
10.1

Chapter 10

Error Detection
and

Correction

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10.2

Data can be corrupted
during transmission.

Some applications require that
errors be detected and corrected.

Note

10.3

10-1 INTRODUCTION10-1 INTRODUCTION

Let us first discuss some issues related, directly or Let us first discuss some issues related, directly or
indirectly, to error detection and correction.indirectly, to error detection and correction.

Types of Errors
Redundancy
Detection Versus Correction
Forward Error Correction Versus Retransmission
Coding
Modular Arithmetic

Topics discussed in this section:Topics discussed in this section:

10.4

In a single-bit error, only 1 bit in the data
unit has changed.

Note

10.5

Figure 10.1 Single-bit error

10.6

A burst error means that 2 or more bits
in the data unit have changed.

Note

10.7

Figure 10.2 Burst error of length 8

10.8

To detect or correct errors, we need to
send extra (redundant) bits with data.

Note

10.9

Figure 10.3 The structure of encoder and decoder

10.10

In this book, we concentrate on block
codes; we leave convolution codes

to advanced texts.

Note

10.11

In modulo-N arithmetic, we use only the
integers in the range 0 to N −1,

inclusive.

Note

10.12

Figure 10.4 XORing of two single bits or two words

10.13

10-2 BLOCK CODING10-2 BLOCK CODING

In block coding, we divide our message into blocks, In block coding, we divide our message into blocks,
each of k bits, called each of k bits, called datawordsdatawords. We add r redundant . We add r redundant
bits to each block to make the length n = k + r. The bits to each block to make the length n = k + r. The
resulting n-bit blocks are called resulting n-bit blocks are called codewordscodewords..

Error Detection
Error Correction
Hamming Distance
Minimum Hamming Distance

Topics discussed in this section:Topics discussed in this section:

10.14

Figure 10.5 Datawords and codewords in block coding

10.15

The 4B/5B block coding discussed in Chapter 4 is a good
example of this type of coding. In this coding scheme,
k = 4 and n = 5. As we saw, we have 2k = 16 datawords
and 2n = 32 codewords. We saw that 16 out of 32
codewords are used for message transfer and the rest are
either used for other purposes or unused.

Example 10.1

10.16

Figure 10.6 Process of error detection in block coding

10.17

Let us assume that k = 2 and n = 3. Table 10.1 shows the
list of datawords and codewords. Later, we will see
how to derive a codeword from a dataword.

Assume the sender encodes the dataword 01 as 011 and
sends it to the receiver. Consider the following cases:

1. The receiver receives 011. It is a valid codeword. The
receiver extracts the dataword 01 from it.

Example 10.2

10.18

2. The codeword is corrupted during transmission, and
 111 is received. This is not a valid codeword and is
 discarded.

3. The codeword is corrupted during transmission, and
 000 is received. This is a valid codeword. The receiver
 incorrectly extracts the dataword 00. Two corrupted
 bits have made the error undetectable.

Example 10.2 (continued)

10.19

Table 10.1 A code for error detection (Example 10.2)

10.20

An error-detecting code can detect
only the types of errors for which it is
designed; other types of errors may

remain undetected.

Note

10.21

Figure 10.7 Structure of encoder and decoder in error correction

10.22

Let us add more redundant bits to Example 10.2 to see if
the receiver can correct an error without knowing what
was actually sent. We add 3 redundant bits to the 2-bit
dataword to make 5-bit codewords. Table 10.2 shows the
datawords and codewords. Assume the dataword is 01.
The sender creates the codeword 01011. The codeword is
corrupted during transmission, and 01001 is received.
First, the receiver finds that the received codeword is not
in the table. This means an error has occurred. The
receiver, assuming that there is only 1 bit corrupted, uses
the following strategy to guess the correct dataword.

Example 10.3

10.23

1. Comparing the received codeword with the first
codeword in the table (01001 versus 00000), the
receiver decides that the first codeword is not the one
that was sent because there are two different bits.

2. By the same reasoning, the original codeword cannot
be the third or fourth one in the table.

3. The original codeword must be the second one in the
table because this is the only one that differs from the
received codeword by 1 bit. The receiver replaces
01001 with 01011 and consults the table to find the
dataword 01.

Example 10.3 (continued)

10.24

Table 10.2 A code for error correction (Example 10.3)

10.25

The Hamming distance between two
words is the number of differences

between corresponding bits.

Note

10.26

Let us find the Hamming distance between two pairs of
words.

1. The Hamming distance d(000, 011) is 2 because

Example 10.4

2. The Hamming distance d(10101, 11110) is 3 because

10.27

The minimum Hamming distance is the
smallest Hamming distance between
 all possible pairs in a set of words.

Note

10.28

Find the minimum Hamming distance of the coding
scheme in Table 10.1.

Solution
We first find all Hamming distances.

Example 10.5

The dmin in this case is 2.

10.29

Find the minimum Hamming distance of the coding
scheme in Table 10.2.

Solution
We first find all the Hamming distances.

The dmin in this case is 3.

Example 10.6

10.30

To guarantee the detection of up to s
errors in all cases, the minimum

Hamming distance in a block
code must be dmin = s + 1.

Note

10.31

The minimum Hamming distance for our first code
scheme (Table 10.1) is 2. This code guarantees detection
of only a single error. For example, if the third codeword
(101) is sent and one error occurs, the received codeword
does not match any valid codeword. If two errors occur,
however, the received codeword may match a valid
codeword and the errors are not detected.

Example 10.7

10.32

Our second block code scheme (Table 10.2) has dmin = 3.
This code can detect up to two errors. Again, we see that
when any of the valid codewords is sent, two errors create
a codeword which is not in the table of valid codewords.
The receiver cannot be fooled.

However, some combinations of three errors change a
valid codeword to another valid codeword. The receiver
accepts the received codeword and the errors are
undetected.

Example 10.8

10.33

Figure 10.8 Geometric concept for finding dmin in error detection

10.34

Figure 10.9 Geometric concept for finding dmin in error correction

10.35

To guarantee correction of up to t errors
in all cases, the minimum Hamming

distance in a block code
must be dmin = 2t + 1.

Note

10.36

A code scheme has a Hamming distance dmin = 4. What is
the error detection and correction capability of this
scheme?

Solution
This code guarantees the detection of up to three errors
(s = 3), but it can correct up to one error. In other words,
if this code is used for error correction, part of its capability
is wasted. Error correction codes need to have an odd
minimum distance (3, 5, 7, . . .).

Example 10.9

10.37

10-3 LINEAR BLOCK CODES10-3 LINEAR BLOCK CODES

Almost all block codes used today belong to a subset Almost all block codes used today belong to a subset
called called linear block codeslinear block codes. A linear block code is a code . A linear block code is a code
in which the exclusive OR (addition modulo-2) of two in which the exclusive OR (addition modulo-2) of two
valid codewords creates another valid codeword.valid codewords creates another valid codeword.

Minimum Distance for Linear Block Codes
Some Linear Block Codes

Topics discussed in this section:Topics discussed in this section:

10.38

In a linear block code, the exclusive OR
(XOR) of any two valid codewords
creates another valid codeword.

Note

10.39

Let us see if the two codes we defined in Table 10.1 and
Table 10.2 belong to the class of linear block codes.

