
Sec. 2.3 Error Detection 57

for UHF and VHF TV broadcast, for FM broadcast, and many specialized applications.
Packet radio networks, discussed in Section 4.6, use this frequency band. Typical data
rates in this band are highly variable; the DARPA (U.S. Department of Defense Ad
vanced Research Projects Agency) packet radio network, for example, uses 100,000 and
400,000 bps.

Below 30 MHz, long-distance propagation beyond line-of-sight is possible by re
flection from the ionosphere. Ironically, the 3 to 30 MHz band is called the high
frequency (HF) band, the terminology coming from the early days of radio. This band
is very noisy, heavily used (e.g., by ham radio), and subject to fading. Fading can be
viewed as a channel filtering phenomenon with the frequency response changing rela
tively rapidly in time; this is caused by time-varying multiple propagation paths from
source to destination. Typical data rates in this band are 2400 bps and less.

Microwave links (above 1000 MHz) must use line-of-sight paths. The antennas
(usually highly directional dishes) yield typical path lengths of 10 to 200 km. Longer
paths than this can be achieved by the use of repeaters. These links can carry 1000
Mbps or so and are usually multiplexed between long-distance telephony, TV program
distribution, and data.

Satellite links use microwave frequencies with a satellite as a repeater. They have
similar data rates and uses as microwave links. One satellite repeater can receive signals
from many ground stations and broadcast back in another frequency band to all those
ground stations. The satellite can contain multiple antenna beams, allowing it to act as
a switch for multiple microwave links. In Chapter 4, multiaccess techniques for sharing
individual frequency bands between different ground stations are studied.

This section has provided a brief introduction to physical channels and their use
in data transmission. A link in a subnet might use any of these physical channels, or
might share such a channel on a TOM or FDM basis with many other uses. Despite the
complexity of this subject (which we have barely touched), these links can be regarded
simply as unreliable bit pipes by higher layers.

2.3 ERROR DETECTION

The subject of the next four sections is data link control. This section treats the detec
tion of transmission errors, and the next section treats retransmission requests. Assume
initially that the receiving data link control (DLC) module knows where frames begin
and end. The problem then is to determine which of those frames contain errors. From
the layering viewpoint, the packets entering the OLe are arbitrary bit strings (i.e., the
function of the DLC layer is to provide error-free packets to the next layer up, no matter
what the packet bit strings are). Thus, at the receiving DLC, any bit string is acceptable
as a packet and errors cannot be detected by analysis of the packet itself. Note that a
transformation on packets of f{ bits into some other representation of length f{ cannot
help; there are 2K possible packets and all possible bit strings of length K must be used
to represent all possible packets. The conclusion is that extra bits must be appended to
a packet to detect errors.

58

2.3.1 Single Parity Checks

Point-to-Point Protocols and Links Chap. 2
r

The simplest example of error detection is to append a single bit, called a parity check,
to a string of data bits. This parity check bit has the value 1 if the number of 1's in the
bit string is odd, and has the value 0 otherwise (see Fig. 2.13). In other words, the parity
check bit is the sum, modulo 2, of the bit values in the original bit string (k modulo j,
for integer k and positive integer j, is the integer m, 0 :-:::: m < j, such that k - m is
divisible by j).

In the ASCII character code, characters are mapped into strings of seven bits and
then a parity check is appended as an eighth bit. One can also visualize appending
a parity check to the end of a packet, but it will soon be apparent that this is not a
sufficiently reliable way to detect errors.

Note that the total number of l's in an encoded string (i.e., the original bit string
plus the appended parity check) is always even. If an encoded string is transmitted and a
single error occurs in transmission, then, whether a I is changed to a 0 or a 0 to a I, the
resulting number of l's in the string is odd and the error can be detected at the receiver.
Note that the receiver cannot tell which bit is in error, nor how many errors occurred; it
simply knows that errors occurred because of the odd number of l's.

It is rather remarkable that for bit strings of any length, a single parity check
enables the detection of any single error in the encoded string. Unfortunately, two errors
in an encoded string always leave the number of 1's even so that the errors cannot be
detected. In general, any odd number of errors are detected and any even number are
undetected.

Despite the appealing simplicity of the single parity check, it is inadequate for
reliable detection of errors; in many situations, it only detects errors in about half of the
encoded strings where errors occur. There are two reasons for this poor behavior. The
first is that many modems map several bits into a single sample of the physical channel
input (see Section 2.2.5), and an error in the reception of such a sample typically causes
several bit errors. The second reason is that many kinds of noise, such as lightning
and temporarily broken connections, cause long bursts of errors. For both these reasons,
when one or more errors occur in an encoded string, an even number of errors is almost
as likely as an odd number and a single parity check is ineffective.

2.3.2 Horizontal and Vertical Parity Checks

Another simple and intuitive approach to error detection is to arrange a string of data bits
in a two-dimensional array (see Fig. 2.14) with one parity check for each row and one
for each column. The parity check in the lower right comer can be viewed as a parity
check on the row parity checks, on the column parity checks, or on the data array. If an
even number of errors are confined to a single row, each of them can be detected by the

Figure 2.13 Single parity check. Final bit
c is the modulo 2 sum of 81 to 8b where
k = 7 here.

Sec. 2.3 Error Detection 59

1 0 0 1 0 1 0

0 1 1 1 0 1 0 0

1 0 0 0 1 0 Horizontal
1 1 checks
1 0 0 0 1 1 1 0

0 0 1 0 0 1 1

0 0

Vertical checks

(a)

1 0 0 1 0 1 0 1

0 1 1 1 0 1 0 0

1 1 CD 0 0 ® 1 0

1 0 0 0 1 1 1 0 Figure 2.14 Horizontal and vertical parity

0 0 CD 1 0 ® 1 1 checks. Each horizontal parity check
checks its own row, and each column parity

0 0 check checks its own column. Note, in part
(b), that if each circled bit is changed, all

(b) parity checks are still satisfied.

corresponding column parity checks; similarly, errors in a single column can be detected
by the row parity checks. Unfortunately, any pattern of four errors confined to two rows
and two columns [i.e., forming a rectangle as indicated in Fig. 2.14(b)] is undetectable.

