11[1]1]1]|Codeword 1 Codeword 1|1 11|01][1]1

AAAAAAA
1 1 1 [11

Burst error

A data unit in transit

Corrupted bits

Cyclic codes are special linear block codes with one
extra property. In a cyclic code, if a codeword is
cyclically shifted (rotated), the result is another
codeword.

Topics discussed in this sections
Cyclic Redundancy Check

Hardware Implementation
Polynomials

Cyclic Code Analysis
Advantages of Cyclic Codes
Other Cyclic Codes

10.57

Table 10.6 A CRC code with C(7, 4)

Dataword Codeword Dataword Codeword
0000 0000000 1000 1000101
0001 0001011 1001 1001110
0010 0010110 1010 1010011
0011 0011101 1011 1011000
0100 0100111 1100 1100010
0101 0101100 1101 1101001
0110 0110001 1110 1110100
0111 0111010 1111 1111111

10.58

Figure 10.14 CRC encoder and decoder

Sender Receiver
Encoder Decoder
Dataword Dataword
dz|ay|dq|dg dz(ajfaq|dg
AcceptT T T T
000 > O
Decision _>§
— logic _);é
[
)| 1' Syndrome |55 51| So A A A A
? Divisor I
Generator Checker
7]
g
C
‘©
e 9
g A1)
Unreliable
YYVYY YY transmission T
as|ax(aq|apg|ra|f (o »b3(b,|b;|by|dx(d|do
Codeword Codeword

10.59

Figure 10.15 Division in CRC encoder

Dataword|(1 0 0O 1

Division J’

Quotient

Dividend:
Divisor 1 0 1 1)1 0 0 1 0 0| —-<—augmentec
1

0
101 l dataword
0100
Leftmost bit O:
0
1

use 0000 divisor

1 0O

T 0 1
Y
0110

Leftmost bit O:
e

use 0000 divisor 0000

1 1 0| Remainder

Codeword|1 0 O 1(1 1 O
Dataword Remainder

10.60

Figure 10.16 Division in the CRC decoder for two cases

Codeword |1 O O 1|1 1 O Codeword |1 0 0 0|1 1 O
Division VL Division ¢
1010 1 010
1011)1001110<—Codeword 1011)10001104—C0deword
1011¢ 1 11l
0101 o111
0 00O 0 00O
1T 011 1T 1 11
T 0 1 1 1T 0 1 1
—Y —Y
00 1 00
00 1 1
0 O O Syndrome 0 1 1(Syndrome

f {

Dataword 1700 1 Dataword
accepted discarded

10.61

Figure 10.17 Hardwired design of the divisor in CRC

Leftmost bit of the part
of dividend involved
in XOR operation

T

d,
Broken line: %
this bit is always O
XOR XOR XOR

10.62

Figure 10.18 Simulation of division in CRC encoder

Oé Oé Oé Augmented dataword
Time:1 V— 0 T < 0 T ~— 0 T -<-—1 0 0 1 0 0 O
‘/ / ‘I
/' /7 /
» 0 4 0 » 0
Time:2 Y— 0 ,/—é}(— 0 ,,—éy— 1 /-é‘<—0 O 1 0 0 O
/ / 4
’ ’ ’
.4 0 .4 0 ¥ 0
Time:3 V— 0 ,-é<—1 ,—é<— 0 ,—$<—o 1. 0 0 O
‘// ‘/, ‘II
’ ’ ’
¥ 0 ooy Yoo
Time: 4 L—{ 1 ,—é<— 0| ,-@=<——o0 ,—(£<—1 0 0 0
l, /, ,I
’ ’ ’
) 4 0)4 0 ¥ 0
Time:5 ~— 0 ,/-$4— 1 //-$<— 0 ,/—$<—0 0O O
.I ‘/ ‘/
’ ’ ’
» Oé ro é » 1%
Time: 6 — 1 +-<— 0 /1-<— 0 r-®=<—0 ©0
‘// /’ ‘//
l' /' /'
» Oé » 0&) » 0¢
Time:7 Y— 0 e I @< 1 /—@—-(—O
// ,/ //
¥ ¥ ¥
1 1 0

Final remainder

10.63

Figure 10.19 The CRC encoder design using shift registers

10.64

-

T .

Augmented dataword

0

0

1

0

0

0

Figure 10.20 General design of encoder and decoder of a CRC code

Note:

The divisor line and XOR are
missing if the corresponding

bit in the divisor is O.

dn-k—l d1 d0
cos ~€— — Dataword
Fn-k-1 M fo
a. Encoder
dn—k—] d1}}< dol ;
Received
cee € (1 <P codeword
Sn-k-1 51 50
b. Decoder

10.65

Figure 10.21 A polynomial to represent a binary word

ag as ay as a, a ag
1 0 0 0 0 1 1 1 0
\
e+ ox + ox* + o+ ox? + oIx! + 1O x°
a. Binary pattern and polynomial b. Short form

10.66

Figure 10.22 CRC division using polynomials

Dataword| x3 + 1

Divisor X Dividend:
X3 + x + 1 x6 + x3 - augmented
W6 £+ 53 dataword
x4

x* + x2 + x

x2 + x | Remainder

'

Codeword| x6 + x3 | x2 + x

Dataword Remainder

10.67

T

‘ Note I

The divisor in a cyclic code is normally
called the generator polynomial
or simply the generator.

10.68

T

‘ Note \
In a cyclic code,

If s(x) # 0, one or more bits Is corrupted.
If s(x) =0, either

a. No bit is corrupted. or
b. Some bits are corrupted, but the
decoder failed to detect them.

10.69

T

‘ Note I

In a cyclic code, those e(x) errors that
are divisible by g(x) are not caught.

10.70

T

‘ Note I

If the generator has more than one term
and the coefficient of x°is 1,
all single errors can be caught.

10.71

| Example 10.15

Which of the following g(x) values guarantees that a
single-bit error is caught? For each case, what is the
error that cannot be caught?

a x+1 b. x3 c. 1

Solution

a. No x' can be divisible by x + 1. Any single-bit error can
be caught.

b. If i is equal to or greater than 3, x'is divisible by g(x).
All single-bit errors in positions 1 to 3 are caught.
c. All values of i make x' divisible by g(x). No single-bit
error can be caught. This g(x) is useless.

10.72

Figure 10.23 Representation of two isolated single-bit errors using polynomials

Difference: j - i

- .

011710111111 10]11T10171T10]0]1010|1]1

10.73

T

‘ Note I

If a generator cannot divide xt+ 1
(t between 0 and n - 1),
then all isolated double errors
can be detected.

10.74

| Example 10.16

Find the status of the following generators related to two
isolated, single-bit errors.
a.x+1 b.x*+1 c.x7+xt+1 d.xP+x¥+1

Solution

a. This is a very poor choice for a generator. Any two
errors next to each other cannot be detected.

b. This generator cannot detect two errors that are four
positions apart.

c. This is a good choice for this purpose.

d. This polynomial cannot divide x' + 1 if t is less than
32,768. A codeword with two isolated errors up to
32,768 bits apart can be detected by this generator.

10.75

T

‘ Note I

A generator that contains a factor of
X + 1 can detect all odd-numbered
errors.

10.76

‘ Note \

10.77

All burst errors with L < r will be
detected.

All burst errors with L = r + 1 will be
detected with probability 1 - (1/2)".
All burst errors with L > r + 1 will be
detected with probability 1 - (1/2)".

| Example 10.17

Find the suitability of the following generators in relation
to burst errors of different lengths.
a xs+1 b. x®¥+x7+x+1 C. X2+ x3+x7+1

Solution

a. This generator can detect all burst errors with a length
less than or equal to 6 bits; 3 out of 100 burst errors
with length 7 will slip by; 16 out of 1000 burst errors of
length 8 or more will slip by.

10.78

| Example 10.17 (continued)

b. This generator can detect all burst errors with a length
less than or equal to 18 bits; 8 out of 1 million burst
errors with length 19 will slip by; 4 out of 1 million
burst errors of length 20 or more will slip by.

c. This generator can detect all burst errors with a length
less than or equal to 32 bits; 5 out of 10 billion burst
errors with length 33 will slip by; 3 out of 10 billion
burst errors of length 34 or more will slip by.

10.79

T

‘ Note \

A good polynomial generator needs to

have the following characteristics:

1. It should have at least two terms.

2. The coefficient of the term x° should
be 1.

3. It should not divide xt+ 1, for t
between 2 and n - 1.

4. It should have the factor x + 1.

10.80

Table 10.7 Standard polynomials

Name Polynomial Application
CRC-8 B+xP+x+1 ATM header
CRC-10 | x4+ 7+ +x*+x%+1 ATM AAL
CRC-16 | x"+x2+x+1 HDLC
CRC-32 D e 1 L ER s LANSs

S+ 20+ + % +x+1

10.81

The last error detection method we discuss here is
called the checksum. The checksum is used in the
Internet by several protocols although not at the data
link layer. However, we briefly discuss it here to
complete our discussion on error checking

in thi n:

i
Idea

One’s Complement
Internet Checksum

10.82

Example 10.18

Suppose our data is a list of five 4-bit numbers that we
want to send to a destination. In addition to sending these
numbers, we send the sum of the numbers. For example,
if the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12,
0, 6, 36), where 36 is the sum of the original numbers.
The receiver adds the five numbers and compares the
result with the sum. If the two are the same, the receiver
assumes no error, accepts the five numbers, and discards
the sum. Otherwise, there is an error somewhere and the
data are not accepted.

10.83

| Example 10.19

We can make the job of the receiver easier if we send the
negative (complement) of the sum, called the checksum.
In this case, we send (7, 11, 12, 0, 6, —36). The receiver
can add all the numbers received (including the
checksum). If the result is 0, it assumes no error;
otherwise, there is an error.

10.84

| Example 10.20

How can we represent the number 21 in one’s
complement arithmetic using only four bits?

Solution

The number 21 in binary is 10101 (it needs five bits). We
can wrap the leftmost bit and add it to the four rightmost
bits. We have (0101 + 1) = 0110 or 6.

10.85

| Example 10.21

How can we represent the number -6 iIn one’s
complement arithmetic using only four bits?

Solution

In one’s complement arithmetic, the negative or
complement of a number is found by inverting all bits.
Positive 6 is 0110; negative 6 is 1001. If we consider only
unsigned numbers, this is 9. In other words, the
complement of 6 is 9. Another way to find the complement
of a number in one’s complement arithmetic is to subtract
the number from 2" — 1 (16 — 1 in this case).

10.86

| Example 10.22

Let us redo Exercise 10.19 using one’s complement
arithmetic. Figure 10.24 shows the process at the sender
and at the receiver. The sender initializes the checksum
to 0 and adds all data items and the checksum (the
checksum is considered as one data item and is shown in
color). The result is 36. However, 36 cannot be expressed
in 4 bits. The extra two bits are wrapped and added with
the sum to create the wrapped sum value 6. In the figure,
we have shown the details in binary. The sum is then
complemented, resulting in the checksum value 9 (15 - 6
= 9). The sender now sends six data items to the receiver
including the checksum 9.

10.87

| Example 10.22 (continued)

The receiver follows the same procedure as the sender. It
adds all data items (including the checksum); the result
is 45. The sum is wrapped and becomes 15. The wrapped
sum is complemented and becomes 0. Since the value of
the checksum is 0, this means that the data is not
corrupted. The receiver drops the checksum and keeps
the other data items. If the checksum is not zero, the
entire packet is dropped.