1. The scheme in Table 10.1 is a linear block code
 because the result of XORing any codeword with any
 other codeword is a valid codeword. For example, the
 XORing of the second and third codewords creates the
 fourth one.

2. The scheme in Table 10.2 is also a linear block code.
 We can create all four codewords by XORing two
 other codewords.

Example 10.10

10.40

In our first code (Table 10.1), the numbers of 1s in the
nonzero codewords are 2, 2, and 2. So the minimum
Hamming distance is dmin = 2. In our second code (Table
10.2), the numbers of 1s in the nonzero codewords are 3,
3, and 4. So in this code we have dmin = 3.

Example 10.11

10.41

A simple parity-check code is a
single-bit error-detecting

code in which
n = k + 1 with dmin = 2.

Note

10.42

Table 10.3 Simple parity-check code C(5, 4)

10.43

Figure 10.10 Encoder and decoder for simple parity-check code

10.44

Let us look at some transmission scenarios. Assume the
sender sends the dataword 1011. The codeword created
from this dataword is 10111, which is sent to the receiver.
We examine five cases:

1. No error occurs; the received codeword is 10111. The
 syndrome is 0. The dataword 1011 is created.
2. One single-bit error changes a1 . The received
 codeword is 10011. The syndrome is 1. No dataword
 is created.
3. One single-bit error changes r0 . The received codeword
 is 10110. The syndrome is 1. No dataword is created.

Example 10.12

10.45

4. An error changes r0 and a second error changes a3 .
 The received codeword is 00110. The syndrome is 0.
 The dataword 0011 is created at the receiver. Note that
 here the dataword is wrongly created due to the
 syndrome value.
5. Three bits—a3, a2, and a1—are changed by errors.
 The received codeword is 01011. The syndrome is 1.
 The dataword is not created. This shows that the simple
 parity check, guaranteed to detect one single error, can
 also find any odd number of errors.

Example 10.12 (continued)

10.46

A simple parity-check code can detect
an odd number of errors.

Note

10.47

All Hamming codes discussed in this
book have dmin = 3.

The relationship between m and n in
these codes is n = 2m − 1.

Note

10.48

Figure 10.11 Two-dimensional parity-check code

10.49

Figure 10.11 Two-dimensional parity-check code

10.50

Figure 10.11 Two-dimensional parity-check code

10.51

Table 10.4 Hamming code C(7, 4)

10.52

Figure 10.12 The structure of the encoder and decoder for a Hamming code

10.53

Table 10.5 Logical decision made by the correction logic analyzer

10.54

Let us trace the path of three datawords from the sender
to the destination:
1. The dataword 0100 becomes the codeword 0100011.
 The codeword 0100011 is received. The syndrome is
 000, the final dataword is 0100.
2. The dataword 0111 becomes the codeword 0111001.
 The syndrome is 011. After flipping b2 (changing the 1
 to 0), the final dataword is 0111.
3. The dataword 1101 becomes the codeword 1101000.
 The syndrome is 101. After flipping b0, we get 0000,
 the wrong dataword. This shows that our code cannot
 correct two errors.

Example 10.13

10.55

We need a dataword of at least 7 bits. Calculate values of
k and n that satisfy this requirement.

Solution
We need to make k = n − m greater than or equal to 7, or
2m − 1 − m ≥ 7.
1. If we set m = 3, the result is n = 23 − 1 and k = 7 − 3,
 or 4, which is not acceptable.
2. If we set m = 4, then n = 24 − 1 = 15 and k = 15 − 4 =
 11, which satisfies the condition. So the code is

Example 10.14

C(15, 11)

10.56

Figure 10.13 Burst error correction using Hamming code

10.57

10-4 CYCLIC CODES10-4 CYCLIC CODES

Cyclic codesCyclic codes are special linear block codes with one are special linear block codes with one
extra property. In a cyclic code, if a codeword is extra property. In a cyclic code, if a codeword is
cyclically shifted (rotated), the result is another cyclically shifted (rotated), the result is another
codeword.codeword.

Cyclic Redundancy Check
Hardware Implementation
Polynomials
Cyclic Code Analysis
Advantages of Cyclic Codes
Other Cyclic Codes

Topics discussed in this section:Topics discussed in this section:

10.58

Table 10.6 A CRC code with C(7, 4)

10.59

Figure 10.14 CRC encoder and decoder

10.60

Figure 10.15 Division in CRC encoder

10.61

Figure 10.16 Division in the CRC decoder for two cases

10.62

Figure 10.17 Hardwired design of the divisor in CRC

10.63

Figure 10.18 Simulation of division in CRC encoder

10.64

Figure 10.19 The CRC encoder design using shift registers

10.65

Figure 10.20 General design of encoder and decoder of a CRC code

10.66

Figure 10.21 A polynomial to represent a binary word

10.67

Figure 10.22 CRC division using polynomials

10.68

The divisor in a cyclic code is normally
called the generator polynomial

or simply the generator.

Note

10.69

In a cyclic code,
If s(x) ≠ 0, one or more bits is corrupted.
If s(x) = 0, either

 a. No bit is corrupted. or
 b. Some bits are corrupted, but the
 decoder failed to detect them.

Note

10.70

In a cyclic code, those e(x) errors that
are divisible by g(x) are not caught.

Note

10.71

If the generator has more than one term
and the coefficient of x0 is 1,

all single errors can be caught.

Note

10.72

Which of the following g(x) values guarantees that a
single-bit error is caught? For each case, what is the
error that cannot be caught?
a. x + 1 b. x3 c. 1

Solution
a. No xi can be divisible by x + 1. Any single-bit error can
 be caught.
b. If i is equal to or greater than 3, xi is divisible by g(x).
 All single-bit errors in positions 1 to 3 are caught.
c. All values of i make xi divisible by g(x). No single-bit
 error can be caught. This g(x) is useless.

Example 10.15

10.73

Figure 10.23 Representation of two isolated single-bit errors using polynomials

10.74

If a generator cannot divide xt + 1
(t between 0 and n – 1),

then all isolated double errors
can be detected.

Note

10.75

Find the status of the following generators related to two
isolated, single-bit errors.
a. x + 1 b. x4 + 1 c. x7 + x6 + 1 d. x15 + x14 + 1

Solution
a. This is a very poor choice for a generator. Any two
 errors next to each other cannot be detected.
b. This generator cannot detect two errors that are four
 positions apart.
c. This is a good choice for this purpose.
d. This polynomial cannot divide xt + 1 if t is less than
 32,768. A codeword with two isolated errors up to
 32,768 bits apart can be detected by this generator.

Example 10.16

10.76

A generator that contains a factor of
x + 1 can detect all odd-numbered

errors.

Note

10.77

❏ All burst errors with L ≤ r will be
 detected.
❏ All burst errors with L = r + 1 will be
 detected with probability 1 – (1/2)r–1.
❏ All burst errors with L > r + 1 will be
 detected with probability 1 – (1/2)r.

Note

10.78

Find the suitability of the following generators in relation
to burst errors of different lengths.
a. x6 + 1 b. x18 + x7 + x + 1 c. x32 + x23 + x7 + 1

Solution
a. This generator can detect all burst errors with a length
 less than or equal to 6 bits; 3 out of 100 burst errors
 with length 7 will slip by; 16 out of 1000 burst errors of
 length 8 or more will slip by.