The most common use of this scheme is where the input is a string of ASCII
encoded characters. Each encoded character can be visualized as a row in the array of
Fig. 2.14; the row parity check is then simply the last bit of the encoded character. The
column parity checks can be trivially computed by software or hardware. The major
weakness of this scheme is that it can fail to detect rather short bursts of errors (e.g.,
two adjacent bits in each of two adjacent rows). Since adjacent errors are quite likely in
practice, the likelihood of such failures is undesirably high.

2.3.3 Parity Check Codes

The nicest feature about horizontal and vertical parity checks is that the underlying idea
generalizes immediately to arbitrary parity check codes. The underlying idea is to start
with a bit string (the array of data bits in Fig. 2.14) and to generate parity checks on
various subsets of the bits (the rows and columns in Fig. 2.14). The transformation from
the string of data bits to the string of data bits and parity checks is called a parity check
code or linear code. An example of a parity check code (other than the horizontal and
vertical case) is given in Fig. 2.15. A parity check code is defined by the particular
collection of subsets used to generate parity checks. Note that the word code refers to
the transformation itself; we refer to an encoded bit string (data plus parity checks) as a
code word.

Let K be the length of the data string for a given parity check code and let L be
the number of parity checks. For the frame structure in Fig. 2.2, one can view the data

60 Point-to-Point Protocols and Links Chap. 2

81 82 83 c, C2 C3 C4

1 0 0 I 1 1 0
0 1 0 0 1 1 1 C1 = 8\ + 83

0 0 1 1 1 0 1 C2 = 81 + 82 + 83

1 1 0 1 0 0 1 C3 = 81 + 82

1 0 1 0 0 1 1 C4 = 82 + 83

1 1 1 0 1 0 0
0 0 0 0 0 0 0

0 1 1 I 0 1 0

Figure 2.15 Example of a parity check code. Code words are listed on the left. and
the rule for generating the parity checks is given on the right.

string as the header and packet, and view the set of parity checks as the trailer. Note
that it is important to detect errors in the control bits of the header as well as to detect
errors in the packets themselves. Thus, K +L is the frame length, which for the present
is regarded as fixed. For a given code, each of the possible 2K data strings of length K
is mapped into a frame (i.e., code word) of length K + L. In an error-detection system,
the frame is transmitted and the receiving OLe module determines if each of the parity
checks is still the modulo 2 sum of the corresponding subset of data bits. If so, the frame
is regarded by the receiver as error-free, and if not, the presence of errors is detected.
If errors on the link convert one code word into another, the frame is regarded by the
receiver as error-free, and undetectable errors are said to have occurred in the frame.

Given any particular code, one would like to be able to predict the probability of
undetectable errors in a frame for a particular link. Unfortunately, this is very difficult.
First, errors on links tend to be dependent and to occur in bursts; there are no good
models for the length or intensity of these bursts, which vary widely among links of
the same type. Second, for any reasonable code, the frequency of undetectable errors is
very small and is thus both difficult to measure experimentally and dependent on rare,
difficult-to-model events. The literature contains many calculations of the probability
of undetectable errors, but these calculations are usually based on the assumption of
independent errors; the results are usually orders of magnitude away from reality.

As a result of these difficulties, the effectiveness of a code for error detection is
usually measured by three parameters: (1) the minimum distance of the code, (2) the
burst-detecting capability, and (3) the probability that a completely random string will
be accepted as error-free. The minimum distance of a code is defined as the smallest
number of errors that can convert one code word into another. As we have seen, the
minimum distance of a code using a single parity check is 2, and the minimum distance
of a code with horizontal and vertical parity checks is 4.

The length of a burst of errors in a frame is the number of bits from the first error
to the last, inclusive. The burst-detecting capability of a code is defined as the largest
integer B such that a code can detect all bursts of length B or less. The burst-detecting
capability of the single parity check code is I, whereas the burst-detecting capability of

Sec. 2.3 Error Detection 61

a code with horizontal and vertical parity checks is I plus the length of a row (assuming
that rows are sent one after the other).

By a completely random string of length K + L is meant that each such string is
received with probability 2-[{-L. Since there are 2]{ code words, the probability of an
undetected error is the probability that the random string is one of the code words; this
occurs with probability 2- L (the possibility that the received random string happens to
be the same as the transmitted frame is ignored). This is usually a good estimate of the
probability of undetectable errors given that both the minimum distance and the burst
detecting capability of the code are greatly exceeded by the set of errors on a received
frame.

Parity check codes can be used for error correction rather than just for error de
tection. For example, with horizontal and vertical parity checks, any single error can be
corrected simply by finding the row and column with odd parity. It is shown in Prob
lem 2.10 that a code with minimum distance d can be used to correct any combination of
fewer than d/2 errors. Parity check codes (and convolutional codes, which are closely
related but lack the frame structure) are widely used for error correction at the physical
layer. The modem approach to error correction is to view it as part of the modulation
and demodulation process, with the objective of creating a virtual bit pipe with relatively
low error rate.

Error correction is generally not used at the DLC layer, since the performance of an
error correction code is heavily dependent on the physical characteristics of the channel.
One needs error detection at the DLC layer, however, to detect rare residual errors from
long noisy periods.