10.88

Figure 10.24 Example 10.22

10.89

Sender site

7
11
12
o)
6
0

Receiver site

Sum —>» 36
Wrapped sum —>» 6
Checksum —>» 9

7,11,12,0,6,9

1T001T0O 36
10
0110 6
1000 9

Details of wrapping
and complementing

Packet

7
11
12
0
6
9

Sum —> 45
Wrapped sum —>» 15
Checksum —>» 0

101101 45
10

0110 15
1000 0

Details of wrapping
and complementing

T

‘ Note \

Sender site:

1. The message is divided into 16-bit words.

2. The value of the checksum word is set to 0.

3. All words including the checksum are
added using one’s complement addition.

4. The sum is complemented and becomes the
checksum.

5. The checksum is sent with the data.

10.90

T

‘ Note \

Recelver site:

1.

2.

10.91

The message (including checksum) is
divided into 16-bit words.

All words are added using one’s
complement addition.

. The sum is complemented and becomes the

new checksum.

. If the value of checksum is 0, the message

Is accepted; otherwise, it is rejected.

Example 10.23

Let us calculate the checksum for a text of 8 characters
(“Forouzan”). The text needs to be divided into 2-byte
(16-bit) words. We use ASCII (see Appendix A) to change
each byte to a 2-digit hexadecimal number. For example,
F is represented as 0x46 and o is represented as 0x6F.
Figure 10.25 shows how the checksum is calculated at the
sender and receiver sites. In part a of the figure, the value
of partial sum for the first column is 0x36. We keep the
rightmost digit (6) and insert the leftmost digit (3) as the
carry in the second column. The process is repeated for
each column. Note that if there is any corruption, the
checksum recalculated by the receiver is not all 0s. We

leave this an exercise.
10.92

Figure 10.25 Example 10.23

1T 0 1 3 Carries 1T 0 1 3 Carries
4 6 6 F (Fo) 4 6 6 F (Fo)
7 2 6 7 (ro) 7 2 6 7 (ro)
7 5 7 A (uz) 7 5 7 A (uz)
6 1 6 E (an) 6 1 6 E (an)
O 0 0O Checksum (initial) 7 0 3 8 Checksum (received)
8 F C 6 Sum (partial) F F F E Sum (partial)

> >
8 F C 7 Sum 8 F C 7 Sum
7 0 3 8 Checksum (to send) O 0 0 O Checksum (new)
a. Checksum at the sender site a. Checksum at the receiver site

10.93

T ¢+ Data Communications
¥y and Networking rousnstio Forouzan

Chapter 11
Data Link Control

]_ 1 .]_ Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The data link layer needs to pack bits into frames, so
that each frame is distinguishable from another. Our
postal system practices a type of framing. The simple
act of inserting a letter into an envelope separates one
piece of information from another; the envelope serves
as the delimiter.

Topics discussed in this sections

Fixed-Size Framing
Variable-Size Framing

11.2

Figure 11.1 A frame in a character-oriented protocol

-

Data from upper layer

—

Variable number of characters

Flag

11.3

Header

Trailer

Flag

Figure 11.2 Byte stuffing and unstuffing

Data from upper layer

Flag ESC

Frame sent Stuffed Y

Extra 2
bytes

Frame received

| Flag ‘ Header ‘ ‘ ESC ‘ Flag ‘ ‘ ESC ‘ ESC ‘ ‘ Trailer ‘ Flag I

Unstuffed
Y

Flag ESC
Data to upper layer

11.4

T

‘ Note I

Byte stuffing is the process of adding 1
extra byte whenever there is a flag or
escape character in the text.

11.5

Figure 11.3 A frame in a bit-oriented protocol

Data from upper layer

A

Y
>

Variable number of bits

01111110 Header 01111010110 s+« 11011110 | Trailer [01111110

Flag Flag

11.6

T

‘ Note \

Bit stuffing is the process of adding one
extra 0 whenever five consecutive 1s
follow a 0 Iin the data, so that the
receiver does not mistake
the pattern 0111110 for a flag.

11.7

Figure 11.4 Bit stuffing and unstuffing

Data from upper layer

0O001111111001111107000

Frame sent Stuffed ¢
Flag Header 000111110110011111001000| Trailer | Flag
Extra 2
bits
Frame received v y

000111116110011111001000 Trailer

Unstuffed

PDOOT111111001111101000
Data to upper layer

11.8

The most important responsibilities of the data link
layer are flow control and error control. Collectively,
these functions are known as data link control.

ics di in
Flow Control
Error Control

2

11.9

1

‘ Note I

Flow control refers to a set of procedures
used to restrict the amount of data
that the sender can send before
waiting for acknowledgment.

11.10

T

‘ Note I

Error control in the data link layer is
based on automatic repeat request,
which iIs the retransmission of data.

11.11

11-3 PROTOCOLS

Now let us see how the data link layer can combine
framing, flow control, and error control to achieve the
delivery of data from one node to another. The
protocols are normally implemented in software by
using one of the common programming languages. To
make our discussions language-free, we have written
in pseudocode a version of each protocol that
concentrates mostly on the procedure instead of
delving into the details of language rules.

11.12

Figure 11.5 Taxonomy of protocols discussed in this chapter

Protocols
For noiseless For noisy
channel channel
— Simplest — Stop-and-Wait ARQ
Stop-and-Wait Go-Back-N ARQ

— Selective Repeat ARQ

11.13

Let us first assume we have an ideal channel in which
no frames are lost, duplicated, or corrupted. We
introduce two protocols for this type of channel.

ics di in thi ns
Simplest Protocol
Stop-and-Wait Protocol

11.14

Figure 11.6 The design of the simplest protocol with no flow or error control

Receiver

Deliver data |} Network

Data link

A

Receive frame | Physical

Sender
Network| Getdata
| A
* |
Data link
]
|
Physical| Send frame
Data frames —>
Y Y Y] Y Y Y [
Event: Request from
network layer

Repeat forever

Repeat forever

Notification from

Event: .
physical layer

11.15

Algorithm 11.1 Sender-site algorithm for the simplest protocol

1 while(true)

2 |[{

3 WaitForEvent () ;

4 if (Event (RequestToSend))
5 {

6 GetData() ;

7 MakeFrame() ;

8 SendFrame () ;

9 }

10 |}

// Repeat forever

// Sleep until an event occurs
//There is a packet to send

//Send the frame

11.16

Algorithm 11.2 Receiver-site algorithm for the simplest protocol

1 while(true) // Repeat forever

2 |{

3 WaitForEvent () ; // Sleep until an event occurs
4 if (Event (ArrivalNotification)) //Data frame arrived

5 {

6 ReceiveFrame () ;

7 ExtractData() ;

8 DeliverData() ; //Deliver data to network layer
9 }
10 |}

11.17

Example 11.1

Figure 11.7 shows an example of communication using
this protocol. It is very simple. The sender sends a
sequence of frames without even thinking about the
receiver. To send three frames, three events occur at the
sender site and three events at the receiver site. Note that
the data frames are shown by tilted boxes; the height of
the box defines the transmission time difference between
the first bit and the last bit in the frame.

11.18

Figure 11.7 Flow diagram for Example 11.1

Sender Receiver

(4] (&

|
|
Request _*Frame\l

I —— > Arival
Request —)'Frame\'

> Arival

Request —)'Frame\l
e —— > Anival

Y

|
Time Time

11.19

Figure 11.8 Design of Stop-and-Wait Protocol

Sender Receiver
Deliver
Network Get data data Network

| A
\ |

Data link Data link
Y |
Physical | Receive Send Receive Send | physical
frame frame frame frame
Data frame
O —
-«—m@ ACKframe
Event: Request from
network layer

Repeat forever Repeat forever

Notification from E .| Notification from
vent: .
physical layer

Event: .
physical layer

11.20

Algorithm 11.3 Sender-site algorithm for Stop-and-Wait Protocol

1 while(true) / /Repeat forever

2 |canSend = true //Allow the first frame to go

3 {

4 WaitForEvent () ; // Sleep until an event occurs
5 if (Event (RequestToSend) AND canSend)

6 {

7 GetData() ;

8 MakeFrame () ;

9 SendFrame () ; //Send the data frame
10 canSend = false; //Cannot send until ACK arrives
11 }
12 WaitForEvent () ; // Sleep until an event occurs
13 if (Event (ArrivalNotification) // An ACK has arrived
14 {
15 ReceiveFrame () ; //Receive the ACK frame
16 canSend = true;
17 }
18 |}

11.21

Algorithm 11.4 Receiver-site algorithm for Stop-and-Wait Protocol

1 while(true) / /Repeat forever
2 |{
3 WaitForEvent () ; // Sleep until an event occurs
4 if (Event (ArrivalNotification)) //Data frame arrives
5 {
6 ReceiveFrame () ;
7 ExtractData() ;
8 Deliver (data) ; //Deliver data to network layer
9 SendFrame () ; //Send an ACK frame
10 }
11 |}

11.22

Example 11.2

Figure 11.9 shows an example of communication using
this protocol. It is still very simple. The sender sends one
frame and waits for feedback from the receiver. When the
ACK arrives, the sender sends the next frame. Note that
sending two frames in the protocol involves the sender in
four events and the receiver in two events.

11.23

Figure 11.9 Flow diagram for Example 11.2

Sender Recelver
A B
Request I
Arrival
Arrival :
|
|
Request '
| Arrival
l
|
Arrival :
| .
Y : Y
Time Time

11.24

Although the Stop-and-Wait Protocol gives us an idea
of how to add flow control to its predecessor, noiseless
channels are nonexistent. We discuss three protocols
in this section that use error control.

ics di in thi jon:
Stop-and-Wait Automatic Repeat Request
Go-Back-N Automatic Repeat Request
Selective Repeat Automatic Repeat Request

11.25

1

‘ Note I

Error correction in Stop-and-Wait ARQ is
done by keeping a copy of the sent
frame and retransmitting of the frame
when the timer expires.

11.26

1

‘ Note I

In Stop-and-Wait ARQ, we use sequence
numbers to number the frames.
The sequence numbers are based on
modulo-2 arithmetic.

11.27

T

‘ Note \
In Stop-and-Wait ARQ, the
acknowledgment number always
announces in modulo-2 arithmetic the
sequence number of the next frame
expected.