Example 10.17

10.79

b. This generator can detect all burst errors with a length
 less than or equal to 18 bits; 8 out of 1 million burst
 errors with length 19 will slip by; 4 out of 1 million
 burst errors of length 20 or more will slip by.

c. This generator can detect all burst errors with a length
 less than or equal to 32 bits; 5 out of 10 billion burst
 errors with length 33 will slip by; 3 out of 10 billion
 burst errors of length 34 or more will slip by.

Example 10.17 (continued)

10.80

A good polynomial generator needs to
have the following characteristics:
1. It should have at least two terms.
2. The coefficient of the term x0 should
 be 1.
3. It should not divide xt + 1, for t
 between 2 and n − 1.
4. It should have the factor x + 1.

Note

10.81

Table 10.7 Standard polynomials

10.82

10-5 CHECKSUM10-5 CHECKSUM

The last error detection method we discuss here is The last error detection method we discuss here is
called the checksum. The checksum is used in the called the checksum. The checksum is used in the
Internet by several protocols although not at the data Internet by several protocols although not at the data
link layer. However, we briefly discuss it here to link layer. However, we briefly discuss it here to
complete our discussion on error checkingcomplete our discussion on error checking

Idea
One’s Complement
Internet Checksum

Topics discussed in this section:Topics discussed in this section:

10.83

Suppose our data is a list of five 4-bit numbers that we
want to send to a destination. In addition to sending these
numbers, we send the sum of the numbers. For example,
if the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12,
0, 6, 36), where 36 is the sum of the original numbers.
The receiver adds the five numbers and compares the
result with the sum. If the two are the same, the receiver
assumes no error, accepts the five numbers, and discards
the sum. Otherwise, there is an error somewhere and the
data are not accepted.

Example 10.18

10.84

We can make the job of the receiver easier if we send the
negative (complement) of the sum, called the checksum.
In this case, we send (7, 11, 12, 0, 6, −36). The receiver
can add all the numbers received (including the
checksum). If the result is 0, it assumes no error;
otherwise, there is an error.

Example 10.19

10.85

How can we represent the number 21 in one’s
complement arithmetic using only four bits?

Solution
The number 21 in binary is 10101 (it needs five bits). We
can wrap the leftmost bit and add it to the four rightmost
bits. We have (0101 + 1) = 0110 or 6.

Example 10.20

10.86

How can we represent the number −6 in one’s
complement arithmetic using only four bits?

Solution
In one’s complement arithmetic, the negative or
complement of a number is found by inverting all bits.
Positive 6 is 0110; negative 6 is 1001. If we consider only
unsigned numbers, this is 9. In other words, the
complement of 6 is 9. Another way to find the complement
of a number in one’s complement arithmetic is to subtract
the number from 2n − 1 (16 − 1 in this case).

Example 10.21

10.87

Let us redo Exercise 10.19 using one’s complement
arithmetic. Figure 10.24 shows the process at the sender
and at the receiver. The sender initializes the checksum
to 0 and adds all data items and the checksum (the
checksum is considered as one data item and is shown in
color). The result is 36. However, 36 cannot be expressed
in 4 bits. The extra two bits are wrapped and added with
the sum to create the wrapped sum value 6. In the figure,
we have shown the details in binary. The sum is then
complemented, resulting in the checksum value 9 (15 − 6
= 9). The sender now sends six data items to the receiver
including the checksum 9.

Example 10.22

10.88

The receiver follows the same procedure as the sender. It
adds all data items (including the checksum); the result
is 45. The sum is wrapped and becomes 15. The wrapped
sum is complemented and becomes 0. Since the value of
the checksum is 0, this means that the data is not
corrupted. The receiver drops the checksum and keeps
the other data items. If the checksum is not zero, the
entire packet is dropped.

Example 10.22 (continued)

10.89

Figure 10.24 Example 10.22

10.90

Sender site:
1. The message is divided into 16-bit words.
2. The value of the checksum word is set to 0.
3. All words including the checksum are
 added using one’s complement addition.
4. The sum is complemented and becomes the
 checksum.
5. The checksum is sent with the data.

Note

10.91

Receiver site:
1. The message (including checksum) is
 divided into 16-bit words.
2. All words are added using one’s
 complement addition.
3. The sum is complemented and becomes the
 new checksum.
4. If the value of checksum is 0, the message
 is accepted; otherwise, it is rejected.

Note

10.92

Let us calculate the checksum for a text of 8 characters
(“Forouzan”). The text needs to be divided into 2-byte
(16-bit) words. We use ASCII (see Appendix A) to change
each byte to a 2-digit hexadecimal number. For example,
F is represented as 0x46 and o is represented as 0x6F.
Figure 10.25 shows how the checksum is calculated at the
sender and receiver sites. In part a of the figure, the value
of partial sum for the first column is 0x36. We keep the
rightmost digit (6) and insert the leftmost digit (3) as the
carry in the second column. The process is repeated for
each column. Note that if there is any corruption, the
checksum recalculated by the receiver is not all 0s. We
leave this an exercise.

Example 10.23

10.93

Figure 10.25 Example 10.23

11.1

Chapter 11

Data Link Control

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11.2

11-1 FRAMING11-1 FRAMING

The data link layer needs to pack bits into The data link layer needs to pack bits into framesframes, so , so
that each frame is distinguishable from another. Our that each frame is distinguishable from another. Our
postal system practices a type of framing. The simple postal system practices a type of framing. The simple
act of inserting a letter into an envelope separates one act of inserting a letter into an envelope separates one
piece of information from another; the envelope serves piece of information from another; the envelope serves
as the delimiter. as the delimiter.

Fixed-Size Framing
Variable-Size Framing

Topics discussed in this section:Topics discussed in this section:

11.3

Figure 11.1 A frame in a character-oriented protocol

11.4

Figure 11.2 Byte stuffing and unstuffing

11.5

Byte stuffing is the process of adding 1
extra byte whenever there is a flag or

escape character in the text.

Note

11.6

Figure 11.3 A frame in a bit-oriented protocol

11.7

Bit stuffing is the process of adding one
extra 0 whenever five consecutive 1s

follow a 0 in the data, so that the
receiver does not mistake

the pattern 0111110 for a flag.

Note

11.8

Figure 11.4 Bit stuffing and unstuffing

11.9

11-2 FLOW AND ERROR CONTROL11-2 FLOW AND ERROR CONTROL

The most important responsibilities of the data link The most important responsibilities of the data link
layer are layer are flow controlflow control and and error controlerror control. Collectively, . Collectively,
these functions are known as these functions are known as data link controldata link control..

Flow Control
Error Control

Topics discussed in this section:Topics discussed in this section:

11.10

Flow control refers to a set of procedures
used to restrict the amount of data

that the sender can send before
waiting for acknowledgment.

Note

11.11

Error control in the data link layer is
based on automatic repeat request,
which is the retransmission of data.

Note

11.12

11-3 PROTOCOLS11-3 PROTOCOLS

Now let us see how the data link layer can combine Now let us see how the data link layer can combine
framing, flow control, and error control to achieve the framing, flow control, and error control to achieve the
delivery of data from one node to another. The delivery of data from one node to another. The
protocols are normally implemented in software by protocols are normally implemented in software by
using one of the common programming languages. To using one of the common programming languages. To
make our discussions language-free, we have written make our discussions language-free, we have written
in pseudocode a version of each protocol that in pseudocode a version of each protocol that
concentrates mostly on the procedure instead of concentrates mostly on the procedure instead of
delving into the details of language rules.delving into the details of language rules.