2.3.4 Cyclic Redundancy Checks

The parity check codes used for error detection in most DLCs today are cyclic redundancy
check (CRC) codes. The parity check bits are called the CRe. Again, let L be the length
of the CRC (i.e., the number of check bits) and let K be the length of the string of data
bits (i.e., the header and packet of a frame). It is convenient to denote the data bits as
S[(_I, S]{-2, ... , SI, S(), and to represent the string as a polynomials(D) with coefficients
SK-l,···, So,

(2.14)

The powers of the indeterminate D can be thought of as keeping track of which bit
is which; high-order terms are viewed as being transmitted first. The CRC is represented
as another polynomial,

(2.15)

The entire frame of transmitted information and CRC can then be represented as
xeD) = s(D)DL + c(D), that is, as

(2.16)

62 Point-to-Point Protocols and Links Chap. 2

The CRC polynomial c(D) is a function of the infonnation polynomial seD), de
fined in tenns of a generator polynomial g(D); this is a polynomial of degree L with
binary coefficients that specifies the particular CRC code to be used.

g(D) = D L + gL_1D L
-

1+ ... + glD + I (2.17)

For a given g(D), the mapping from the infonnation polynomial to the CRC polynomial
c(D) is given by

c(D) = Remainder [S(D)D
L

] (2.18)
g(D)

The polynomial division above is just ordinary long division of one polynomial
by another, except that the coefficients are restricted to be binary and the arithmetic on
coefficients is perfonned modulo 2. Thus, for example, (l + I) modulo 2 = 0 and (0 - I)
modulo 2 = 1. Note that subtraction using modulo 2 arithmetic is the same as addition.
As an example of the operation in Eq. (2.18),

D 3 + D 2 + I) D S + D 3

D S + D 4 + D 2

D 4 +D3 +D2

D 4 +D3 + D

D 2 + D= Remainder

Since g(D) is a polynomial of degree at most L, the remainder is of degree at most
L - 1. If the degree of c(D) is less than L - I, the corresponding leading coefficients
CL-I, ... , in Eg. (2.18) are taken as zero.

This long division can be implemented easily in hardware by the feedback shift
register circuit shown in Fig. 2.16. By comparing the circuit with the long division
above, it can be seen that the successive contents of the shift register cells are just the
coefficients of the partial remainders in the long division. In practice, CRCs are usually
calculated by VLSI chips, which often perfonn the other functions of DLC as well.

Figure 2.16 Shift register circuit for dividing polynomials and finding the remainder.
Each rectangle indicates a storage cell for a single bit and the preceding circles denote
modulo 2 adders. The large circles at the top indicate multiplication by the value of gi.
Initially, the register is loaded with the first L bits of s(D) with s K _I at the right. On
each clock pulse, a new bit of s(D) comes in at the left and the register reads in the
corresponding modulo 2 sum of feedback plus the contents of the previous stage. After
K shifts, the switch at the right moves to the horizontal position and the CRC is read out.

Sec. 2.3 Error Detection 63

Let z(D) be the quotient resulting from dividing s(D)DL by g(D). Then, c(D)
can be represented as

s(D)DL = g(D)z(D) + c(D) (2.19)

Subtracting c(D) (modulo 2) from both sides of this equation and recognizing that modulo
2 subtraction and addition are the same, we obtain

x(D) = s(D)DL + c(D) = g(D)z(D) (2.20)

(2.21)

Thus, all code words are divisible by g(D), and all polynomials divisible by g(D) are
code words. It has not yet been shown that the mapping from s(D) to x(D) corresponds
to a parity check code. This is demonstrated in Problem 2.15 but is not necessary for
the subsequent development.

Now suppose that x(D) is transmitted and that the received sequence is repre
sented by a polynomial y(D), where x(D) and y(D) differ because of the errors on the
communication link. If the error sequence is represented as a polynomial e(D), then
y(D) = x(D) + e(D), where, as throughout this section, + means modulo 2 addition;
each error in the frame corresponds to a nonzero coefficient in e(D) [i.e., a coefficient in
which y(D) and x(D) differ]. At the receiver, Remainder[y(D)jg(D)] can be calculated
by essentially the same circuit as that above. Since it has been shown that x(D) is
divisible by g(D),

Remainder [~~~n = Remainder [;~~~]

If no errors occur, then e(D) = 0 and the remainder above will be O. The rule
followed by the receiver is to decide that the frame is error- free if this remainder is 0
and to decide that there are errors otherwise. When errors actually occur [i.e., e(D) i:- 0],
the receiver fails to detect the errors only if this remainder is 0; this occurs only if e(D)
is itself some code word. In other words, e(D) i:- 0 is undetectable if and only if

e(D) = g(D)z(D) (2.22)

for some nonzero polynomial z(D). We now explore the conditions under which unde
tected errors can occur.

First, suppose that a single error occurs, say ei = 1, so that e(D) = D i
. Since

g(D) has at least two nonzero terms (i.e., D L and 1), g(D)z(D) must also have at least
two nonzero terms for any nonzero z(D) (see Problem 2.13). Thus g(D)z(D) cannot
equal D i ; since this is true for all i, all single errors are detectable. By the same type
of argument, since the highest-order and lowest-order terms in g(D) (i.e., D L and 1,
respectively) differ by L, the highest-order and lowest-order terms in g(D)z(D) differ
by at least L for all nonzero z(D). Thus, if e(D) is a code word, the burst length of the
errors is at least L + 1 (the +1 arises from the definition of burst length as the number
of positions from the first error to the last error inclusive).

Next, suppose that a double error occurs, say in positions i and j, so that

(2.23)

64 Point-to-Point Protocols and Links Chap. 2
r

From the argument above, Dj is not divisible by g(D) or by any factor of g(D); thus,
e(D) fails to be detected only if Di-j + I is divisible by g(D). For any binary polynomial
g(D) of degree L, there is some smallest n for which D n + I is divisible by g(D). It
is known from the theory of finite fields that this smallest n can be no larger than
2L - I; moreover, for all L > 0, there are special L-degree polynomials, called primitive
polynomials, such that this smallest n is equal to 2L - 1. Thus, if g(D) is chosen to
be such a primitive polynomial of degree L, and if the frame length is restricted to be
at most 2L - I, then Di-j + I cannot be divisible by g(D); thus, all double errors are
detected.