11.28

Figure 11.10 Design of the Stop-and-Wait ARQ Protocol

11.29

S, Nextframe

Sender
Network Get data
Y
Data link
Physical Receive Send

frame frame

Data frame

I_T__

segNo

| Coee. —

R, Nextframe

to receive
F- - -1 - - - g - <= r=--1

eee 1 0O 1 1 ‘ T 1 0O 1 eee
| R R | C . R |

Receiver
ACK frame Deliver
LT‘E- data Network
ackNo 4«
I
Data link
Receive Send | physical
frame frame
<[

Request from

Event:
network layer

Repeat forever vy

Algorithm for sender site

i Time-out

Event:

A

Notification from

Event: .
physical layer

Repeat forever

Algorithm for receiver site

A

Notification from

Event:)
physical layer

Algorithm 11.5 Sender-site algorithm for Stop-and-Wait ARQ

11.30

18, = 0; // Frame 0 should be sent first
2 |canSend = true; // Allow the first request to go
3 while(true) // Repeat forever

4 |{

5 WaitForEvent () ; // Sleep until an event occurs

6 if (Event (RequestToSend) AND canSend)

7 {

8 GetData() ;

9 MakeFrame (S,) ; //The segNo is S,

10 StoreFrame(S,) ; //Keep copy

11 SendFrame (S,) ;

12 StartTimer () ;

13 S, = S, + 1;

14 canSend = false;

15 }

16 WaitForEvent () ; // Sleep

(continued)

Algorithm 11.5 Sender-site algorithm for Stop-and-Wait ARQ (continued)

17 if (Event (ArrivalNotification) // An ACK has arrived
18 {

19 ReceiveFrame (ackNo) ; //Receive the ACK frame
20 if (not corrupted AND ackNo == S,) //Valid ACK

21 {

22 Stoptimer () ;

23 PurgeFrame (S _4) ; //Copy is not needed
24 canSend = true;

25 }

26 }

27

28 if (Event (TimeOut) // The timer expired
29 {

30 StartTimer () ;

31 ResendFrame(S,_q) ; //Resend a copy check
32 }

33 [}

11.31

Algorithm 11.6 Receiver-site algorithm for Stop-and-Wait ARQ Protocol

=

O W 0o O U1 b W

F R RRPRRRERRR
N o WwWN R

Y
co

{

R, = 0;
while (true)

WaitForEvent () ;

if (Event (ArrivalNotification)) //Data frame arrives

{

ReceiveFrame () ;

if (corrupted (frame));

sleep();

if (segNo == R,)

{

}

ExtractData() ;
DeliverData () ;
R, = R, + 1;

SendFrame (R,) ;

// Frame 0 expected to arrive first

// Sleep until an event occurs

//Valid data frame

//Deliver data

//Send an ACK

11.32

| Example 11.3

Figure 11.11 shows an example of Stop-and-Wait ARQ.
Frame 0 is sent and acknowledged. Frame 1 is lost and
resent after the time-out. The resent frame 1 is
acknowledged and the timer stops. Frame 0 is sent and
acknowledged, but the acknowledgment is lost. The
sender has no idea if the frame or the acknowledgment
is lost, so after the time-out, it resends frame 0, which is
acknowledged.

11.33

Figure 11.11 Flow diagram for Example 11.3

Sender Receiver

Start ! 110 R

10| 011Or11 Arrival

Stop

Time-out I/)
restart

Time-out 9
restart e
S ! Discard, duplicate
Stop @ Arrivalip_:j_:_(_) 0:1: |
I
\ \
Time Time

11.34

| Example 11.4

Assume that, in a Stop-and-Wait ARQ system, the
bandwidth of the line is 1 Mbps, and 1 bit takes 20 ms to
make a round trip. What is the bandwidth-delay product?
If the system data frames are 1000 bits in length, what is
the utilization percentage of the link?

Solution
The bandwidth-delay product is

11.35

| Example 11.4 (continued)

The system can send 20,000 bits during the time it takes
for the data to go from the sender to the receiver and then
back again. However, the system sends only 1000 bits. We
can say that the link utilization is only 1000/20,000, or 5
percent. For this reason, for a link with a high bandwidth
or long delay, the use of Stop-and-Wait ARQ wastes the
capacity of the link.

11.36

| Example 11.5

What is the utilization percentage of the link in
Example 11.4 if we have a protocol that can send up to
15 frames before stopping and worrying about the
acknowledgments?

Solution

The bandwidth-delay product is still 20,000 bits. The
system can send up to 15 frames or 15,000 bits during a
round trip. This means the utilization is 15,000/20,000, or
75 percent. Of course, if there are damaged frames, the
utilization percentage is much less because frames have to
be resent.

11.37

T

‘ Note I

In the Go-Back-N Protocol, the sequence
humbers are modulo 2™,
where m is the size of the sequence
number field in bits.

11.38

Figure 11.12 Send window for Go-Back-N ARQ

Send window,
next frame to send

S Send window, S
first outstanding frame

Frames that can be sent,
but not received from upper layer

Frames sent, but not

Frames already
acknowledged (outstanding)

acknowledged

Frames that
cannot be sent

3 rl‘

Send window, size S, =2M - 1

-
-

a. Send window before sliding

-13-14.15.011:2

| 7 |8]9 |10]11[12]13]14]15] 0] 1|

b. Send window after sliding

11.39

T

‘ Note I

The send window Is an abstract concept
defining an imaginary box of size 2™ -1
with three variables: S;, S,, and Sg,..

11.40

T

‘ Note I

The send window can slide one
or more slots when a valid
acknowledgment arrives.

11.41

Figure 11.13 Receive window for Go-Back-N ARQ

R, Receive window, next frame expected

-r-- =TTr=-"i

f'8'9'10'11'12'13'14'15IOi'Il

e I e [[

F===p=== memepmemp==ap-
|

1131141151 01 112 41516

Frames that cannot be received
until the window slides

Frames already received
and acknowledged

a. Receive window

g g -
!

1131141151 01 1

- e e I Y N -

“r---r-=--r-= -
!

61 71819110111 1121131141151 0 1 1 1

b. Window after sliding

11.42

‘ Note \

The receive window is an abstract

concept defining an imaginary box

of size 1 with one single variable R,.
The window slides

when a correct frame has arrived;

sliding occurs one slot at a time.

11.43

Figure 11.14 Design of Go-Back-N ARQ

First s Next R, Next
outstanding J to send " to receive
Sender Receiver
Data frame ACK frame Deliver
Network Get data data Network
| seqNo ackNo A
Y I
Data link Data link

S L] |

Physical Receive Send
frame frame

Receive Send

Physical
frame frame

I T T T T I
-—[1. (- -
Event: Request from
network layer
Repeat forever vy @ Repeat forever

Algorithm for sender site Algorithm for receiver site

T f

Notification from Event:
physical layer vent

Notification from
Event:

physical layer

11.44

Figure 11.15 Window size for Go-Back-N ARQ

11.45

Sender

Sf Sn
0
Sf Sn

| b
Time-out l

Receiver

Correctly
discarded

Sender
S¢ S
£
® HELT e,
Sf Sn
e S|
S¢ S,
4y
m ,;30792
S¢ Sh
s s
Sf Sn
e S|
Time-out <o

a. Window size < 2™

Receiver

Erroneously
accepted

b. Window size = 2™

T

‘ Note I

In Go-Back-N ARQ, the size of the send
window must be less than 2™;
the size of the receiver window
Is always 1.

11.46

Algorithm 11.7 Go-Back-N sender algorithm

11.47

1 s, = 25 - 1;

2 S¢ = 0;

3 S, = 0;

4

5 while (true) //Repeat forever

6 |{

7 | WaitForEvent () ;

8 if (Event (RequestToSend)) //A packet to send
9 {

10 if(S,-S¢g >= S,) //If window is full
11 Sleep();

12 GetData() ;

13 MakeFrame (S,) ;

14 StoreFrame (S,) ;

15 SendFrame (S,) ;

16 S, = S, + 1;

17 if (timer not running)

18 StartTimer () ;

19 }
20

(continued)

Algorithm 11.7 Go-Back-N sender algorithm

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

(continued)
if (Event (ArrivalNotification)) //ACK arrives
{
Receive (ACK) ;
if (corrupted (ACK))
Sleep();
if ((ackNo>S¢) && (ackNo<=S,)) //If a valid ACK
While (Sg <= ackNo)
{
PurgeFrame (S¢) ;
Sg = S¢g + 1;
}
StopTimer () ;

if (Event (TimeOut)) //The timer expires
{
StartTimer () ;
Temp = Sg¢;
while(Temp < S,);
{
SendFrame (S¢) ;
Sg = S¢g + 1;
}

11.48

Algorithm 11.8 Go-Back-N receiver algorithm

W oo O 01 i WDN PR

FRRPRRRRPRERRBR
o N WD RO

=
O

while (true) //Repeat forever

{
WaitForEvent () ;

if (Event (ArrivalNotification)) /Data frame arrives

{

Receive (Frame) ;
if (corrupted (Frame))

Sleep();
if (segqNo == R,) //If expected frame
{
DeliverData() ; //Deliver data
R, = R, + 1; //S1lide window

SendACK (R,) ;
}

11.49

‘ Example 11.6

Figure 11.16 shows an example of Go-Back-N. This is an
example of a case where the forward channel is reliable,
but the reverse is not. No data frames are lost, but some
ACKs are delayed and one is lost. The example also
shows how cumulative acknowledgments can help if
acknowledgments are delayed or lost. After initialization,
there are seven sender events. Request events are
triggered by data from the network layer; arrival events
are triggered by acknowledgments from the physical
layer. There is no time-out event here because all
outstanding frames are acknowledged before the timer
expires. Note that although ACK 2 is lost, ACK 3 serves as
both ACK 2 and ACK 3.

11.50

Figure 11.16 Flow diagram for Example 11.6

Sender Receiver
Start [A l B l R
timer St S ‘ | ! 4
@ nital [o]1]2[3[4[s[6[7]0[1]2] i i1|2]3|4|5|6|7||nitia|
St S : :
|

n
[112]3]4]5]6]7]0]1]2 |

Request

2(3]4[5]6]|7| Arrival

timer

Arrival :
I |
Sf Sn : : Rn
Request [ofl2[3[4|5]|6]|7]0[1]2 Frame 1 I
| o[1[2]3]4]5[6]7] Arrival
Sf Sn |
I |
request [OIBIS[4[5]617 o[\ 2+ {Framez o= | N
| -
S¢ Sh : Lost O|1 |2i4[5|6|7| Arrival
Feauest (oM sJol/JoT1 2} {Frames g | 3,
7 [>n | O|1|2|3-5|6|7|Arrival
Arrival - [0]1]2@4[5[6]7]0[1]2] i
I |
St 11 S ! !
s Armival [0[1]2]34]5]6]7]0[1]2 |
op v
Time Time

11.51

| Example 11.7

Figure 11.17 shows what happens when a frame is lost.
Frames 0, 1, 2, and 3 are sent. However, frame 1 is lost.
The receiver receives frames 2 and 3, but they are
discarded because they are received out of order. The
sender receives no acknowledgment about frames 1, 2, or
3. Its timer finally expires. The sender sends all
outstanding frames (1, 2, and 3) because it does not know
what is wrong. Note that the resending of frames 1, 2, and
3 is the response to one single event. When the sender is
responding to this event, it cannot accept the triggering of
other events. This means that when ACK 2 arrives, the
sender is still busy with sending frame 3.

11.52

| Example 11.7 (continued)

The physical layer must wait until this event is completed
and the data link layer goes back to its sleeping state. We
have shown a vertical line to indicate the delay. It is the
same story with ACK 3; but when ACK 3 arrives, the
sender is busy responding to ACK 2. It happens again
when ACK 4 arrives. Note that before the second timer
expires, all outstanding frames have been sent and the
timer is stopped.

11.53

Figure 11.17 Flow diagram for Example 11.7

Sender

Star &)
timer Sf"||'Sn |
@ ininial [o[1]2[3]4]s]6[7[o[1]2] |
I
1
|

Sf |_Sn
1]2]3]4[5]6[7]0]1]2

Request

Request

Request

Request
Time-out
Time-out
Restart
Arrival
Arrival
® Arrival
Stop
timer

11.54

Receiver

R

n
Oz [5[6[7] Arrival
R

| No action

2(3 Arrival

O|1'3|4|5|6|7|Arriva|
Rn
0|1|2.4|5|6|7| Arrival

Rn

o[1 |2|3'5|6|7| Arrival

T

‘ Note I

Stop-and-Wait ARQ is a special case of
Go-Back-N ARQ in which the size of the
send window is 1.

11.55

Figure 11.18 Send window for Selective Repeat ARQ

Send window, first S S, Send window,
outstanding frame next frame to send

'131 14115 4] 5[6 7819110111 1121131141150 0 1 1
Frames already | Frames sent, but Frames that can Frames that
acknowledged | not acknowledged be sent cannot be sent
> < >l
Size = 2m!