11.13

Figure 11.5 Taxonomy of protocols discussed in this chapter

11.14

11-4 NOISELESS CHANNELS11-4 NOISELESS CHANNELS

Let us first assume we have an ideal channel in which Let us first assume we have an ideal channel in which
no frames are lost, duplicated, or corrupted. We no frames are lost, duplicated, or corrupted. We
introduce two protocols for this type of channel.introduce two protocols for this type of channel.

Simplest Protocol
Stop-and-Wait Protocol

Topics discussed in this section:Topics discussed in this section:

11.15

Figure 11.6 The design of the simplest protocol with no flow or error control

11.16

Algorithm 11.1 Sender-site algorithm for the simplest protocol

11.17

Algorithm 11.2 Receiver-site algorithm for the simplest protocol

11.18

Figure 11.7 shows an example of communication using
this protocol. It is very simple. The sender sends a
sequence of frames without even thinking about the
receiver. To send three frames, three events occur at the
sender site and three events at the receiver site. Note that
the data frames are shown by tilted boxes; the height of
the box defines the transmission time difference between
the first bit and the last bit in the frame.

Example 11.1

11.19

Figure 11.7 Flow diagram for Example 11.1

11.20

Figure 11.8 Design of Stop-and-Wait Protocol

11.21

Algorithm 11.3 Sender-site algorithm for Stop-and-Wait Protocol

11.22

Algorithm 11.4 Receiver-site algorithm for Stop-and-Wait Protocol

11.23

Figure 11.9 shows an example of communication using
this protocol. It is still very simple. The sender sends one
frame and waits for feedback from the receiver. When the
ACK arrives, the sender sends the next frame. Note that
sending two frames in the protocol involves the sender in
four events and the receiver in two events.

Example 11.2

11.24

Figure 11.9 Flow diagram for Example 11.2

11.25

11-5 NOISY CHANNELS11-5 NOISY CHANNELS

Although the Stop-and-Wait Protocol gives us an idea Although the Stop-and-Wait Protocol gives us an idea
of how to add flow control to its predecessor, noiseless of how to add flow control to its predecessor, noiseless
channels are nonexistent. We discuss three protocols channels are nonexistent. We discuss three protocols
in this section that use error control.in this section that use error control.

Stop-and-Wait Automatic Repeat Request
Go-Back-N Automatic Repeat Request
Selective Repeat Automatic Repeat Request

Topics discussed in this section:Topics discussed in this section:

11.26

Error correction in Stop-and-Wait ARQ is
done by keeping a copy of the sent

frame and retransmitting of the frame
when the timer expires.

Note

11.27

In Stop-and-Wait ARQ, we use sequence
numbers to number the frames.

The sequence numbers are based on
modulo-2 arithmetic.

Note

11.28

In Stop-and-Wait ARQ, the
acknowledgment number always

announces in modulo-2 arithmetic the
sequence number of the next frame

expected.

Note

11.29

Figure 11.10 Design of the Stop-and-Wait ARQ Protocol

11.30

Algorithm 11.5 Sender-site algorithm for Stop-and-Wait ARQ

(continued)

11.31

Algorithm 11.5 Sender-site algorithm for Stop-and-Wait ARQ (continued)

11.32

Algorithm 11.6 Receiver-site algorithm for Stop-and-Wait ARQ Protocol

11.33

Figure 11.11 shows an example of Stop-and-Wait ARQ.
Frame 0 is sent and acknowledged. Frame 1 is lost and
resent after the time-out. The resent frame 1 is
acknowledged and the timer stops. Frame 0 is sent and
acknowledged, but the acknowledgment is lost. The
sender has no idea if the frame or the acknowledgment
is lost, so after the time-out, it resends frame 0, which is
acknowledged.

Example 11.3

11.34

Figure 11.11 Flow diagram for Example 11.3

11.35

Assume that, in a Stop-and-Wait ARQ system, the
bandwidth of the line is 1 Mbps, and 1 bit takes 20 ms to
make a round trip. What is the bandwidth-delay product?
If the system data frames are 1000 bits in length, what is
the utilization percentage of the link?

Solution
The bandwidth-delay product is

Example 11.4

11.36

The system can send 20,000 bits during the time it takes
for the data to go from the sender to the receiver and then
back again. However, the system sends only 1000 bits. We
can say that the link utilization is only 1000/20,000, or 5
percent. For this reason, for a link with a high bandwidth
or long delay, the use of Stop-and-Wait ARQ wastes the
capacity of the link.

Example 11.4 (continued)

11.37

What is the utilization percentage of the link in
Example 11.4 if we have a protocol that can send up to
15 frames before stopping and worrying about the
acknowledgments?

Solution
The bandwidth-delay product is still 20,000 bits. The
system can send up to 15 frames or 15,000 bits during a
round trip. This means the utilization is 15,000/20,000, or
75 percent. Of course, if there are damaged frames, the
utilization percentage is much less because frames have to
be resent.

Example 11.5

11.38

In the Go-Back-N Protocol, the sequence
numbers are modulo 2m,

where m is the size of the sequence
number field in bits.

Note

11.39

Figure 11.12 Send window for Go-Back-N ARQ

11.40

The send window is an abstract concept
defining an imaginary box of size 2m − 1

with three variables: Sf, Sn, and Ssize.

Note

11.41

The send window can slide one
or more slots when a valid
acknowledgment arrives.

Note

11.42

Figure 11.13 Receive window for Go-Back-N ARQ

11.43

The receive window is an abstract
concept defining an imaginary box

of size 1 with one single variable Rn.
The window slides

when a correct frame has arrived;
sliding occurs one slot at a time.

Note

11.44

Figure 11.14 Design of Go-Back-N ARQ

11.45

Figure 11.15 Window size for Go-Back-N ARQ

11.46

In Go-Back-N ARQ, the size of the send
window must be less than 2m;

the size of the receiver window
is always 1.

Note

11.47

Algorithm 11.7 Go-Back-N sender algorithm

(continued)

11.48

Algorithm 11.7 Go-Back-N sender algorithm (continued)

11.49

Algorithm 11.8 Go-Back-N receiver algorithm

11.50

Example 11.6

Figure 11.16 shows an example of Go-Back-N. This is an
example of a case where the forward channel is reliable,
but the reverse is not. No data frames are lost, but some
ACKs are delayed and one is lost. The example also
shows how cumulative acknowledgments can help if
acknowledgments are delayed or lost. After initialization,
there are seven sender events. Request events are
triggered by data from the network layer; arrival events
are triggered by acknowledgments from the physical
layer. There is no time-out event here because all
outstanding frames are acknowledged before the timer
expires. Note that although ACK 2 is lost, ACK 3 serves as
both ACK 2 and ACK 3.

11.51

Figure 11.16 Flow diagram for Example 11.6

11.52

Figure 11.17 shows what happens when a frame is lost.
Frames 0, 1, 2, and 3 are sent. However, frame 1 is lost.
The receiver receives frames 2 and 3, but they are
discarded because they are received out of order. The
sender receives no acknowledgment about frames 1, 2, or
3. Its timer finally expires. The sender sends all
outstanding frames (1, 2, and 3) because it does not know
what is wrong. Note that the resending of frames 1, 2, and
3 is the response to one single event. When the sender is
responding to this event, it cannot accept the triggering of
other events. This means that when ACK 2 arrives, the
sender is still busy with sending frame 3.