In practice, the generator polynomial g(D) is usually chosen to be the product of a
primitive polynomial of degree L - I times the polynomial D + I. It is shown in Problem
2.14 that a polynomial e(D) is divisible by D + I if and only if e(D) contains an even
number of nonzero coefficients. This ensures that all odd numbers of errors are detected,
and the primitive polynomial ensures that all double errors are detected (as long as the
block length is less than 2L -I). Thus, any code of this form has a minimum distance of
at least 4, a burst-detecting capability of at least L, and a probability of failing to detect
errors in completely random strings of 2~L. There are two standard CRCs with length
L = 16 (denoted CRC-16 and CRC-CCITT). Each of these CRCs is the product of D + I
times a primitive (L-l)- degree polynomial, and thus both have the foregoing properties.
There is also a standard CRC with L = 32. It is a 32-degree primitive polynomial, and
has been shown to have a minimum distance of 5 for block lengths less than 3007 and
4 for block lengths less than 12,145 [FKL86]. These polynomials are as follows:

g(D) = D
I6 + DIS + D 2 + I

g(D = D 16 + D I2 + D S + I

for CRC-16

for CRC-CCITT

g(D) = D
32 + D 26 + D 23 + D 22 + D

16 + D
I2 + D

ll +

D 10 + D 8 + D 7 + D S + D 4 + D 2 + D 1 + I

2.4 ARQ: RETRANSMISSION STRATEGIES

The general concept of automatic repeat request (ARQ) is to detect frames with errors at
the receiving DLC module and then to request the transmitting DLC module to repeat the
information in those erroneous frames. Error detection was discussed in the preceding
section, and the problem of requesting retransmissions is treated in this section. There
are two quite different aspects of retransmission algorithms or protocols. The first is that
of correctness: Does the protocol succeed in releasing each packet, once and only once,
without errors, from the receiving DLC? The second is that of efficiency: How much of
the bit-transmitting capability of the bit pipe is wasted by unnecessary waiting and by
sending unnecessary retransmissions? First, several classes of protocols are developed
and shown to be correct (in a sense to be defined more precisely later). Later, the effect
that the various parameters in these classes have on efficiency is considered.

Sec. 2.4 ARQ: Retransmission Strategies 65

Recall from Fig. 2.2 that packets enter the DLC layer from the network layer. The
OLC module appends a header and trailer to each packet to form a frame, and the frames
are transmitted on the virtual bit pipe (i.e., are sent to the physical layer for transmis
sion). When errors are detected in a frame, a new frame containing the old packet is
transmitted. Thus, the first transmitted frame might contain the first packet, the next
frame the second packet, the third frame a repetition of the first packet, and so forth.
When a packet is repeated, the frame header and trailer might or might not be the same
as in the earlier version.

Since framing will not be discussed until the next section, we continue to assume
that the receiving OLC knows when frames start and end; thus a CRC (or any other
technique) may be used for detecting errors. We also assume, somewhat unrealistically,
that all frames containing transmission errors are detected. The reason for this is that
we want to prove that ARQ works correctly except when errors are undetected. This is
the best that can be hoped for, since error detection cannot work with perfect reliability
and bounded delay; in particular, any code word can be changed into another code word
by some string of transmission errors. This can cause erroneous data to leave the DLC
or, perhaps worse, can cause some control bits to be changed. In what follows, we refer
to frames without transmission errors as error-free frames and those with transmission
errors as error frames. We are assuming, then, that the receiver can always disinguish
error frames from error-free frames.

Finally, we need some assumptions about the bit pipes over which these frames
are traveling. The reason for these assumptions will be clearer when framing is studied;
in effect, these assumptions will allow us to relax the assumption that the receiving OLC
has framing information. Assume first that each transmitted frame is delayed by an
arbitrary and variable time before arriving at the receiver, and assume that some frames
might be "lost" and never arrive. Those frames that arrive, however, are assumed to
arrive in the same order as transmitted, with or without errors. Figure 2.17 illustrates
this behavior.

Frame departure times at A

NodeA

NodeB

Frame arrival times at B

t--·

Figure 2.17 Model of frame transmissions: frame 2 is lost and never arrives; frame 4
contains errors; the frames have variable transmission delay, but those that arrive do so
in the order transmitted. The rectangles at the top of the figure indicate the duration over
which the frame is being transmitted. Each arrow indicates the propagation of a frame
from A to B, and the arrowhead indicates the time at which the frame is completely
received; at this time the CRC can be recomputed and the frame accepted or not.

66

2.4.1 Stop-and-Wait ARQ

Point-to-Point Protocols and Links Chap. 2

The simplest type of retransmission protocol is called stop-and-wait. The basic idea is
to ensure that each packet has been received correctly before initiating transmission of
the next packet. Thus, in transmitting packets from point A to B, the first packet is
transmitted in the first frame, and then the sending DLC waits. If the frame is error-free,
B sends an acknowledgment (called an ack) back to A; if the frame is an error frame,
B sends a negative acknowledgment (called a nak) back to A. Since errors can occur
from B to A as well as from A to B, the ack or nak is protected with aCRe.

If an error-free frame is received at B, and the corresponding ack frame to A
is error-free, then A can start to send the next packet in a new frame. Alternatively,
detected errors can occur either in the transmission of the frame or the return ack or nak,
and in either case A resends the old packet in a new frame. Finally, if either the frame
or the return ack or nak is lost, A must eventually time-out and resend the old packet.

Figure 2.18 illustrates a potential malfunction in such a strategy. Since delays
are arbitrary, it is possible for node A to time-out and resend a packet when the first
transmission and/or the corresponding ack is abnormally delayed. If B receives both
transmissions of the given packet correctly, B has no way of knowing whether the
second transmission is a new packet or a repetition of the old packet. One might think
that B could simply compare the packets to resolve this issue, but as far as the DLC
layer is concerned, packets are arbitrary bit strings and the first and second packets could
be identical; it would be a violation of the principle of layering for the DLC layer to rely
on higher layers to ensure that successive packets are different.

The simplest solution to this problem is for the sending DLC module (at A) to use
a sequence number in the frame header to identify successive packets. Unfortunately,
even the use of sequence numbers from A to B is not quite enough to ensure correct
operation. The problem is that acks can get lost on the return channel, and thus when B
gets the same packet correctly twice in a row, it has to send a new ack for the second
reception (see Fig. 2.19). After transmitting the packet twice but receiving only one ack,

Node A

Node B

TimeatA--

TimeatB--

Packet 0

Packet 0 or 1?

Figure 2.18 The trouble with unnumbered packets. If the transmitter at A times-out
and sends packet 0 twice. the receiver at B cannot tell whether the second frame is a
retransmission of packet 0 or the first transmission of packet I.