11.56

Figure 11.19 Receive window for Selective Repeat ARQ

R Receive window,
n

next frame expected

SEBNCERERNENNENEN N

17127137 141150 0 1 1 1
- =1 1 A A | 4

- - - —-_—d == -

- Tr---i

Frames that can be received
Frames already and stored for later delivery. Frames that
received Colored boxes, already received cannot be received
_ ayMm-1
~ Rsize =2 -

11.57

Figure 11.20 Design of Selective Repeat ARQ

First

Next

outstanding . " to send

Sender

R Next
n .
to receive

Receiver
Data frame ACK or NAK Deliver
Network Get data data Network
| seqNo ackNo A
Y or I
Data link nakNo Data link
Physical | Receive Send Receive Send | physical
frame frame frame frame
—_—
I [T T . I
-—— 1. -
Event: Request from
network layer
Repeat forever vy . Repeat forever

Algorithm for sender site

Event:

A

Notification from

Event: -
physical layer

Algorithm for receiver site

A

Event:

Notification from
physical layer

11.58

Figure 11.21 Selective Repeat ARQ, window size

S¢

® [T

Sf l_Sn

e

Sf |_Sn

| BET
Time-out

Sender

Sn

\ o[1]2]3

Receiver

Y Correctly
discarded

Sf |_ Sn
310
Sf |_ Sn
o 310
Time-out

Sender

21310

N
I
7))
S~
5]
= [~
o
(@]
—

&
0|1(2(3]0]1

Receiver

rq €2 n
Fra Rn

Y [Erroneously
accepted

a. Window size =

11.59

2m'1

b. Window size >

2m'1

T

‘ Note I

In Selective Repeat ARQ, the size of the
sender and receiver window
must be at most one-half of 2.

11.60

Algorithm 11.9 Sender-site Selective Repeat algorithm

1 Sy = om-1 H
2 8¢ = 0;
3 S, = 0;
4
5 while (true) //Repeat forever
6 |{
7 WaitForEvent () ;
8 if (Event (RequestToSend)) //There is a packet to send
9 {
10 if(S,-S¢g >= S,) //If window is full
11 Sleep();
12 GetData() ;
13 MakeFrame (S,) ;
14 StoreFrame (S,) ;
15 SendFrame (S,) ;
16 S, = S, + 1;
17 StartTimer (S,) ;
18 }
19
(continued)

11.61

Algorithm 11.9 Sender-site Selective Repeat algorithm

(continued)
20 if (Event (ArrivalNotification)) //ACK arrives
21 {
22 Receive (frame) ; //Receive ACK or NAK
23 i1f (corrupted(frame))
24 Sleep () ;
25 if (FrameType == NAK)
26 if (nakNo between S and S,)
27 {
28 resend (nakNo) ;
29 StartTimer (nakNo) ;
30 }
31 if (FrameType == ACK)
32 if (ackNo between S and S,)
33 {
34 while(s¢g < ackNo)
35 {
36 Purge (s¢) ;
37 StopTimer (s¢) ;
38 S¢g = S¢g + 1;
39 }
40 }
41 }
11.62 (continued)

Algorithm 11.9 Sender-site Selective Repeat algorithm

42
43
44
45
46
47
48

if (Event (TimeOut (t)))
{

StartTimer(t);
SendFrame (t) ;

}

(continued)

//The timer expires

11.63

Algorithm 11.10 Receiver-site Selective Repeat algorithm

11.64

1 R, = 0;

2 NakSent = false;

3 |AckNeeded = false;

4 Repeat (for all slots)

5 Marked(slot) = false;

6

7 while (true) //Repeat forever
8 |{

9 WaitForEvent () ;

10

11 if (Event (ArrivalNotification)) /Data frame arrives
12 {

13 Receive (Frame) ;

14 if (corrupted(Frame)) && (NOT NakSent)
15 {

16 SendNAK (R,) ;

17 NakSent = true;

18 Sleep () ;

19 }

20 if (segNo <> R,)&& (NOT NakSent)

21 {

22 SendNAK (R,) ;

Algorithm 11.10 Receiver-site Selective Repeat algorithm

23 NakSent = true;

24 if ((segNo in window) && (!Marked (segNo))
25 {

26 StoreFrame (segNo)
27 Marked (segNo)= true;
28 while (Marked (R,))
29 {

30 DeliverData (Ry) ;
31 Purge (R,) ;

32 R, = R, + 1;

33 AckNeeded = true;
34 }

35 if (AckNeeded) ;

36 {

37 SendAck (Ry) ;

38 AckNeeded = false;
39 NakSent = false;
40 }

41 }

42 }

43 }

44 |}

11.65

Figure 11.22 Delivery of data in Selective Repeat ARQ

R

n

SRECTTER

R ackNo sent: 3

n

0

2 7]0]1]2]3

a. Before delivery

11.66

b. After delivery

Example 11.8

This example is similar to Example 11.3 in which frame 1
is lost. We show how Selective Repeat behaves in this
case. Figure 11.23 shows the situation. One main
difference is the number of timers. Here, each frame sent
or resent needs a timer, which means that the timers need
to be numbered (0, 1, 2, and 3). The timer for frame 0
starts at the first request, but stops when the ACK for this
frame arrives. The timer for frame 1 starts at the second
request, restarts when a NAK arrives, and finally stops
when the last ACK arrives. The other two timers start
when the corresponding frames are sent and stop at the
last arrival event.

11.67

Example 11.8 (continued)

At the receiver site we need to distinguish between the
acceptance of a frame and its delivery to the network
layer. At the second arrival, frame 2 arrives and is stored
and marked, but it cannot be delivered because frame 1 is
missing. At the next arrival, frame 3 arrives and is
marked and stored, but still none of the frames can be
delivered. Only at the last arrival, when finally a copy of
frame 1 arrives, can frames 1, 2, and 3 be delivered to the
network layer. There are two conditions for the delivery of
frames to the network layer: First, a set of consecutive
frames must have arrived. Second, the set starts from the
beginning of the window.
11.68

| Example 11.8 (continued)

Another important point is that a NAK is sent dafter the
second arrival, but not after the third, although both
situations look the same. The reason is that the protocol
does not want to crowd the network with unnecessary
NAKs and unnecessary resent frames. The second NAK
would still be NAK1 to inform the sender to resend frame
1 again; this has already been done. The first NAK sent is
remembered (using the nakSent variable) and is not sent
again until the frame slides. A NAK is sent once for each
window position and defines the first slot in the window.

11.69

| Example 11.8 (continued)

The next point is about the ACKs. Notice that only two
ACKs are sent here. The first one acknowledges only the
first frame; the second one acknowledges three frames. In
Selective Repeat, ACKs are sent when data are delivered to
the network layer. If the data belonging to n frames are
delivered in one shot, only one ACK is sent for all of them.

11.70

Figure 11.23 Flow diagram for Example 11.8

Sender Receiver
A &7
intial {01 [213]4[5[6[7[0] ! (O[T 2[3]a5[6[7] initial
| |
| |

Request

Arrival

Sf Frame 0
Arrival delivered
|
1 Sf Sn ! |
@® reauest pfi2[3[+[5T6]7[o! |
' I
2 5 n I Lost X : R
Request 3(4|5(6]7 Frame 2 .
3 ® ..E.E ! - 0]1]2]3[4[5]6[7] Arrival
n
“P\\k\ Rn
. Request |0] 4]5]6]7]0] i

S¢ S, ! | 0]1] 4|5]6]7] Arrival
. Arrival |0] 4]5]6[7]0

Frame 1 (resend)

S Sn : ACK 4 o
© & o Arival [0[1]2]3]4]5]|6]7]0] —>10]1]2[3]4]5]6[7] Arrival
: : Frames 1,2, 3
Y Y delivered

11.71

Figure 11.24 Design of piggybacking in Go-Back-N ARQ

11.72

____ mmmjm

Network

Data link

Physical

Event:

Send
window

Receive
window

Receive
window

mi ___ mmm

Send
window

Repeat forever vy

Event:

Notification from
physical layer

ackNo
Deliver Get é?_ Frame Deliver Get Network
| Y segNo | Y
Data link
Receive Send Receive Send | physical
frame frame frame frame
M (T TS T e —>
-€— [[[[e
Request from Event: Request from
network layer ‘| network layer
. . Repeat forever vy
Algorithm for - - | Algorithm for
sending and receiving Tléne_OUt | | Tléne_OUt | sending and receiving
vent: vent:
A A

Event:

Notification from
physical layer

High-level Data Link Control (HDLC) is a bit-oriented
protocol for communication over point-to-point and
multipoint links. It implements the ARQ mechanisms

we discussed in this chapter.

ics di in thi jon:
Configurations and Transfer Modes
Frames
Control Field

11.73

Figure 11.25 Normal response mode

Secondary

Command I—>

—~€—— Response I

a. Point-to-point

Secondary Secondary

Primary

Command I—>

-«—— Response I -«—— Response I

b. Multipoint

11.74

Figure 11.26 Asynchronous balanced mode

Combined Combined

‘Command/response I—>

~«—— Command/response I

11.75

Figure 11.27 HDLC frames

Flag |Address | Control

User
information

Address | Control

S-frame

FCS | Flag

Flag | Address | Control

11.76

Management
information

FCS | Flag

|-frame

U-frame

Figure 11.28 Control field format for the different frame types

0 P/F |-frame
N(S) N(R)

110 P/F- S-frame
Code N(R)

111 P/F U-frame
Code Code

11.77

Table 11.1 U-frame control command and response

Code Command | Response Meaning
00 001 | SNRM Set normal response mode
11 011 | SNRME Set normal response mode, extended
11 100 | SABM DM Set asynchronous balanced mode or disconnect mode
11 110 | SABME Set asynchronous balanced mode, extended
00 000 | UI Ul Unnumbered information
00 110 UA Unnumbered acknowledgment
00 010 | DISC RD Disconnect or request disconnect
10 000 | SIM RIM Set initialization mode or request information mode
00 100 | UP Unnumbered poll
11 001 | RSET Reset
11 101 | XID XID Exchange ID
10 001 | FRMR FRMR Frame reject

11.78

| Example 11.9

Figure 11.29 shows how U-frames can be used for
connection establishment and connection release. Node A
asks for a connection with a set asynchronous balanced
mode (SABM) frame; node B gives a positive response
with an unnumbered acknowledgment (UA) frame. After
these two exchanges, data can be transferred between the
two nodes (not shown in the figure). After data transfer,
node A sends a DISC (disconnect) frame to release the
connection; it is confirmed by node B responding with a
UA (unnumbered acknowledgment).

11.79

Figure 11.29 Example of connection and disconnection

Node A Node B
|: U-frame (SABM) |:
[F Control FlF '
' | Mg. I — '
c S| i 2 B1111I1oo(s: a '
o 2| | g g |
E E | |
L.y ! U-frame (UA) !
S -r% | F | F |
Ohql | Contro F |
a L — I Mg | |
I a [A data I !
| gl [11]oof110 S|g |
| |
Data transfer
: U-frame (DISC) :
: II: Control Mg F ||: :
—_|B | C #—'
c | ! g 11 oolo1o data [qife |
= Q@
iE |
Yo U-frame (UA) |
c ¢ : I
S | II: . Control Ma. E ||: |
! l gl 1 oolno data RHB !
— |
Y Y
Time Time

11.80

| Example 11.10

Figure 11.30 shows an exchange using piggybacking.
Node A begins the exchange of information with an

I-frame numbered 0 followed by another I-frame
numbered 1. Node B piggybacks its acknowledgment of
both frames onto an I-frame of its own. Node B’s first

I-frame is also numbered 0 [N(S) field] and contains a 2
in its N(R) field, acknowledging the receipt of A’s frames
1 and 0 and indicating that it expects frame 2 to arrive
next. Node B transmits its second and third I-frames

(numbered 1 and 2) before accepting further frames from
node A.