Example 11.7

11.53

The physical layer must wait until this event is completed
and the data link layer goes back to its sleeping state. We
have shown a vertical line to indicate the delay. It is the
same story with ACK 3; but when ACK 3 arrives, the
sender is busy responding to ACK 2. It happens again
when ACK 4 arrives. Note that before the second timer
expires, all outstanding frames have been sent and the
timer is stopped.

Example 11.7 (continued)

11.54

Figure 11.17 Flow diagram for Example 11.7

11.55

Stop-and-Wait ARQ is a special case of
Go-Back-N ARQ in which the size of the

send window is 1.

Note

11.56

Figure 11.18 Send window for Selective Repeat ARQ

11.57

Figure 11.19 Receive window for Selective Repeat ARQ

11.58

Figure 11.20 Design of Selective Repeat ARQ

11.59

Figure 11.21 Selective Repeat ARQ, window size

11.60

In Selective Repeat ARQ, the size of the
sender and receiver window

must be at most one-half of 2m.

Note

11.61

Algorithm 11.9 Sender-site Selective Repeat algorithm

(continued)

11.62

Algorithm 11.9 Sender-site Selective Repeat algorithm (continued)

(continued)

11.63

Algorithm 11.9 Sender-site Selective Repeat algorithm (continued)

11.64

Algorithm 11.10 Receiver-site Selective Repeat algorithm

11.65

Algorithm 11.10 Receiver-site Selective Repeat algorithm

11.66

Figure 11.22 Delivery of data in Selective Repeat ARQ

11.67

This example is similar to Example 11.3 in which frame 1
is lost. We show how Selective Repeat behaves in this
case. Figure 11.23 shows the situation. One main
difference is the number of timers. Here, each frame sent
or resent needs a timer, which means that the timers need
to be numbered (0, 1, 2, and 3). The timer for frame 0
starts at the first request, but stops when the ACK for this
frame arrives. The timer for frame 1 starts at the second
request, restarts when a NAK arrives, and finally stops
when the last ACK arrives. The other two timers start
when the corresponding frames are sent and stop at the
last arrival event.

Example 11.8

11.68

At the receiver site we need to distinguish between the
acceptance of a frame and its delivery to the network
layer. At the second arrival, frame 2 arrives and is stored
and marked, but it cannot be delivered because frame 1 is
missing. At the next arrival, frame 3 arrives and is
marked and stored, but still none of the frames can be
delivered. Only at the last arrival, when finally a copy of
frame 1 arrives, can frames 1, 2, and 3 be delivered to the
network layer. There are two conditions for the delivery of
frames to the network layer: First, a set of consecutive
frames must have arrived. Second, the set starts from the
beginning of the window.

Example 11.8 (continued)

11.69

Another important point is that a NAK is sent after the
second arrival, but not after the third, although both
situations look the same. The reason is that the protocol
does not want to crowd the network with unnecessary
NAKs and unnecessary resent frames. The second NAK
would still be NAK1 to inform the sender to resend frame
1 again; this has already been done. The first NAK sent is
remembered (using the nakSent variable) and is not sent
again until the frame slides. A NAK is sent once for each
window position and defines the first slot in the window.

Example 11.8 (continued)

11.70

The next point is about the ACKs. Notice that only two
ACKs are sent here. The first one acknowledges only the
first frame; the second one acknowledges three frames. In
Selective Repeat, ACKs are sent when data are delivered to
the network layer. If the data belonging to n frames are
delivered in one shot, only one ACK is sent for all of them.

Example 11.8 (continued)

11.71

Figure 11.23 Flow diagram for Example 11.8

11.72

Figure 11.24 Design of piggybacking in Go-Back-N ARQ

11.73

11-6 HDLC11-6 HDLC

High-level Data Link Control (HDLC)High-level Data Link Control (HDLC) is a is a bit-orientedbit-oriented
protocol for communication over point-to-point and protocol for communication over point-to-point and
multipoint links. It implements the ARQ mechanisms multipoint links. It implements the ARQ mechanisms
we discussed in this chapter.we discussed in this chapter.

Configurations and Transfer Modes
Frames
Control Field

Topics discussed in this section:Topics discussed in this section:

11.74

Figure 11.25 Normal response mode

11.75

Figure 11.26 Asynchronous balanced mode

11.76

Figure 11.27 HDLC frames

11.77

Figure 11.28 Control field format for the different frame types

11.78

Table 11.1 U-frame control command and response

11.79

Figure 11.29 shows how U-frames can be used for
connection establishment and connection release. Node A
asks for a connection with a set asynchronous balanced
mode (SABM) frame; node B gives a positive response
with an unnumbered acknowledgment (UA) frame. After
these two exchanges, data can be transferred between the
two nodes (not shown in the figure). After data transfer,
node A sends a DISC (disconnect) frame to release the
connection; it is confirmed by node B responding with a
UA (unnumbered acknowledgment).

Example 11.9

11.80

Figure 11.29 Example of connection and disconnection

11.81

Figure 11.30 shows an exchange using piggybacking.
Node A begins the exchange of information with an
I-frame numbered 0 followed by another I-frame
numbered 1. Node B piggybacks its acknowledgment of
both frames onto an I-frame of its own. Node B’s first
I-frame is also numbered 0 [N(S) field] and contains a 2
in its N(R) field, acknowledging the receipt of A’s frames
1 and 0 and indicating that it expects frame 2 to arrive
next. Node B transmits its second and third I-frames
(numbered 1 and 2) before accepting further frames from
node A.

Example 11.10

11.82

Its N(R) information, therefore, has not changed: B
frames 1 and 2 indicate that node B is still expecting A’s
frame 2 to arrive next. Node A has sent all its data.
Therefore, it cannot piggyback an acknowledgment onto
an I-frame and sends an S-frame instead. The RR code
indicates that A is still ready to receive. The number 3 in
the N(R) field tells B that frames 0, 1, and 2 have all been
accepted and that A is now expecting frame number 3.

Example 11.10 (continued)

11.83

Figure 11.30 Example of piggybacking without error

11.84

Figure 11.31 shows an exchange in which a frame is lost.
Node B sends three data frames (0, 1, and 2), but frame 1
is lost. When node A receives frame 2, it discards it and
sends a REJ frame for frame 1. Note that the protocol
being used is Go-Back-N with the special use of an REJ
frame as a NAK frame. The NAK frame does two things
here: It confirms the receipt of frame 0 and declares that
frame 1 and any following frames must be resent. Node
B, after receiving the REJ frame, resends frames 1 and 2.
Node A acknowledges the receipt by sending an RR frame
(ACK) with acknowledgment number 3.

Example 11.11

11.85

Figure 11.31 Example of piggybacking with error

11.86

11-7 POINT-TO-POINT PROTOCOL11-7 POINT-TO-POINT PROTOCOL

Although HDLC is a general protocol that can be used Although HDLC is a general protocol that can be used
for both point-to-point and multipoint configurations, for both point-to-point and multipoint configurations,
one of the most common protocols for point-to-point one of the most common protocols for point-to-point
access is the access is the Point-to-Point Protocol (PPP). Point-to-Point Protocol (PPP). PPP is a PPP is a
byte-orientedbyte-oriented protocol. protocol.