Sec. 2.4

SN

Node A

NodeS

ARQ: Retransmission Strategies

Packet 0

Figure 2.19 The trouble with unnumbered acks. If the transmitter at A times-out and
sends packet 0 twice. node B can use the sequence numbers to recognize that packet 0
is being repeated. It must send an ack for both copies, however. and (since acks can be
lost) the transmitter cannot tell whether the second ack is for packet 0 or 1.

67

node A could transmit the next packet in sequence, and then on receiving the second
ack. could interpret that as an ack for the new packet, leading to a potential failure of
the system.

To avoid this type of problem, the receiving DLe (at B), instead of returning
ack or nak on the reverse link, returns the number of the next packet awaited. This
provides all the information of the ack/nak, but avoids ambiguities about which frame is
being acked. An equivalent convention would be to return the number of the packet just
accepted, but this is not customary. Node B can request this next awaited packet upon
the receipt of each packet, at periodic intervals, or at an arbitrary selection of times. In
many applications, there is another stream of data from B to A, and in this case, the
frames from B to A carrying requests for new A to B packets must be interspersed
with data frames carrying data from B to A. It is also possible to "piggyback" these
requests for new packets into the headers of the data frames from B to A (see Fig. 2.20),
but as shown in Problem 2.38, this is often counterproductive for stop-and-wait ARQ.
Aside from its effect on the timing of the requests from node B to A, the traffic from
B to A does not affect the stop-and-wait strategy from A to B; thus, in what follows,
we ignore this reverse traffic (except for the recognition that requests might be delayed).
Figure 2.21 illustrates the flow of data from A to B and the flow of requests in the
opposite direction.

We next specify the stop-and-wait strategy more precisely and then show that it
works correctly. The correctness might appear to be self-evident, but the methodology of
the demonstration will be helpful in understanding subsequent distributed algorithms. It

L- I~ ...L.-.. p_a_ck_e_t _'___C_R_C_ __J

Figure 2.20 The header of a frame contains a field carrying the sequence number. SN.
of the packet being transmitted. If piggybacking is being used, it also contains a field
carrying the request number, RN, of the next packet awaited in the opposite direction.

68 Point-to-Point Protocols and Links Chap. 2

SN

Node A

Node B

RN

Packets out o 2 3

Figure 2.21 Example of use of sequence and rcquest numbers for stop-and-wait transmission from
A to B. Note that packet 0 gets repeated. presumably because node A times-out too soon. Note
also that node A delays repeating packet 1 on the second request for it. This has no effect on the
correctness of the protocol. but avoids unnecessary retransmissions.

will be seen that what is specified is not a single algorithm, but rather a class of algorithms
in which the timing of frame transmissions is left unspecified. Showing that all algorithms
in such a class are correct then allows one to specify the timing as a compromise between
simplicity and efficiency without worrying further about correctness.

Assume that when the strategy is first started on the link, nodes A and Bare
correctly initialized in the sense that no frames are in transit on the link and that the
receiver at B is looking for a frame with the same sequence number as the first frame to
be transmitted from A. It makes no difference what this initial sequence number SN is
as long as A and B agree on it, so we assume that SN = 0, since this is the conventional
initial value.

The algorithm at node A for A-to-B transmission:

1. Set the integer variable 5 N to 0.

2. Accept a packet from the next higher layer at A; if no packet is available, wait
until it is; assign number SN to the new packet.

3. Transmit the SNth packet in a frame containing SN in the sequence number field.

4. If an error-free frame is received from B containing a request number RN greater
than SN, increase SN to RN and go to step 2. If no such frame is received within
some finite delay, go to step 3.

The algorithm at node B for A-to-B transmission:

1. Set the integer variable RN to °and then repeat steps 2 and 3 forever.

2. Whenever an error-free frame is received from A containing a sequence number
SN equal to RN, release the received packet to the higher layer and increment
RN.

3. At arbitrary times, but within bounded delay after receiving any error-free data
frame from A, transmit a frame to A containing RN in the request number field.

Sec. 2.4 ARQ: Retransmission Strategies 69

There are a number of conventional ways to handle the arbitrary delays between subse
quent transmissions in the algorithm above. The usual procedure for node A (recall that
we are discussing only the stop-and-wait strategy for A-to-B traffic) is to set a timer
when a frame transmission begins. If the timer expires before receipt of a request for
the next packet from B, the timer is reset and the packet is resent in a new frame. If a
request for a new packet is received from B before the timer expires, the timer is disabled
until A transmits the next packet. The same type of timer control can be used at node
B. Alternatively, node B could send a frame containing a request for the awaited packet
each time that it receives a frame from A. Also, if B is piggybacking its request numbers
on data frames, it could simply send the current value of RN in each such frame. Note
that this is not sufficient in itself, since communication from A to B would then halt in
the absence of traffic from B to A thus, node B must send nondata frames containing
the RN values when there is no B-to-A data traffic. The important point is that whatever
timing strategy is being used, it must guarantee that the intervening interval between
repetitions in each direction is bounded.

Correctness of stop and wait We now go through an informal proof that this
class of algorithms is correct in the sense that a never-ending stream of packets can be
accepted from the higher layer at A and delivered to the higher layer at B in order and
without repetitions or deletions. We continue to assume that all error frames are detected
by the eRe. We also assume that there is some q > °such that each frame is received
error-free with probability at least q. Finally, we recall the assumption that the link is
initially empty, that the first packet from A has S N = 0, and that node B is initially
awaiting the packet with SN = 0.

Proofs of this type usually break into two parts, characterized as safety and liveness.
An algorithm is safe if it never produces an incorrect result, which in this case means
never releasing a packet out of the correct order to the higher layer at B. An algorithm
is live if it can continue forever to produce results (i.e., if it can never enter a deadlock
condition from which no further progress is possible). In this case liveness means the
capability to continue forever to accept new packets at A and release them at B.

The safety property is self-evident for this algorithm; that is, node B is initially
awaiting packet 0, and the only packet that can be released is packet 0. Subsequently
(using induction if one wants to be formal), node B has released all the packets in order,
up to, but not including, the current value of RN; packet RN is the only packet that it
can next accept and release. When an error-free frame containing packet RN is received
and released, the value of RN is incremented and the situation above is repeated with
the new value of RN.