11.81

| Example 11.10 (continued)

Its N(R) information, therefore, has not changed: B
frames 1 and 2 indicate that node B is still expecting A’s
frame 2 to arrive next. Node A has sent all its data.
Therefore, it cannot piggyback an acknowledgment onto
an I-frame and sends an S-frame instead. The RR code
indicates that A is still ready to receive. The number 3 in
the N(R) field tells B that frames 0, 1, and 2 have all been
accepted and that A is now expecting frame number 3.

11.82

Figure 11.30 Example of piggybacking without error

Node A Node B
|: |-frame (data frame Q) !
! II: Control F II: :
1, (B Cla e
: gl |© Slg I
I |
| I-frame (data frame 1) |
: II: Control F II: :
:— alB Data [(of -»—:
| g 0 Slg |
| |
: [-frame (data frame 0) :
: II: Control F II: :
L alA Clam—
: gl |0 Slg |
| |
: |-frame (data frame 1) :
| |
I II: Control F II: !
:—ﬁ- alA Data (&I —:
1 g O S g |
| |
| |
: |-frame (data frame 2) :
: II: Control F II: :
—<—H alA Cla—
| 9] |° >lo :
| |
: S-frame (RR), an ACK 3 :
! F Control |f|F !
| | B C | |
r a a >
: gl |10 RR S|g :
| |
Y Y

Time Time

11.83

| Example 11.11

Figure 11.31 shows an exchange in which a frame is lost.
Node B sends three data frames (0, 1, and 2), but frame 1
is lost. When node A receives frame 2, it discards it and
sends a REJ frame for frame 1. Note that the protocol
being used is Go-Back-N with the special use of an REJ
frame as a NAK frame. The NAK frame does two things
here: It confirms the receipt of frame 0 and declares that
frame 1 and any following frames must be resent. Node
B, dafter receiving the REJ frame, resends frames 1 and 2.
Node A acknowledges the receipt by sending an RR frame
(ACK) with acknowledgment number 3.

11.84

Figure 11.31 Example of piggybacking with error

Node A Node B
| I-frame (data frame 0) |
| ||: Control F II: |
—<=H, |A Cla———
0 S
g g

|-frame (data frame 1)

||: Control = 'I:
<=, A 5 Data (6 ey
Lost 9 Slg

|-frame (data frame 2)

||: Control F 'I:

Discarded "——@== . |A Clar—
| a a
gl |° g

]
|
S-frame (REJ 1), a NAK |
I
]
|
]

F Control |F
g 10| REJ S

|

|

|

’ | o
|

| aB Ca
! g
|

|

|

|

|

|
|
I-frame (data frame 1) i
|
|

| ||: Control F II: Resent
'—-a A Cla

| gl |° | |
| |
: |-frame (data frame 2) :
: ||: A Control 5 E ||: Resent |
———& - ata S —:
: g 0 S|g !
| |
: S-frame (RR 3), an ACK :
: F Control |F F :
— T c|)l=p—

a
: g| (10 RR S|qg :
| |
Y Y
Time Time

11.85

Although HDLC is a general protocol that can be used
for both point-to-point and multipoint configurations,
one of the most common protocols for point-to-point
access is the Point-to-Point Protocol (PPP). PPP is a
byte-oriented protocol.

ics di in thi jon:
Framing
Transition Phases
Multiplexing
Multilink PPP

11.86

Figure 11.32 PPP frame format

TMTTT1111T—— — 11000000

Flag | Address | Control | Protocol Payload FCS Flag

1 byte 1 byte 1 byte 1o0r2 bytes Variable 2 or4 bytes 1 byte

11.87

T

‘ Note I

PPP is a byte-oriented protocol using
byte stuffing with the escape byte
01111101.

11.88

Figure 11.33 Transition phases

Failed
Carrier
detected Establish -
Carrier Options agreed
dropped by both sides

If authentication

Failed e
A not needed

uthenticate

Terminate

Authentication
successful

(O ’< /, Network ’-(—
s Network layer SHwor

configuration

S |

11.89

Figure 11.34 Multiplexing in PPP

Network Data from different_L 4
layer networking protocols Data
NCP
Data link Ak
layer OSI CP CHAP LCP

// LCP: Link Control Protocol
LCP: 0xC021 AP: Authentication Protocol

AP: 0xC023 and 0xC223 NCP: Network Control Protocol
NCP: 0x8021 and

Data: 0x0021 and

11.90

Figure 11.35 LCP packet encapsulated in a frame

1 1 2 Variable
LCP packet |Code| ID | Length Information
— ——

Payload
(and padding)

Control 0xC021

Flag | Address

11.91

Table 11.2 LCP packets

Code Packet Type Description
0x01 Configure-request Contains the list of proposed options and their values
0x02 Configure-ack Accepts all options proposed
0x03 Configure-nak Announces that some options are not acceptable
0x04 Configure-reject Announces that some options are not recognized
0x05 Terminate-request Request to shut down the line
0x06 Terminate-ack Accept the shutdown request
0x07 Code-reject Announces an unknown code
0x08 Protocol-reject Announces an unknown protocol
0x09 Echo-request A type of hello message to check if the other end is alive
0x0A Echo-reply The response to the echo-request message
0x0B Discard-request A request to discard the packet

11.92

11.93

Table 11.3 Common options

Option Default
Maximum receive unit (payload field size) 1500
Authentication protocol None
Protocol field compression Off
Address and control field compression Off

Figure 11.36 PAP packets encapsulated in a PPP frame

11.94

System

=

|

_

Authenticate-request
>
< Authenticate-ack or authenticate-nak
- - - -~~~ -7 "—7""7"""""""""""""""""""7""7""7""""""="""/""=""=-"”/-\’"-"»"=-"”/-\"=-"=-"/"»"=-""="-"=-""=-"=-"=-"=""=-"=-=====7 1
| 1 1 2 1 Variable 1 Variable :
|
|
: Authenticate-request |Code: 1| ID [Length User name User name Password Password |
| length length :
|
| |
: Authenticate-ack | Code: 2| ID [Length Message User name :
| length I
| |
| |
I Authenticate-nak [Code: 3| ID | Length Message User name :
! length PAP packets |
. !
Flag Address | Control C023 Feilen FCS Flag
16 (and padding)

Figure 11.37 CHAP packets encapsulated in a PPP frame

11.95

System
==
User
-
— —
Challenge
-
Response
c.-
Success or failure
[
___ |
: 1 1 2 1 Variable Variable :
I
|
! Challenge |Code: 1| ID | Length Cl'llallenge SrellEngs Name I
| ength value !
I
I
I
I Response|Code:2| ID | Length Response [HECRSIES Name :
| length value |
I
I
I
I
: Success [Code:3| ID | Length | Message :
| :
I
! Failure |Code:4| ID | Length | Message :
! CHAP packets |
|
L
Payload
Flag Address | Control 0xC223 FCS Flag

(and padding)

Figure 11.38 IPCP packet encapsulated in PPP frame

1 1 2 Variable

IPCP

packet Code ID | Length IPCP information

Payload

Flag Address | Control 0x8021 i) el

FCS Flag

11.96

11.97

Table 11.4 Code value for IPCP packets

Code IPCP Packet
0x01 Configure-request
0x02 Configure-ack
0x03 Configure-nak
0x04 Configure-reject
0x05 Terminate-request
0x06 Terminate-ack
0x07 Code-reject

Figure 11.39 IP datagram encapsulated in a PPP frame

IP packet Header User data

Payload

Flag Address | Control 0x0021 e

FCS Flag

11.98

Figure 11.40 Multilink PPP

PPP

PPP

Logical PPP

Payload

¢ PPP

!

Channel 1

Do)

Payload Payload
Y PPP Y
Payload Payload

Channel 2

Protocol filed: 0x003d

Do

11.99

| Example 11.12

Let us go through the phases followed by a network layer
packet as it is transmitted through a PPP connection.
Figure 11.41 shows the steps. For simplicity, we assume
unidirectional movement of data from the user site to the
system site (such as sending an e-mail through an ISP).

The first two frames show link establishment. We have
chosen two options (not shown in the figure): using PAP
for authentication and suppressing the address control
fields. Frames 3 and 4 are for authentication. Frames 5
and 6 establish the network layer connection using IPCP.

11.100

| Example 11.12 (continued)

The next several frames show that some IP packets are
encapsulated in the PPP frame. The system (receiver)
may have been running several network layer protocols,
but it knows that the incoming data must be delivered to
the IP protocol because the NCP protocol used before the
data transfer was IPCP.

After data transfer, the user then terminates the data link
connection, which is acknowledged by the system. Of
course the user or the system could have chosen to
terminate the network layer IPCP and keep the data link
layer running if it wanted to run another NCP protocol.

11.101

Figure 11.41 An example

11.102

Authenticate

Establish

Network

i
i Configure-request
——Flag C021 |O1l | | Options | Flag |-l
I
| LCP
I
1
i Configure-ack
: §==Flag co21 | {o2| | | Flag
! LCP
|
|
! Authenticate-request
-i— Flag| C023 || O1 Name Password Flag '#
i PAP
i Authenticate-ack
: = co23 [{o1| | | | Name |
I
: PAP
I
i Configure-request
—Flag| 8021 [{o1| | | Options | Flag Hemsp>
: IPCP
|
i Configure-ack
1
| @==Flag| 8021 | |02 | | Flag
: IPCP
v

Figure 11.41 An example (continued)

Data transfer

Termination

11.103

—rig| ozt |[05] | | optons]| |Fiotemd
1 |
i :
i - Flag| C021 m.. Flag —§
i |
: ;
me Tim

¢ »» Data Communications :
- - orouzZzan
' > and Networking rourncdition

Chapter 12

Multiple Access

]_ 2 .]_ Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 12.1 Data link layer divided into two functionality-oriented sublayers

Data link layer

Data link control

Multiple-access resolution

12.2

Figure 12.2 Taxonomy of multiple-access protocols discussed in this chapter

Multiple-access
protocols
Random access Controlled-access Channelization
protocols protocols protocols

— ALOHA — Reservation —— FDMA
— CSMA ___ polling ___ TDMA
— CSMA/CD — Token passing — CDMA
— CSMA/CA

12.3

12-1 RANDOM ACCESS

In random access or contention methods, no station is
superior to another station and none is assigned the
control over another. No station permits, or does not
permit, another station to send. At each instance, a
station that has data to send uses a procedure defined
by the protocol to make a decision on whether or not to
send.

Topics discussed in this sections
ALOHA

Carrier Sense Multiple Access
Carrier Sense Multiple Access with Collision Detection
Carrier Sense Multiple Access with Collision Avoidance

12.4

Figure 12.3 Frames in a pure ALOHA network

Station 1

Station 2

Station 3

Station 4

12.5

Frame 1.1

Frame 3.2

_______ Frame 1.2
Frame2.1 | Frame 2.2 L
Frame 3.1
________________________ -—— +
Frame41| Frame 4.2
Collision Collision
duration duration

Figure 12.4 Procedure for pure ALOHA protocol

K: Number of attempts
Tp:Maximum propagation time

T;,: Average transmission time for a frame

Tg: Back-off time

Station has

@ a frame to send

K=0 |

Wait Ty time
(Tlg=RxT,0rRxTg)

T

Choose a random
number R between
0and 2X-1

K.... 1S

max
normally 15

12.6

»l

Send the frame

l

Wait time-out time
(2 % Tp)

K=K+ 1

ACK

received?

| Example 12.1

The stations on a wireless ALOHA network are a
maximum of 600 km apart. If we assume that signals
propagate at 3 x 108 m/s, we find

T,= (600 x10°)/(3 x10%) =2 ms.
Now we can find the value of Ty for different values of
K.

a. For K = 1, the range is {0, 1}. The station needs to|

generate a random number with a value of 0 or 1. This

means that Ty is either 0 ms (0 x 2) or 2 ms (1 x 2),
based on the outcome of the random variable.