Framing
Transition Phases
Multiplexing
Multilink PPP

Topics discussed in this section:Topics discussed in this section:

11.87

Figure 11.32 PPP frame format

11.88

PPP is a byte-oriented protocol using
byte stuffing with the escape byte

01111101.

Note

11.89

Figure 11.33 Transition phases

11.90

Figure 11.34 Multiplexing in PPP

11.91

Figure 11.35 LCP packet encapsulated in a frame

11.92

Table 11.2 LCP packets

11.93

Table 11.3 Common options

11.94

Figure 11.36 PAP packets encapsulated in a PPP frame

11.95

Figure 11.37 CHAP packets encapsulated in a PPP frame

11.96

Figure 11.38 IPCP packet encapsulated in PPP frame

11.97

Table 11.4 Code value for IPCP packets

11.98

Figure 11.39 IP datagram encapsulated in a PPP frame

11.99

Figure 11.40 Multilink PPP

11.100

Let us go through the phases followed by a network layer
packet as it is transmitted through a PPP connection.
Figure 11.41 shows the steps. For simplicity, we assume
unidirectional movement of data from the user site to the
system site (such as sending an e-mail through an ISP).

The first two frames show link establishment. We have
chosen two options (not shown in the figure): using PAP
for authentication and suppressing the address control
fields. Frames 3 and 4 are for authentication. Frames 5
and 6 establish the network layer connection using IPCP.

Example 11.12

11.101

The next several frames show that some IP packets are
encapsulated in the PPP frame. The system (receiver)
may have been running several network layer protocols,
but it knows that the incoming data must be delivered to
the IP protocol because the NCP protocol used before the
data transfer was IPCP.

After data transfer, the user then terminates the data link
connection, which is acknowledged by the system. Of
course the user or the system could have chosen to
terminate the network layer IPCP and keep the data link
layer running if it wanted to run another NCP protocol.

Example 11.12 (continued)

11.102

Figure 11.41 An example

11.103

Figure 11.41 An example (continued)

12.1

Chapter 12

Multiple Access

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12.2

Figure 12.1 Data link layer divided into two functionality-oriented sublayers

12.3

Figure 12.2 Taxonomy of multiple-access protocols discussed in this chapter

12.4

12-1 RANDOM ACCESS12-1 RANDOM ACCESS

In In random accessrandom access or or contentioncontention methods, no station is methods, no station is
superior to another station and none is assigned the superior to another station and none is assigned the
control over another. No station permits, or does not control over another. No station permits, or does not
permit, another station to send. At each instance, a permit, another station to send. At each instance, a
station that has data to send uses a procedure defined station that has data to send uses a procedure defined
by the protocol to make a decision on whether or not to by the protocol to make a decision on whether or not to
send. send.

ALOHA
Carrier Sense Multiple Access
Carrier Sense Multiple Access with Collision Detection
Carrier Sense Multiple Access with Collision Avoidance

Topics discussed in this section:Topics discussed in this section:

12.5

Figure 12.3 Frames in a pure ALOHA network

12.6

Figure 12.4 Procedure for pure ALOHA protocol

12.7

The stations on a wireless ALOHA network are a
maximum of 600 km apart. If we assume that signals
propagate at 3 × 108 m/s, we find
 Tp = (600 × 105) / (3 × 108) = 2 ms.
Now we can find the value of TB for different values of
K .

a. For K = 1, the range is {0, 1}. The station needs to|
 generate a random number with a value of 0 or 1. This
 means that TB is either 0 ms (0 × 2) or 2 ms (1 × 2),
 based on the outcome of the random variable.

Example 12.1

12.8

b. For K = 2, the range is {0, 1, 2, 3}. This means that TB

 can be 0, 2, 4, or 6 ms, based on the outcome of the
 random variable.

c. For K = 3, the range is {0, 1, 2, 3, 4, 5, 6, 7}. This
 means that TB can be 0, 2, 4, . . . , 14 ms, based on the
 outcome of the random variable.

d. We need to mention that if K > 10, it is normally set to
 10.

Example 12.1 (continued)

12.9

Figure 12.5 Vulnerable time for pure ALOHA protocol

12.10

A pure ALOHA network transmits 200-bit frames on a
shared channel of 200 kbps. What is the requirement to
make this frame collision-free?

Example 12.2

Solution
Average frame transmission time Tfr is 200 bits/200 kbps or
1 ms. The vulnerable time is 2 × 1 ms = 2 ms. This means
no station should send later than 1 ms before this station
starts transmission and no station should start sending
during the one 1-ms period that this station is sending.

12.11

The throughput for pure ALOHA is
S = G × e −2G .

The maximum throughput
Smax = 0.184 when G= (1/2).

Note

12.12

A pure ALOHA network transmits 200-bit frames on a
shared channel of 200 kbps. What is the throughput if the
system (all stations together) produces
a. 1000 frames per second b. 500 frames per second
c. 250 frames per second.

Example 12.3

Solution
The frame transmission time is 200/200 kbps or 1 ms.
a. If the system creates 1000 frames per second, this is 1
 frame per millisecond. The load is 1. In this case
 S = G× e−2 G or S = 0.135 (13.5 percent). This means
 that the throughput is 1000 × 0.135 = 135 frames. Only
 135 frames out of 1000 will probably survive.

12.13

Example 12.3 (continued)

b. If the system creates 500 frames per second, this is
 (1/2) frame per millisecond. The load is (1/2). In this
 case S = G × e −2G or S = 0.184 (18.4 percent). This
 means that the throughput is 500 × 0.184 = 92 and that
 only 92 frames out of 500 will probably survive. Note
 that this is the maximum throughput case,
 percentagewise.

c. If the system creates 250 frames per second, this is (1/4)
 frame per millisecond. The load is (1/4). In this case
 S = G × e −2G or S = 0.152 (15.2 percent). This means
 that the throughput is 250 × 0.152 = 38. Only 38
 frames out of 250 will probably survive.

12.14

Figure 12.6 Frames in a slotted ALOHA network

12.15

The throughput for slotted ALOHA is
S = G × e−G .

The maximum throughput
Smax = 0.368 when G = 1.

Note

12.16

Figure 12.7 Vulnerable time for slotted ALOHA protocol

12.17

A slotted ALOHA network transmits 200-bit frames on a
shared channel of 200 kbps. What is the throughput if the
system (all stations together) produces
a. 1000 frames per second b. 500 frames per second
c. 250 frames per second.

Example 12.4

Solution
The frame transmission time is 200/200 kbps or 1 ms.
a. If the system creates 1000 frames per second, this is 1
 frame per millisecond. The load is 1. In this case
 S = G× e−G or S = 0.368 (36.8 percent). This means
 that the throughput is 1000 × 0.0368 = 368 frames.
 Only 386 frames out of 1000 will probably survive.