To see that the liveness property is satisfied. assume that node A first starts to
transmit a given packet i at time t 1 (see Fig. 2.22). Let t2 be the time at which this
packet is received error-free and released to the higher layer at node B; let t2 = x if
this event never occurs. Similarly, let t 1 be the time at which the sequence number at "1
is increased to i + I, and let f, = x if this never occurs. We will show that t] < t2 < f,

and that f, is finite. This is sufficient to demonstrate liveness, since using the argument
repeatedly for i = 0, then i = I, and so on, shows that each packet is transmitted with

70 Point-to-Point Protocols and Links Chap. 2 r
SN

Node A

Node B

RN

Packets out

Figure 2.22 Times t 10 t20 and t3 when a packet is first placed in a frame for transmission
at A, first received and released to the higher layer at B o and first acknowledged at A.

finite delay. Note that we cannot guarantee that the higher layer at A will always supply
packets within finite delay, so that the notion of liveness here can only require finite
delay given available packets to send.

Let RN(t) be the value of the variable RN at node B as a function of time t and let
SN(t) be the corresponding value of SN at node A. It is seen directly from the algorithm
statement that SN(t) and RN(t) are nondecreasing in t. Also, since SN(t) is the largest
request number received from B up to time t, SN(t) :::; RN(t). By assumption, packet
i has never been transmitted before time t], so (using the safety property) RN(t]) :::; i.
Since SN(t]) = i, it follows that SN(tI> = RN(t 1) = i. By definition of t2 and t 3,
RN(t) is incremented to i + I at t2 and SN(t) is incremented to i + I at t3. Using the
fact that SN(t) ~ RN(t), it follows that t2 < t3.

We have seen that node A transmits packeti repeatedly, with finite delay between
successive transmissions, from t] until it is first received error-free at t2. Since there is
a probability q > 0 that each retransmission is received correctly, and retransmissions
occur within finite intervals, an error-free reception eventually occurs and t2 is finite.
Node B then transmits frames carrying RN = i + I from time t2 until received error-free
at time t3. Since node A is also transmitting frames in this interval, the delay between
subsequent transmissions from B is finite, and, since q > 0, t3 eventually occurs; thus
the interval from tl to t3 is finite and the algorithm is live.

One trouble with the stop-and-wait strategy developed above is that the sequence
and request numbers become arbitrarily large with increasing time. Although one could
simply use a very large field for sending these numbers, it is nicer to send these numbers
modulo some integer. Given our assumption that frames travel in order on the link, it
turns out that a modulus of 2 is sufficient.

To understand why it is sufficient to send sequence numbers modulo 2, we first
look more carefully at what happens in Fig. 2.22 when ordinary integers are used. Note
that after node B receives packet i at time t2 , the subsequent frames received at B must
all have sequence numbers i or greater (since frames sent before t] cannot arrive after
h). Similarly, while B is waiting for packet i + I, no packet greater than i + 1 can be
sent [since SN(t) :::; RN(t)]. Thus, in the interval while RN(t) = i + 1, the received

Sec. 2.4 ARQ: Retransmission Strategies 71

frames all carry sequence numbers equal to i or i + 1. Sending the sequence number
modulo 2 is sufficient to resolve this ambiguity. The same argument applies for all i. By
the same argument, in the interval t\ to t3, while SN(t) is equal to i, the request numbers
received at A must be either i or i + 1, so again sending RN modulo 2 is sufficient to
resolve the ambiguity. Finally, since SN and RN need be transmitted only modulo 2, it
is sufficient to keep track of them at the nodes only modulo 2.

Using modulo 2 values for SN and RN, we can view nodes A and B as each having
two states (for purposes of A to B traffic), corresponding to the binary value of SN at
node A and RN at node B. Thus, A starts in state 0; a transition to state 1 occurs upon
receipt of an error-free request for packet 1 modulo 2. Note that A has to keep track of
more information than just this state, such as the contents of the current packet and the
time until time-out, but the binary state above is all that is of concern here.

Node B similarly is regarded as having two possible states, 0 and 1, corresponding
to the number modulo 2 of the packet currently awaited. When a packet of the desired
number modulo 2 is received, the DLC at B releases that packet to the higher layer and
changes state, awaiting the next packet (see Fig. 2.23). The combined state of A and B
is then initially (0,0); when the first packet is received error-free, the state of B changes
to 1, yielding a combined state (0, 1). When A receives the new RN value (i.e., 1), the
state of A changes to 1 and the combined state becomes (l,1). Note that there is a fixed
sequence for these combined states, (0,0), (0,1), (l, 1), (l,0), (0,0), and so on, and that
A and B alternate in changing states. It is interesting that at the instant of the transition
from (0,0) to (0,1), B knows the combined state, but subsequently, up until the transition
later from (l, 1) to (l,0), it does not know the combined state (i.e., B never knows that A
has received the ack information until the next packet is received). Similarly, A knows
the combined state at the instant of the transition from (0,1) to (l, 1) and of the transition
from (1,Q) to (0,0). The combined state is always unknown to either A or B, and is
frequently unknown to both. The situation here is very similar to that in the three
army problem discussed in Section 1.4. Here, however, information is transmitted even
though the combined state information is never jointly known, whereas in the three-army
problem, it is impossible to coordinate an attack because of the impossibility of obtaining
this joint knowledge.

The stop-and-wait strategy is not very useful for modem data networks because
of its highly inefficient use of communication links. In particular, it should be possible
to do something else while waiting for an ack. There are three common strategies for
extending the basic idea of stop-and-wait ARQ so as to achieve higher efficiency: go
back n ARQ, selective repeat ARQ, and finally, the ARPANET ARQ.

Request for even
packet received at A

Even numbered

packet received at B

Odd numbered

packet received at B

Figure 2.23 State transition diagram for
stop-and-wait ARQ. The state is (SN mod 2
at A, RN mod 2 at B).

72

2.4.2 Go Back n ARQ

Point-to-Point Protocols and Links Chap. 2 r
Go back n ARQ is the most widely used type of ARQ protocol; it appears in the various
standard DLC protocols, such as HDLC, SDLC, ADCCP, and LAPB. It is not elucidating
to know the meaning of these acronyms, but in fact, these standards are almost the same.
They are discussed in Section 2.6, and some of their differences are mentioned there.
Go back n is also the basis of most error recovery procedures at the transport layer.