12.7

| Example 12.1 (continued)

b. For K = 2, the range is {0, 1, 2, 3}. This means that Ty
can be 0, 2, 4, or 6 ms, based on the outcome of the
random variable.

c. For K = 3, the range is {0, 1, 2, 3, 4, 5, 6, 7}. This
means that Tz can be 0, 2, 4, . . ., 14 ms, based on the
outcome of the random variable.

d. We need to mention that if K > 10, it is normally set to
10.

12.8

Figure 12.5 Vulnerable time for pure ALOHA protocol

B’s end A’s end
collides with collides with
A's beginning C’'s beginning

l l

I |

I |

I |

| c |

. B B 5 |

I o |

I I |

: c -

I . A S

I o)

I

I I |

I I c

| [o) C g

| I g L

I I

I I |

1 1 1)_
t-Te t t+Te, Time

| Vulnerable time =2 X T, |

| Example 12.2

A pure ALOHA network transmits 200-bit frames on a
shared channel of 200 kbps. What is the requirement to
make this frame collision-free?

Solution
Average frame transmission time Tj, is 200 bits/200 kbps or

1 ms. The vulnerable time is 2 x 1 ms = 2 ms. This means
no station should send later than 1 ms before this station
starts transmission and no station should start sending
during the one 1-ms period that this station is sending.

12.10

T

‘ Note I

The throughput for pure ALOHA is
S=Gxe 26,
The maximum throughput
S, = 0.184 when G= (1/2).

12.11

| Example 12.3

A pure ALOHA network transmits 200-bit frames on a
shared channel of 200 kbps. What is the throughput if the
system (all stations together) produces

a. 1000 frames per second b. 500 frames per second
c. 250 frames per second.

Solution

The frame transmission time is 200/200 kbps or 1 ms.
a. If the system creates 1000 frames per second, this is 1
frame per millisecond. The load is 1. In this case
S=Gxe?%or S =0.135 (13.5 percent). This means
that the throughput is 1000 x 0.135 = 135 frames. Only
135 frames out of 1000 will probably survive.

12.12

| Example 12.3 (continued)

b. If the system creates 500 frames per second, this is
(1/2) frame per millisecond. The load is (1/2). In this
case S = G x e %6 or S = 0.184 (18.4 percent). This

means that the throughput is 500 % 0.184 = 92 and that

only 92 frames out of 500 will probably survive. Note

that this is the maximum throughput case,
percentagewise.

c. If the system creates 250 frames per second, this is (1/4)
frame per millisecond. The load is (1/4). In this case
S=Gxe—-%*orS =0.152 (15.2 percent). This means

that the throughput is 250 x 0.152 = 38. Only 38

frames out of 250 will probably survive.
12.13

Figure 12.6 Frames in a slotted ALOHA network

Station 1

Station 2

Station 3

Station 4

12.14

Frame 1.1

Slot 1

Collision Collision
duration duration
Frame 1.2
___________________________ L - = _)...
Time
Frame 2.1 Frame 2.2
____________________ - _).
Time
Frame 3.1 Frame 3.2
_____________________ _—— — _)...
Time
Frame 4.1 Frame 4.2
____________ e — - _).
Time
Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

T

‘ Note I

The throughput for slotted ALOHA is
S=Gxe®©,
The maximum throughput
S, = 0.368 when G = 1.

12.15

Figure 12.7 Vulnerable time for slotted ALOHA protocol

A collides with C

i

Begin
(v o)
End

Begin
p
End

Begin
N
End

t-Tg, t t+ T Time

| Vulnerable time =T, |

—) Y
< L I

12.16

| Example 12.4

A slotted ALOHA network transmits 200-bit frames on a
shared channel of 200 kbps. What is the throughput if the
system (all stations together) produces

a. 1000 frames per second b. 500 frames per second
c. 250 frames per second.

Solution

The frame transmission time is 200/200 kbps or 1 ms.

a. If the system creates 1000 frames per second, this is 1
frame per millisecond. The load is 1. In this case
S=Gxe%orS =0.368 (36.8 percent). This means
that the throughput is 1000 % 0.0368 = 368 frames.

Only 386 frames out of 1000 will probably survive.

12.17

| Example 12.4 (continued)

b. If the system creates 500 frames per second, this is
(1/2) frame per millisecond. The load is (1/2). In this
case S = G x e“or S = 0.303 (30.3 percent). This

means that the throughput is 500 % 0.0303 = 151.
Only 151 frames out of 500 will probably survive.

c. If the system creates 250 frames per second, this is (1/4)
frame per millisecond. The load is (1/4). In this case
S=Gxe CorS =0.195 (19.5 percent). This means

that the throughput is 250 x 0.195 = 49. Only 49
frames out of 250 will probably survive.

12.18

Figure 12.8 Space/time model of the collision in CSMA

B starts C starts
at time T, at time t5

{\rea whfere o
A’s signal exists

Area where _
both signals exist

Area where
B’s signal exists

Time Time

12.19

Figure 12.9 Vulnerable time in CSMA

7 X <]

B senses C senses
here here \

. Dsenses
: here
:
]
]

:| Vulnerable time

propagation time

Frame propagation

Y Y

Time Time

12.20

Figure 12.10 Behavior of three persistence methods

Continuously sense

Sense
and transmit

» Time
Busy
a. 1-persistent
Sense
and transmit
Sense Sense
| wait | Wait .
—“ > Time
Busy
b. Nonpersistent
Probability outcome
does not allow transmission. Transmit
| 1 1
Continuously sense 1 o (.
! Time slot | Time slot : Time slot
I I I
» Time

Busy

C. p-persistent

12.21

Figure 12.11 Flow diagram for three persistence methods

12.22

m Busy

Idle

Station can transmit.

l<

Y

Wait
Busy | randomly

Idle

Station can transmit.

a. 1-persistent

b. Nonpersistent

A

Channel?
Busy

Idle

Channel?

Busy

Wait a >p

slot

Probability
outcome?

Use back-off process
as though collision occurred.

Station can transmit.

C. p-persistent

Figure 12.12 Collision of the first bit in CSMA/CD

Transmission

<7

time

to[

A’s collision
detection Collision
and abortion OCCUrs

Time

12.23

C’s collision

detection and

abortion

___________ & — Transmission
__________ t;—time
—_+
Y
Time

Figure 12.13 Collision and abortion in CSMA/CD

Transmission
time

A detects
collision and
aborts

12.24

Time

(&

Collision
OCCurs

C detects
collision
and aborts

Time

Transmission
time

| Example 12.5

A network using CSMA/CD has a bandwidth of 10 Mbps.
If the maximum propagation time (including the delays in
the devices and ignoring the time needed to send a
jamming signal, as we see later) is 25.6 us, what is the
minimum size of the frame?

Solution
The frame transmission time is T, = 2 x T, = 51.2 ps.

This means, in the worst case, a station needs to transmit
for a period of 51.2 us to detect the collision. The
minimum size of the frame is 10 Mbps x 51.2 us = 512
bits or 64 bytes. This is actually the minimum size of the
frame for Standard Ethernet.

12.25

Figure 12.14 Flow diagram for the CSMA/CD

Station has Start
K: Number of attempts a frame to send

Tp: Maximum propagation time
T;,: Average transmission time for a frame Y
Tg: Back-off time K=0
Y
Apply one of the

persistence methods
(1-persistent, nonpersistent,
or p-persistent)

Eligible for transmission
Y
Wait Ty time - (Transmission done) or \Yes
(Tg=RxT,orRxT) ’\ (Collision detected)
A No
Y
Choose a random Transmit
number R between and receive
0and2X-1 T
A
No
Kimax 1S K> K _ P Send a Collision
normally 15 max K=K+1 R jamming signal detected?
Yes No
Y Y

C Abort) C Success)

12.26

Figure 12.15 Energy level during transmission, idleness, or collision

A Energy

Collision

— — >
Frame transmission Frame transmission Time

|dle

12.27

Figure 12.16 Timing in CSMA/CA

Found binary z;zpi-‘c:)ne ntial
idle b .
Continuously sense s
YT VY
B I R Y Sy S
Busy Contention Window cand frame Time-out Time

12.28

T

‘ Note I

In CSMAICA, the IFS can also be used to
define the priority of a station or a
frame.

12.29

T

‘ Note \

In CSMAICA, If the station finds the
channel busy, it does not restart the
timer of the contention window;
it stops the timer and restarts it when
the channel becomes idle.

12.30

Figure 12.17 Flow diagram for CSMA/CA

12.31

Idle No
channel?

Contention window
size is 2%- 1.

After each slot, if idle,
continue; if busy, halt and
continue when idle.

\\T/J‘ AA

¢ Yes

Wait IFS time

&%

Yes

Choose a random
number R between
0and2X-1

Y

Wait R slots.

!

Send frame.

Y

Wait time-out.

received?

In controlled access, the stations consult one another
to find which station has the right to send. A station
cannot send unless it has been authorized by other
stations. We discuss three popular controlled-access
methods.

Topics discussed in this sections

Reservation
Polling
Token Passing

12.32

Figure 12.18 Reservation access method

S
12345 12345 12345
Data Data Data Data
01010010 station 1 11010/0]0 station 4 station 3 station 1 HOPHo
Reservation { T T {
frame

12.33

Figure 12.19 Select and poll functions in polling access method

Primary Primary
== =
| S— | — | .
= = = 1%;‘
T SEL |- — [Poll_
o« —{ ACK |- NAK
Select
—|' Data ,|— N Poll
e —|' Poll ,'-— >
< | ACK |—
_J, Data 'r'
—|' ACK ,L >

12.34

Figure 12.20 Logical ring and physical topology in token-passing access method

Ny T

T 7

B
i {4 S
a. Physical ring b. Dual ring
T 25
Hub
-1 4 i‘ """ 4 l] { 3 l

c. Bus ring d. Star ring

Y

e e e e e — 4

]

"

12.35

Channelization is a multiple-access method in which
the available bandwidth of a link is shared in time,
frequency, or through code, between different stations.
In this section, we discuss three channelization

protocols.

Topics discussed in this sections

Frequency-Division Multiple Access (FDMA)
Time-Division Multiple Access (TDMA)
Code-Division Multiple Access (CDMA)

12.36

T

‘ Note I

We see the application of all these
methods in Chapter 16 when
we discuss cellular phone systems.

12.37

Figure 12.21 Frequency-division multiple access (FDMA)

Data Data

channel

Silent Data

12.38

T

‘ Note I

In FDMA, the available bandwidth
of the common channel is divided into
bands that are separated by guard
bands.

12.39

Figure 12.22 Time-division multiple access (TDMA)

Data Data

channel

Silent Data

12.40

T

‘ Note I

In TDMA, the bandwidth is just one
channel that is timeshared between
different stations.

12.41

T

‘ Note I

In CDMA, one channel carries all
transmissions simultaneously.