12.18

Example 12.4 (continued)

b. If the system creates 500 frames per second, this is
 (1/2) frame per millisecond. The load is (1/2). In this
 case S = G × e−G or S = 0.303 (30.3 percent). This
 means that the throughput is 500 × 0.0303 = 151.
 Only 151 frames out of 500 will probably survive.

c. If the system creates 250 frames per second, this is (1/4)
 frame per millisecond. The load is (1/4). In this case
 S = G × e −G or S = 0.195 (19.5 percent). This means
 that the throughput is 250 × 0.195 = 49. Only 49
 frames out of 250 will probably survive.

12.19

Figure 12.8 Space/time model of the collision in CSMA

12.20

Figure 12.9 Vulnerable time in CSMA

12.21

Figure 12.10 Behavior of three persistence methods

12.22

Figure 12.11 Flow diagram for three persistence methods

12.23

Figure 12.12 Collision of the first bit in CSMA/CD

12.24

Figure 12.13 Collision and abortion in CSMA/CD

12.25

A network using CSMA/CD has a bandwidth of 10 Mbps.
If the maximum propagation time (including the delays in
the devices and ignoring the time needed to send a
jamming signal, as we see later) is 25.6 μs, what is the
minimum size of the frame?

Example 12.5

Solution
The frame transmission time is Tfr = 2 × Tp = 51.2 μs.
This means, in the worst case, a station needs to transmit
for a period of 51.2 μs to detect the collision. The
minimum size of the frame is 10 Mbps × 51.2 μs = 512
bits or 64 bytes. This is actually the minimum size of the
frame for Standard Ethernet.

12.26

Figure 12.14 Flow diagram for the CSMA/CD

12.27

Figure 12.15 Energy level during transmission, idleness, or collision

12.28

Figure 12.16 Timing in CSMA/CA

12.29

In CSMA/CA, the IFS can also be used to
define the priority of a station or a

frame.

Note

12.30

In CSMA/CA, if the station finds the
channel busy, it does not restart the

timer of the contention window;
it stops the timer and restarts it when

the channel becomes idle.

Note

12.31

Figure 12.17 Flow diagram for CSMA/CA

12.32

12-2 CONTROLLED ACCESS12-2 CONTROLLED ACCESS

In In controlled accesscontrolled access, the stations consult one another , the stations consult one another
to find which station has the right to send. A station to find which station has the right to send. A station
cannot send unless it has been authorized by other cannot send unless it has been authorized by other
stations. We discuss three popular controlled-access stations. We discuss three popular controlled-access
methods.methods.

Reservation
Polling
Token Passing

Topics discussed in this section:Topics discussed in this section:

12.33

Figure 12.18 Reservation access method

12.34

Figure 12.19 Select and poll functions in polling access method

12.35

Figure 12.20 Logical ring and physical topology in token-passing access method

12.36

12-3 CHANNELIZATION12-3 CHANNELIZATION

ChannelizationChannelization is a multiple-access method in which is a multiple-access method in which
the available bandwidth of a link is shared in time, the available bandwidth of a link is shared in time,
frequency, or through code, between different stations. frequency, or through code, between different stations.
In this section, we discuss three channelization In this section, we discuss three channelization
protocols.protocols.

Frequency-Division Multiple Access (FDMA)
Time-Division Multiple Access (TDMA)
Code-Division Multiple Access (CDMA)

Topics discussed in this section:Topics discussed in this section:

12.37

We see the application of all these
methods in Chapter 16 when

we discuss cellular phone systems.

Note

12.38

Figure 12.21 Frequency-division multiple access (FDMA)

12.39

In FDMA, the available bandwidth
of the common channel is divided into

bands that are separated by guard
bands.

Note

12.40

Figure 12.22 Time-division multiple access (TDMA)

12.41

In TDMA, the bandwidth is just one
channel that is timeshared between

different stations.

Note

12.42

In CDMA, one channel carries all
transmissions simultaneously.

Note

12.43

Figure 12.23 Simple idea of communication with code

12.44

Figure 12.24 Chip sequences

12.45

Figure 12.25 Data representation in CDMA

12.46

Figure 12.26 Sharing channel in CDMA

12.47

Figure 12.27 Digital signal created by four stations in CDMA

12.48

Figure 12.28 Decoding of the composite signal for one in CDMA

12.49

Figure 12.29 General rule and examples of creating Walsh tables

12.50

The number of sequences in a Walsh
table needs to be N = 2m.

Note

12.51

Find the chips for a network with
a. Two stations b. Four stations

Example 12.6

Solution
We can use the rows of W2 and W4 in Figure 12.29:
a. For a two-station network, we have
 [+1 +1] and [+1 −1].

b. For a four-station network we have
 [+1 +1 +1 +1], [+1 −1 +1 −1],
 [+1 +1 −1 −1], and [+1 −1 −1 +1].

12.52

What is the number of sequences if we have 90 stations in
our network?

Example 12.7

Solution
The number of sequences needs to be 2m. We need to
choose m = 7 and N = 27 or 128. We can then use 90
of the sequences as the chips.

12.53

Prove that a receiving station can get the data sent by a
specific sender if it multiplies the entire data on the
channel by the sender’s chip code and then divides it by
the number of stations.

Example 12.8

Solution
Let us prove this for the first station, using our previous
four-station example. We can say that the data on the
channel
 D = (d1 c⋅ 1 + d2 c⋅ 2 + d3 c⋅ 3 + d4 c⋅ 4).
The receiver which wants to get the data sent by station 1
multiplies these data by c1.

12.54

Example 12.8 (continued)

When we divide the result by N, we get d1 .

13.1

Chapter 13

Wired LANs: Ethernet

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13.2

13-1 IEEE STANDARDS13-1 IEEE STANDARDS

In 1985, the Computer Society of the IEEE started a In 1985, the Computer Society of the IEEE started a
project, called Project 802, to set standards to enable project, called Project 802, to set standards to enable
intercommunication among equipment from a variety intercommunication among equipment from a variety
of manufacturers. Project 802 is a way of specifying of manufacturers. Project 802 is a way of specifying
functions of the physical layer and the data link layer functions of the physical layer and the data link layer
of major LAN protocols.of major LAN protocols.

Data Link Layer
Physical Layer

Topics discussed in this section:Topics discussed in this section:

13.3

Figure 13.1 IEEE standard for LANs

13.4

Figure 13.2 HDLC frame compared with LLC and MAC frames

13.5

13-2 STANDARD ETHERNET13-2 STANDARD ETHERNET

The original Ethernet was created in 1976 at Xerox’s The original Ethernet was created in 1976 at Xerox’s
Palo Alto Research Center (PARC). Since then, it has Palo Alto Research Center (PARC). Since then, it has
gone through four generations. We briefly discuss the gone through four generations. We briefly discuss the
Standard (or traditional) EthernetStandard (or traditional) Ethernet in this section. in this section.

MAC Sublayer
Physical Layer

Topics discussed in this section:Topics discussed in this section:

13.6

Figure 13.3 Ethernet evolution through four generations

13.7

Figure 13.4 802.3 MAC frame

13.8

Figure 13.5 Minimum and maximum lengths

13.9

Frame length:
Minimum: 64 bytes (512 bits)

Maximum: 1518 bytes (12,144 bits)

Note

13.10

Figure 13.6 Example of an Ethernet address in hexadecimal notation

13.11

Figure 13.7 Unicast and multicast addresses

13.12

The least significant bit of the first byte
defines the type of address.

If the bit is 0, the address is unicast;
otherwise, it is multicast.