The basic idea of go back n is very simple. Incoming packets to a transmitting
DLC module for a link from A to B are numbered sequentially, and this sequence number
SlvT is sent in the header of the frame containing the packet. In contrast to stop-and-wait
ARQ, several successive packets can be sent without waiting for the next packet to be
requested. The receiving DLC at B operates in essentially the same way as stop-and-wait
ARQ. It accepts packets only in the correct order and sends request numbers RN back
to A; the effect of a given request RN is to acknowledge all packets prior to RN and
to request transmission of packet RN.

The go back number n ~ I in a go back n protocol is a parameter that determines
how many successive packets can be sent in the absence of a request for a new packet.
Specifically, node A is not allowed to send packet i +n before i has been acknowledged
(i.e., before i + I has been requested). Thus, if i is the most recently received request
from node B, there is a "window" of n packets, from i to i + n - I, that the transmitter
is allowed to send. As successively higher-numbered requests are received from B, this
window slides upward; thus go back n protocols are often called sliding window ARQ
protocols.

Figure 2.24 illustrates the operation of go back 7 ARQ when piggybacking of
request numbers is being used and when there are no errors and a constant supply of
traffic. Although the figure portrays data traffic in both directions, the flow of sequence
numbers is shown in one direction and request numbers in the other. Note that when
the first frame from A (containing packet 0) is received at B, node B is already in the
middle of transmitting its second frame. The piggybacked request number at node B
is traditionally in the frame header, and the frame is traditionally completely assembled
before transmission starts. Thus when packet 0 is received from A, it is too late for
node B to request packet I in the second frame, so that RN = I does not appear until
the third frame from B. When this frame is completely received at A, the window at A
"slides up" from [0.6] to [1, 7].

Note that even in the absence of transmission errors, there are several sources of
delay between the time that a packet is first assembled into a frame at A and the time
when A receives an acknowledgment of the packet. First there is the transmission time
of the frame, then the propagation delay, then the wait until the frame in transmission
at B is completed, then the transmission time of the frame carrying the acknowledg
ment, and finally, the B -to-A propagation delay; the effect of these delays is discussed
later.

Figure 2.25 shows the effect of error frames on go back 4 ARQ. The second frame
from A, carrying packet I, is received in error at node B. Node B continues to look for
packet I and to transmit RN = I in frames from B to A. Packets 2, 3, and 4 from J1

Sec. 2.4 ARQ: Retransmission Strategies 73

SN

Packets
delivered a 2 3 4 5

Figure 2.24 Example of go back 7 protocol for A-to-B traffic. Both nodes are sending
data. but only the sequence numbers are shown for the frames transmitted from A and
only the request numbers are shown for the frames from E. When packet 0 is completely
received at B, it is delivered to the higher layer, as indicated at the lower left of the
figure. At this point, node E wants to request packet I, so it sends ReV = I in the next
outgoing frame. When that outgoing frame is completely received at A, node A updates
its window from [0.6] to [1,7J. Note that when packets 3 and 4 are both received at E
during the same frame transmission at E, node E awaits packet 5 and uses RN = 5 in
the next frame from E to acknowledge both packets 3 and 4.

all arrive at B in error-free frames but are not accepted since node B is looking only for
packet I. One might think that it would be more efficient for node B to buffer packets
2, 3, and 4, thus avoiding the necessity for A to retransmit them after packet 1 is finally
retransmitted. Such a buffering strategy is indeed possible and is called selective repeat
ARQ; this is discussed in Section 2.4.3, but, by definition, go back n does not include
this possibility.

SN

NodeA

Node B

RN

Packets
delivered

a 2 3

Figure 2.25 Effect of a transmission error on go back 4. Packet I is received in error
at E, and node E continues to request packet I in each reverse frame until node A
transmits its entire window, times-out, and goes back to packet 1.

74 Point-to-Point Protocols and Links Chap. 2

r

After node A has completed transmission of the frame containing packet 4 (see
Fig. 2.25), it has exhausted its window, which is still [1. 4]; node A then goes back
and retransmits packet 1. The figure shows the retransmission of packet 1 after a time
out. There are many possible strategies for the timing of retransmissions within the go
back n protocol, and for this reason, go back n is really an entire class of algorithms
(just like stop and wait). In go back n, however, not only is the timing of transmissions
unspecified, but also the selection of a packet within the window. The class of algorithms
will be specified precisely after going through several more examples.

Figure 2.26 illustrates the effect of error frames in the reverse direction (from node
B to A). Such an error frame need not slow down transmission in the A-to-B direction,
since a subsequent error-free frame from B to A can acknowledge the packet and perhaps
some subsequent packets (i.e., the third frame from B to A in the figure acknowledges
both packets 1 and 2). On the other hand, with a small window and long frames from B
to A, an error frame from B to A can delay acknowledgments until after all the packets
in the window are transmitted, thus causing A to either wait or to go back. Note that
when the delayed acknowledgments get through, node A can jump forward again (from
packet 3 to 5 in Fig. 2.26).

Finally, Fig. 2.27 shows that retransmissions can occur even in the absence of any
transmission errors. This happens particularly in the case of short frames in one direction
and long frames in the other. We discuss the impact of this phenomenon on the choice
of window size and frame length later.

Rules followed by transmitter and receiver in go back n We now specify
the precise rules followed by the class of go back n protocols and then, in the next

Window

SN 0

Node A

Node B

RN

Packets
delivered 0 2 3 4 5

Figure 2.26 Effect of transmission errors in the reverse direction for go back 4. The
first error frame, carrying RN = I, causes no problem since it is followed by an error
free frame carrying RN = 2 and this frame reaches A before packet number 3, (i.e.,
the last packet in the current window at A) has completed transmission and before a
time-out occurs. The second error frame, carrying RN = 3, causes retransmissions
since the following reverse frame is delayed until after node A sends its entire window
and times-out. This causes A to go back and retransmit packet 2.