12.42

Figure 12.23 Simple idea of communication with code

Common

di.¢; + dy.c, 4+ diy.c; + dy.c
1 ¢ 22 363 4-C4 channel

Data

Figure 12.24 Chip sequences

C, C, C; C,
‘ [+1 +1 +1 +1] I ‘ [+1 -1 +1 -1] I ‘ 41 41 -1 -1] I ‘ [+1 -1 -1 +1] I

12.44

Figure 12.25 Data representation in CDMA

‘ Data bit 0———> -1 \ ‘ Data bit 1———> +1 \ ‘ Silence —>0 \

12.45

Figure 12.26 Sharing channel in CDMA

Bit O Bit 0
-1 -1
¢ C,
[+1 +1 +1 +11| 1 2 [+1 -1 +1 -1]
d; - ¢ d,- ¢,
-1 -1 -1 -1] 1 +1 -1 +1]
Common
FUA =2 channel

G
[+1 +1 -1 -1]

Cy
[+1 -1 -1 +1]

Silent Bit 1

12.46

Figure 12.27 Digital signal created by four stations in CDMA

o> 0 ——
Time

Bit 0 —»3—» (1 41 -1 +1] [1 >~
I I Time

Silent —»E—» 0 0 0 O >
ime

Bit 1 —)—E—» [+1 -1 -1 +1] I |I I >
Time

Data on the channel >

Time

12.47

Figure 12.28 Decoding of the composite signal for one in CDMA

Data on the channel

Station 2’'s code
3 I [+1 -1 +1 -1]

Inner product result

Summing the values

12.48

ﬁ Time

Time

Time

/

Time

-4 —» -4/4 —> -1 —> Bit0

Figure 12.29 General rule and examples of creating Walsh tables

Wy Wy
Wy Wiy
a. Two basic rules
W, = [+1] +1 +1 +1 +1
+1 -1 +1 -1
_ — W, =

+1 +1 +1 +1 -1 -1

W2 =
+1 +1 -1 -1 +1

b. Generation of W;, W,,and W,

12.49

T

‘ Note I

The number of sequences in a Walsh
table needs to be N = 2™,

12.50

| Example 12.6

Find the chips for a network with
a. Two stations b. Four stations

Solution

We can use the rows of W, and W, in Figure 12.29:
a. For a two-station network, we have
[+1 +1] and [+1 —-1].

b. For a four-station network we have
[+1 +1 +1 +1], [+1 -1 +1 1],
[+1+1 -1 -1], and [+1-1-1 +1].

12.51

| Example 12.7

What is the number of sequences if we have 90 stations in
our network?

Solution
The number of sequences needs to be 2™. We need to
choose m = 7 and N = 27 or 128. We can then use 90

of the sequences as the chips.

12.52

Example 12.8

Prove that a receiving station can get the data sent by a
specific sender if it multiplies the entire data on the
channel by the sender’s chip code and then divides it by
the number of stations.

Solution
Let us prove this for the first station, using our previous
four-station example. We can say that the data on the
channel

D =@ * ¢c; +dy* c; +d; * ¢c3 + ds o cy.
The receiver which wants to get the data sent by station 1
multiplies these data by c;.

12.53

Example 12.8 (continued)

D€l=(dlCl+d2€2+d3f3+d4f4)fl

Zdl*Cl*Cl+d2*C2*Cl+d3*C3*Cl+d4'C4*Cl
=d1XN+d2XO+d3XO+d4XO

When we divide the result by N, we get d,.

12.54

T ¢ + Data Communications
n .. -ﬁ and NEl’Wﬂrking i Forouzan

Chapter 13
Wired LANs: Ethernet

]_ 3 .]_ Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13-1 IEEE STANDARDS

In 1985, the Computer Society of the IEEE started a
project, called Project 802, to set standards to enable
intercommunication among equipment from a variety
of manufacturers. Project 802 is a way of specifying
functions of the physical layer and the data link layer
of major LAN protocols.

Topics discussed in this sections

Data Link Layer
Physical Layer

13.2

Figure 13.1 IEEE standard for LANs

LLC: Logical link control
MAC: Media access control

Upper layers Upper layers
LLC
Data link layer
Ethernet Token Ring Token Bus
MAC MAC MAC e
- Ethernet)
Physical layer physical layers I‘Ok?n IRIIng ;]I'ok'enllfus coe
(e physical layer physical layer
OSl or Internet model IEEE Standard

13.3

Figure 13.2 HDLC frame compared with LLC and MAC frames

DSAP: Destination service access point
SSAP: Source service access point

Upper-layer
data

Address |Control

HDLC frame

13.4

LLC PDU

Upper-layer

data

MAC payload

MAC frame

The original Ethernet was created in 1976 at Xerox’s
Palo Alto Research Center (PARC). Since then, it has
gone through four generations. We briefly discuss the

Standard (or traditional) Ethernet in this section.

ics di in thi jons
MAC Sublayer
Physical Layer

13.5

Figure 13.3 Ethernet evolution through four generations

Ethernet
evolution

Standard Fast Gigabit Ten-Gigabit
Ethernet Ethernet Ethernet Ethernet
10 Mbps 100 Mbps 1 Gbps 10 Gbps

13.6

Figure 13.4 802.3 MAC frame

Preamble: 56 bits of alternating 1s and Os.
SFD: Start frame delimiter, flag (10101011)

Destination | Source | Length

Preamble | SFD | ™ idress | address | or type

Data and padding| CRC

7 bytes 1byte| 6 bytes 6 bytes 2 bytes 4 bytes

-l L.
o 3

Physical layer
header

13.7

Figure 13.5 Minimum and maximum lengths

Minimum payload length: 46 bytes
Maximum payload length: 1500 bytes

)
-

Y

Destination
address

6 bytes

Source Length .
address PDU Data and padding

6 bytes 2 bytes

Minimum frame length: 512 bits or 64 bytes

CRC

4 bytes

A

13.8

Maximum frame length: 12,144 bits or 1518 bytes

Y

T

‘ Note I
Frame length:

Minimum: 64 bytes (512 bits)
Maximum: 1518 bytes (12,144 bits)

13.9

Figure 13.6 Example of an Ethernet address in hexadecimal notation

06:01:02:01:2C:4B
| |

6 bytes = 12 hex digits = 48 bits

13.10

Figure 13.7 Unicast and multicast addresses

Unicast: O; multicast: 1

Byte 1 Byte 2 Byte 6

13.11

T

‘ Note I

The least significant bit of the first byte
defines the type of address.
If the bit is 0, the address Is unicast;
otherwise, it iIs multicast.

13.12

T

‘ Note I

The broadcast destination address Is a
special case of the multicast address in
which all bits are 1s.

13.13

| Example 13.1

Define the type of the following destination addresses:
a. 4A:30:10:21:10:1A b. 47:20:1B:2E:08:EE
c. FF:FF:FF:FF:FF:FF

Solution

To find the type of the address, we need to look at the
second hexadecimal digit from the left. If it is even, the
address is unicast. If it is odd, the address is multicast. If
all digits are F’s, the address is broadcast. Therefore, we
have the following:

a. This is a unicast address because A in binary is 1010.
b. This is a multicast address because 7 in binary is 0111.
c. This is a broadcast address because all digits are F’s.

13.14

| Example 13.2

Show how the address 47:20:1B:2E:08:EE is sent out on
line.

Solution
The address is sent left-to-right, byte by byte; for each
byte, it is sent right-to-left, bit by bit, as shown below:

<= |[1100010 00000100 11011000 O1110100 00010000 OIT110111

13.15

Figure 13.8 Categories of Standard Ethernet

Standard Ethernet
common
implementations

‘ 10Base5 | ‘ 10Base?2 | ‘ 10Base-T | ‘ 10Base-F |

Bus, Star, Star,
thick coaxial thin coa)ual UTP fiber

13.16

Figure 13.9 Encoding in a Standard Ethernet implementation

10 Mbps data 10 Mbps data
Manchester Manchester

encoder decoder

Twisted pairs or fibers

13.17

Figure 13.10 10Base5 implementation

O]
10Base5 | —
10 Mbps >00m | Transceiver cable
maximum 50 m
Baseband Cable - Cable
(digital) end Thick coaxial cable end

Transceiver .
maximum 500 m

13.18

Figure 13.11 10Base2 implementation

Cable
end
10Base2
10 Mbps 185 m
Baseband
(digital)

Thin coaxial cable,
maximum 185 m

13.19

Figure 13.12 10Base-T implementation

10Base-T
10 Mbps Twisted pair
Baseband Two pairs of
(digital)

1| UTP cable

]

10Base-T hub

13.20

Figure 13.13 10Base-F implementation

[l

Two fiber-optic
cables

10Base-F
10 Mbps Fiber

Baseband

(digital) Itll__Ll

10Base-F hub

13.21

13.22

Table 13.1 Summary of Standard Ethernet implementations

Characteristics [0Base5 [0Base?2 10Base-T [OBase-F
Media Thick Thin 2UTP 2 Fiber
coaxialcable | coaxial cable
Maximum length 500 m [85 m 100 m 2000 m
Line encoding Manchester Manchester Manchester Manchester

13-3 CHANGLES IN THE STANDARD

The 10-Mbps Standard Ethernet has gone through
several changes before moving to the higher data
rates. These changes actually opened the road to the
evolution of the Ethernet to become compatible with
other high-data-rate LANSs.

Topics discussed in this sections
Bridged Ethernet

Switched Ethernet
Full-Duplex Ethernet

13.23

Figure 13.14 Sharing bandwidth

Rate
A
One One One One
frame frame frame frame
10 Mbps
S5Mbps—t—1————-—"—"Tr—-1—71—
>
Time

One
frame

One
frame

One
frame

Rate
A
One
f'
10 Mbps rame
S5Mbps ——F—

Time

a. First station

13.24

b. Second station

Figure 13.15 A network with and without a bridge

s oo

a. Without bridging

b. With bridging

13.25

Figure 13.16 Collision domains in an unbridged network and a bridged network

Domain

__

a. Without bridging

Domain

Bridge

b. With bridging

13.26

Figure 13.17 Switched Ethernet

Switch

13.27

Figure 13.18 Full-duplex switched Ethernet

Switch

Transmit —
> | o
Receive

>

jlwisuel |
CYNEREN

13.28

13-4 FAST ETHERNET

Fast Ethernet was designed to compete with LAN
protocols such as FDDI or Fiber Channel. IEEE
created Fast Ethernet under the name 802.3u. Fast
Ethernet is backward-compatible with Standard
Ethernet, but it can transmit data 10 times faster at a
rate of 100 Mbps.

Topics discussed in this sections:
MAC Sublayer

Physical Layer

13.29

Figure 13.19 Fast Ethernet topology

Switch

a. Point-to-point

13.30

Figure 13.20 Fast Ethernet implementations

Common Fast Ethernet
implementations
‘ 1OOBase—TXI ‘ 100Base-FX | ‘ 100Base-T4 |

Two wires Two wires Four wires
category 5 UTP fiber category 3 UTP

13.31

Figure 13.21 Encoding for Fast Ethernet implementation

13.32

100Base-TX 100Base-FX
4% 25 Mbps 4 x 25 Mbps 4 % 25 Mbps 4x 25 Mbps
Y ¥ ¥ ¥ A A A4 Y Y ¥ ¥ A 444
4B/5B encoder 4B/5B decoder 4B/5B encoder 4B/5B decoder
¥ 125 Mbps 125 Mbps } ¥ 125 Mbps 125 Mbps A
MLT-3 encoder MLT-3 decoder NRZ-l encoder NRZ-l decoder
N7
Station * ‘f Station J’ f
Two UTP category 5 Two fibers
100Base-T4
100 Mbps 100 Mbps
8B/6T encoder 8B/6T decoder
S—7

Station \I

4 category 3 UTP

Table 13.2 Summary of Fast Ethernet implementations

Characteristics 100Base-TX 100Base-FX 100Base-T4
Media Cat 5 UTP or STP Fiber Cat4 UTP
Number of wires 2 2 4
Maximum length [00 m 100 m 100 m
Block encoding 4B/5B 4B/5B
Line encoding MLT-3 NRZ-1 8B/6T

13.33

The need for an even higher data rate resulted in the
design of the Gigabit Ethernet protocol (1000 Mbps).
The IEEE committee calls the standard 802.3z.

ics di in thi jon:
MAC Sublayer

Physical Layer
Ten-Gigabit Ethernet

13.34

T

‘ Note \

In the full-duplex mode of Gigabit
Ethernet, there is no collision;
the maximum length of the cable is
determined by the signhal attenuation
in the cable.