Note

13.13

The broadcast destination address is a
special case of the multicast address in

which all bits are 1s.

Note

13.14

Define the type of the following destination addresses:
a. 4A:30:10:21:10:1A b. 47:20:1B:2E:08:EE
c. FF:FF:FF:FF:FF:FF

Solution
To find the type of the address, we need to look at the
second hexadecimal digit from the left. If it is even, the
address is unicast. If it is odd, the address is multicast. If
all digits are F’s, the address is broadcast. Therefore, we
have the following:
a. This is a unicast address because A in binary is 1010.
b. This is a multicast address because 7 in binary is 0111.
c. This is a broadcast address because all digits are F’s.

Example 13.1

13.15

Show how the address 47:20:1B:2E:08:EE is sent out on
line.

Solution
The address is sent left-to-right, byte by byte; for each
byte, it is sent right-to-left, bit by bit, as shown below:

Example 13.2

13.16

Figure 13.8 Categories of Standard Ethernet

13.17

Figure 13.9 Encoding in a Standard Ethernet implementation

13.18

Figure 13.10 10Base5 implementation

13.19

Figure 13.11 10Base2 implementation

13.20

Figure 13.12 10Base-T implementation

13.21

Figure 13.13 10Base-F implementation

13.22

Table 13.1 Summary of Standard Ethernet implementations

13.23

13-3 CHANGES IN THE STANDARD13-3 CHANGES IN THE STANDARD

The 10-Mbps Standard Ethernet has gone through The 10-Mbps Standard Ethernet has gone through
several changes before moving to the higher data several changes before moving to the higher data
rates. These changes actually opened the road to the rates. These changes actually opened the road to the
evolution of the Ethernet to become compatible with evolution of the Ethernet to become compatible with
other high-data-rate LANs. other high-data-rate LANs.

Bridged Ethernet
Switched Ethernet
Full-Duplex Ethernet

Topics discussed in this section:Topics discussed in this section:

13.24

Figure 13.14 Sharing bandwidth

13.25

Figure 13.15 A network with and without a bridge

13.26

Figure 13.16 Collision domains in an unbridged network and a bridged network

13.27

Figure 13.17 Switched Ethernet

13.28

Figure 13.18 Full-duplex switched Ethernet

13.29

13-4 FAST ETHERNET13-4 FAST ETHERNET

Fast Ethernet was designed to compete with LAN Fast Ethernet was designed to compete with LAN
protocols such as FDDI or Fiber Channel. IEEE protocols such as FDDI or Fiber Channel. IEEE
created Fast Ethernet under the name 802.3u. Fast created Fast Ethernet under the name 802.3u. Fast
Ethernet is backward-compatible with Standard Ethernet is backward-compatible with Standard
Ethernet, but it can transmit data 10 times faster at a Ethernet, but it can transmit data 10 times faster at a
rate of 100 Mbps. rate of 100 Mbps.

MAC Sublayer
Physical Layer

Topics discussed in this section:Topics discussed in this section:

13.30

Figure 13.19 Fast Ethernet topology

13.31

Figure 13.20 Fast Ethernet implementations

13.32

Figure 13.21 Encoding for Fast Ethernet implementation

13.33

Table 13.2 Summary of Fast Ethernet implementations

13.34

13-5 GIGABIT ETHERNET13-5 GIGABIT ETHERNET

The need for an even higher data rate resulted in the The need for an even higher data rate resulted in the
design of the Gigabit Ethernet protocol (1000 Mbps). design of the Gigabit Ethernet protocol (1000 Mbps).
The IEEE committee calls the standard 802.3z.The IEEE committee calls the standard 802.3z.

MAC Sublayer
Physical Layer
Ten-Gigabit Ethernet

Topics discussed in this section:Topics discussed in this section:

13.35

In the full-duplex mode of Gigabit
Ethernet, there is no collision;

the maximum length of the cable is
determined by the signal attenuation

in the cable.

Note

13.36

Figure 13.22 Topologies of Gigabit Ethernet

13.37

Figure 13.23 Gigabit Ethernet implementations

13.38

Figure 13.24 Encoding in Gigabit Ethernet implementations

13.39

Table 13.3 Summary of Gigabit Ethernet implementations

13.40

Table 13.4 Summary of Ten-Gigabit Ethernet implementations

14.1

Chapter 14

Wireless LANs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14.2

14-1 IEEE 802.1114-1 IEEE 802.11

IEEE has defined the specifications for a wireless IEEE has defined the specifications for a wireless
LAN, called IEEE 802.11, which covers the physical LAN, called IEEE 802.11, which covers the physical
and data link layers.and data link layers.

Architecture
MAC Sublayer
Physical Layer

Topics discussed in this section:Topics discussed in this section:

14.3

A BSS without an AP is called an ad hoc
network;

a BSS with an AP is called an
infrastructure network.

Note

14.4

Figure 14.1 Basic service sets (BSSs)

14.5

Figure 14.2 Extended service sets (ESSs)

14.6

Figure 14.3 MAC layers in IEEE 802.11 standard

14.7

Figure 14.4 CSMA/CA flowchart

14.8

Figure 14.5 CSMA/CA and NAV

14.9

Figure 14.6 Example of repetition interval

14.10

Figure 14.7 Frame format

14.11

Table 14.1 Subfields in FC field

14.12

Figure 14.8 Control frames

14.13

Table 14.2 Values of subfields in control frames

14.14

Table 14.3 Addresses

14.15

Figure 14.9 Addressing mechanisms

14.16

Figure 14.10 Hidden station problem

14.17

The CTS frame in CSMA/CA handshake
can prevent collision from

a hidden station.

Note

14.18

Figure 14.11 Use of handshaking to prevent hidden station problem

14.19

Figure 14.12 Exposed station problem

14.20

Figure 14.13 Use of handshaking in exposed station problem

14.21

Table 14.4 Physical layers

14.22

Figure 14.14 Industrial, scientific, and medical (ISM) band

14.23

Figure 14.15 Physical layer of IEEE 802.11 FHSS

14.24

Figure 14.16 Physical layer of IEEE 802.11 DSSS

14.25

Figure 14.17 Physical layer of IEEE 802.11 infrared

14.26

Figure 14.18 Physical layer of IEEE 802.11b

14.27

14-2 BLUETOOTH14-2 BLUETOOTH

BluetoothBluetooth is a wireless LAN technology designed to is a wireless LAN technology designed to
connect devices of different functions such as connect devices of different functions such as
telephones, notebooks, computers, cameras, printers, telephones, notebooks, computers, cameras, printers,
coffee makers, and so on. A Bluetooth LAN is an ad coffee makers, and so on. A Bluetooth LAN is an ad
hoc network, which means that the network is formed hoc network, which means that the network is formed
spontaneously. spontaneously.

Architecture
Bluetooth Layers
Baseband Layer
L2CAP

Topics discussed in this section:Topics discussed in this section:

14.28

Figure 14.19 Piconet

14.29

Figure 14.20 Scatternet

14.30

Figure 14.21 Bluetooth layers

14.31

Figure 14.22 Single-secondary communication

14.32

Figure 14.23 Multiple-secondary communication

14.33

Figure 14.24 Frame format types

14.34

Figure 14.25 L2CAP data packet format

	ch10
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

	ch11
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103

	ch12
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

	ch13
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

	ch14
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