13.35

Figure 13.22 Topologies of Gigabit Ethernet

Switch

a. Point-to-point

Switch Switch

c. Two stars

Switch

Switch

= = = =

d. Hierarchy of stars

13.36

Figure 13.23 Gigabit Ethernet implementations

Gigabit Ethernet
implementations

‘ 1000Base-SX | ‘ 1000Base-LX | ‘ 1000Base-CX | ‘ 1000Base-T |

Two-wire Two-wire Two-wire Four-wire
short-wave fiber long-wave fiber copper (STP) UTP

13.37

Figure 13.24 Encoding in Gigabit Ethernet implementations

1000Base-SX, 1000Base-LX, and 1000Base-CX 1000Base-T
8 x 125 Mbps 8 x 125 Mbps 8 x 125 Mbps 8 x 125 Mbps
| | | I
YYYYYYYY AAAAAAAA VYV V VY Y AAAAAAAL
8B/10B block encoder 8B/10B block decoder
4D-PAMS5 encoder 4D-PAM5 decoder
¢1.25 Gbps 1.25 Gbps T — ~ A
NRZ line encoder NRZ line decoder |
<~— A\ 4 .
Station * ‘r Station ¢ ¢ ¢

Two fibers or two STPs 4 UTP cables

13.38

Table 13.3 Summary of Gigabit Ethernet implementations

Characteristics 1000Base-SX | 1000Base-LX | 1000Base-CX 1000Base-T
Media Fiber Fiber STP Cat 5 UTP
short-wave long-wave
Number of wires 2 2 2 4
Maximum length 550 m 5000 m 25m 100 m
Block encoding 8B/10B 8B/10B 8B/10B
Line encoding NRZ NRZ NRZ 4D-PAMS

13.39

Table 13.4 Summary of Ten-Gigabit Ethernet implementations

Characteristics 10GBase-S [0GBase-L [0GBase-E
Media Short-wave Long-wave Extended
850-nm 1310-nm [550-mm
multimode single mode single mode
Maximum length 300 m 10 km 40 km

13.40

¢+ Data Communications

, Forouzan
and Networking rouh kition

Chapter 14
Wireless LANs

14 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

IEEE has defined the specifications for a wireless
LAN, called IEEE 802.11, which covers the physical

and data link layers.

ics di in thi jon.
Architecture

MAC Sublayer
Physical Layer

14.2

T

‘ Note I

A BSS without an AP is called an ad hoc
hetwork;
a BSS with an AP is called an
Infrastructure network.

14.3

Figure 14.1 Basic service sets (BSSs)

BSS: Basic service set
AP: Access point

Ad hoc network (BSS without an AP)

14.4

Infrastructure (BSS with an AP)

- - - __

Figure 14.2 Extended service sets (ESSs)

14.5

ESS: Extended service set
BSS: Basic service set

AP: Access point

— —
o, — —

— —

yd “Distribution system
\

—
o e f— —

Server or
Gateway

Figure 14.3 MAC layers in IEEE 802.11 standard

4

LLC

sublayer
Y

|[EEE 802.1

'

Contention-free

Data link service Contention
layer ‘ service
Point coordination function (PCF)
MAC Y
sublayer
Distributed coordination function (DCF)
A \
Physical 802.11 802.11 802.11 | 802.11a | 802.11a | 802.11g
Iayer‘ FHSS DSSS Infrared DSSS OFDM DSSS

14.6

Figure 14.4 CSMA/CA flowchart

14.7

Set back-off
to zero

L.

Wait back-off
time

Increment
back-off

v

Y
Persistence
strategy

Y

| waitDIFs |

Y

| sendRTS |

Y

| Set a timer I

CTS received
before time-out?
Yes
| waitsiIrs |

| Send the frame I

Y

| Set a timer I

ACK received

pbefore time-out?,

Figure 14.5 CSMA/CA and NAV

Destination All other stations

SIFS NAV

—_ *} (No carrier sensing)

Time Time Time Time

Figure 14.6 Example of repetition interval

B: Beacon frame Repetition interval
CF: Contention-free) Contention-free _ Contention
PIFS SIFS SIFS
ACK+ | [CF
B Poll poll end
g >
Time
Polled SIFS
station —
ACK + data
o >
Time
NAV
¢ >
Time

14.9

Figure 14.7 Frame format

2 bytes 2 bytes 6 bytes 6 bytes 6 bytes 2bytes 6 bytes 0to 2312 bytes 4 bytes

FC D Address 1 | Address2 | Address 3 SC Address 4 Frame body

To |From | More Pwr | More

2 bits 2 bits 4 bits 1bit 1bit 1bit 1bit 1bit 1bit 1bit 1 bit

Protocol
version

14.10

Table 14.1 Subfields in FC field

Field Explanation

Version Current version is 0

Type Type of information: management (00), control (01), or data (10)
Subtype Subtype of each type (see Table 14.2)

To DS Defined later

From DS Defined later

More flag When set to 1, means more fragments

Retry When set to 1, means retransmitted frame

Pwr mgt When set to 1, means station is in power management mode
More data When set to 1, means station has more data to send

WEP Wired equivalent privacy (encryption implemented)

Rsvd Reserved

14.11

Figure 14.8 Control frames

2 bytes 2 bytes 6 bytes 6 bytes 4 bytes 2 bytes 2 bytes 6 bytes 4 bytes
FC D Address 1 | Address 2 FCS FC D Address 1 FCS
RTS CTSor ACK

14.12

Table 14.2 Values of subfields in control frames

Subtype | Meaning

1011 Request to send (RTS)

1100 Clear to send (CTS)

1101 Acknowledgment (ACK)

14.13

Table 14.3 Addresses

To From Address Address Address Address
DS DS / 2 3 -

0 0 Destination Source BSS ID N/A

0 | Destination Sending AP Source N/A

I 0 Receiving AP Source Destination N/A

I 1 Receiving AP Sending AP Destination Source

14.14

Figure 14.9 Addressing mechanisms

________________________ .
: Distribution system :
|_B §S _________ B_S; E) __________ L__________________________ ____i _____
" “ |
|] | S |
&=, <{BTAT - > |
, B 1 2 3 4 |
a.Case 1 b.Case 2
r—-——— "= —————————— — — — — — —— 1 T T T T T T T T T T T T T T T T -
: . Distribution system : | Wireless distribution system :
:Bg_s::|i__ ::::::::::::::B§S: I:_—_APZ:_"__-IApzlAPHB ||A[;_I'@:B%S:
| Lry BSS ™1 1 2 3 4 |
¥ 15 Q. , ' | |
By 3 4 [] [] | | []
=51 | | = =] = =] : | = =)
B !l A B | LA
N I R I G .
c.Case 3 d.Case 4

14.15

Figure 14.10 Hidden station problem

‘ B and C are hidden from each other with respect to A. I

14.16

T

‘ Note I

The CTS frame in CSMA/CA handshake
can prevent collision from
a hidden station.

14.17

Figure 14.11 Use of handshaking to prevent hidden station problem

CTS CTS

Time Time Time

14.18

Figure 14.12 Exposed station problem

Range
of A

‘ C is exposed to transmission from A to B. |

14.19

Figure 14.13 Use of handshaking in exposed station problem

Exposed to
A’s transmission
] [(]
RTS RTS
CTS
RTS RTS
Data
Data \\CTS
— Collision
here
Y Y Y Y
Time Time Time Time

14.20

Table 14.4 Physical layers

IEEE Technique Band Modulation Rate (Mbps)
802.11 FHSS 2.4 GHz FSK | and 2
DSSS 2.4 GHz PSK | and 2
Infrared PPM 1 and 2
802.11a OFDM 5.725 GHz PSK or QAM 6 to 54
802.11b DSSS 2.4 GHz PSK 55and 11
802.11¢ OFDM 2.4 GHz Different 22 and 54

14.21

Figure 14.14 Industrial, scientific, and medical (ISM) band

26 83.5 125
‘MHz, , MHz , , MHz ,
>
902 928 24 2.4835 5.725 5.850 Frequency
MHz MHz GHz GHz GHz GHz

14.22

Figure 14.15 Physical layer of IEEE 802.11 FHSS

1 or 2 Mbps Modulator
Digital E 2-Level or 4-level
data FSK
Pseudorandom Frequency

sequence

synthetizer

1-MHz

Analog
signal

14.23

Figure 14.16 Physical layer of IEEE 802.11 DSSS

1 or2 Mbps
Digital
data

Modulator

‘ 11-Chip \ 11 or 22 Mbps
Barker sequence BPSK or QPSK —

11-MHz

Analog
signal

14.24

Figure 14.17 Physical layer of IEEE 802.11 infrared

1 or 2 Mbps
Digital
data

Encoder

4to 16 or
2to4

Modulator

Pulse position
modulation

14.25

Analog
signal

Figure 14.18 Physical layer of IEEE 802.11b

55o0r
11 Mbps

Digital
data

14.26

5.5 Mbps: 2 bits

11 Mbps: 6 bits

2 bits

CCK
selector

Modulator

QPSK

11-MHz

Analog
signal

Bluetooth is a wireless LAN technology designed to
connect devices of different functions such as
telephones, notebooks, computers, cameras, printers,
coffee makers, and so on. A Bluetooth LAN is an ad
hoc network, which means that the network is formed
spontaneously.

Topics discussed in this sections

Architecture
Bluetooth Layers
Baseband Layer
L2CAP

14.27

Figure 14.19 Piconet

Piconet

14.28

Figure 14.20 Scatternet

Piconet

14.29

Primary/
Secondary

Secondary

Piconet

Figure 14.21 Bluetooth layers

Applications

Audio

Profiles

1Y)
o

©
)

L2CAP layer

Control

Baseband layer

Radio layer

14.30

Figure 14.22 Single-secondary communication

625 ms

Hop |

b — — —_—— —_——

=

Secondary

Time

f3

f2

f1

fO

14.31

Figure 14.23 Multiple-secondary communication

Q Q [V}
A E A £ AE
= i~ =
(oR
O
I
=t
o
o]
I
>
Q.
)
I
B

I
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
I
I
|
I
I
1

Secondary 1
Secondary 2

f3

f2

f1

fo

14.32

Figure 14.24 Frame format types

72 bits 54 bits 0 to N bits

Access code | Header Data

N =240 for 1-slot frame

Address| Type |F|A[S HEC N = 1490 for 3-slot frame

3bits A4bits 11 1 8 bits N = 2740 for 5-slot frame

This 18-bit part is repeated 3 times.

14.33

Figure 14.25 L2CAP data packet format

14.34

2 bytes

2 bytes

0 to 65,535 bytes

Length

Channel ID

Data and control

	ch10
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

	ch11
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103

	ch12
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

	ch13
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

	ch14
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