Sec. 2.4

SN

NodeA

Node B

RN

ARQ: Retransmission Strategies 75

Packets 0
delivered

2 3 4

Figure 2.27 Effect of delayed feedback for go back 4. The frames in the B-to-A
direction are much longer than those in the A-to-B direction, thus delaying the request
numbers from getting back to A. The request for packet I arrives in time to allow packet
4 to be sent, but after sending packet 4, node A times-out and goes back to packet I.

subsection, demonstrate that the algorithms in the class work correctly. We assume here
that the sequence numbers and request numbers are integers that can increase without
bound. The more practical case in which S Nand RN are taken modulo some integer
m is considered later.

The rules given here do not treat the initialization of the protocol. We simply
assume that initially there are no frames in transit on the link, that node A starts with the
transmission of packet number 0, and that node B is initially awaiting packet number O.
How to achieve such an initialization is discussed in Section 2.7.

The transmitter uses two integer variables, SNmin and SNma:n to keep track
of its operations. SNmin denotes the smallest-numbered packet that has not yet been
acknowledged (i.e., the lower end of the window). SNmax denotes the number of the
next packet to be accepted from the higher layer. Thus the DLC layer is attempting to
transmit packets SNmin to SNmax - 1. Conceptually we can visualize the DLC layer
as storing these packets, but it makes no difference where they are stored physically as
long as they are maintained somewhere at the node for potential retransmission.

The go back n algorithm at node A for A-to-B transmission:

1. Set the integer variables 51 N mi" and SNma;r to O.

2. Do steps 3, 4, and 5 repeatedly in any order. There can be an arbitrary but bounded
delay between the time when the conditions for a step are satisfied and when the
step is executed.

3. If SNmax < SNmin + n, and if a packet is available from the higher layer,
accept a new packet into the DLC, assign number SNmax to it, and increment
SlVmax .

4. If an error-free frame is received from B containing a request number RN greater
than SNmin , increase SNmin to RN.

76 Point-to-Point Protocols and Links Chap. 2

5. If SNn,ill < SN",,,., and no frame is currently in transmission, choose some
number SN, S;\',"in :: SN < SN",,,I' ; transmit the SNth packet in a frame
containing SN in the sequence number field. At most a bounded delay is allowed
between successive transmissions of packet SN,"in over intervals when SN"'in
does not change.

The go back n algorithm at node B for A-to-B transmission:

1. Set the integer variable RN to 0 and repeat steps 2 and 3 forever.

2. Whenever an error-free frame is received from A containing a sequence number
SN equal to ReV. release the received packet to the higher layer and increment
RN.

3. At arbitrary times, but within bounded delay after receiving any error-free data
frame from A, transmit a frame to A containing RN in the request number field.

There are many conventional ways of handling the timing and ordering of the
various operations in the algorithm above. Perhaps the simplest is for node A to set
a timer whenever a packet is transmitted. If the timer expires before that packet is
acknowledged (i.e., before SNn,i" increases beyond that packet number), the packet
is retransmitted. Sometimes when this approach is used, the transmitter, after going
back and retransmitting SN"'i", simply retransmits subsequent packets in order up to
SN,n,,;, ~ I, whether or not subsequent request numbers are received. For example, at the
right-hand edge of Fig. 2.26, the transmitter might have followed packet 3 with 4 rather
than 5. In terms of the algorithm as stated, this corresponds to the transmitter delaying
the execution of step 4 while in the process of retransmitting a window of packets.
Another possibility is for node A to cycle back whenever all the available packets in the
window have been transmitted. Also, A might respond to a specific request from B for
retransmission: such extra communication between A and B can be considered as part
of this class of protocols in the sense that it simply guides the available choices within
the algorithm.

Perhaps the simplest approach to timing at node B is to piggyback the current value
of Rl'{ in each data frame going from B to A, When there are no data currently going
from B to A, a nondata frame containing RN should be sent from B to A whenever a
data frame is received from it

Correctness of go back n We first demonstrate the correctness of this class of
algorithms under our current assumptions that S Nand RN are integers; we then show
that correctness is maintained if SN and RN are integers modulo Tn, for Tn strictly
greater than the go back number n. The correctness demonstration when S Nand RN
are integers is almost the same as the demonstration in Section 2.4. I for stop and wait.
In particular. we start by assuming that all frames with transmission errors are detected
by the CRC, that there is some q > 0 such that each frame is received error-free with
probability at least q, and that the system is correctly initialized in the sense that there

Sec. 2.4 ARQ: Retransmission Strategies 77

are no frames on the link and that nodes A and B both start at step of their respective
algorithms.

The safety property of the go back n algorithm is exactly the same as for stop
and wait. In particular, node B releases packets to the higher layer in order, using the
variable RN to track the next packet awaited. To verify the liveness property, assume
thati is the value of SNmin at node A at a given time t l (see Fig. 2.28). Let t2 be the
time at which packet i is received error-free and released to the higher layer at node B;
let t2 = CX) if this event never occurs. Similarly, let t3 be the time at which SNmin is
increased beyond i and let t3 = :x if this never occurs. We will show that t3 is finite
and that t 1 < t3 and t2 < t3. This is sufficient to demonstrate liveness, since using the
argument for each successive value of SN"'i" shows that each packet is transmitted with
finite delay.

Let RN(t) be the value of the variable RN at node B as a function of time t
and let SNmi,,(t) be the corresponding value of SNmi" at node A. It is seen directly
from the algorithm statement that SNmin(t) and RN(t) are nondecreasing in t. Also,
since SNmi,,(t) is the largest request number (if any) received from B up to time t,
SNmi,,(t) ::; RN(t). By definition of t2 and t3, RN(t) is incremented to i + I at t2 and
SNmin(t) is increased beyond i at t3. Using the fact that SNmi,,(t) ::; RN(t), it follows
that t2 < t,. Note that it is possible that t2 < t l , since packet i might have been received
error-free and released at B before time tl and even before SN",in became equal to i.

From the algorithm statement, node A transmits packet i repeatedly, with finite
delay between successive transmissions, from tt until t3. If tl < t2, then RN(t) = i
for t 1 ::; t ::; t2, so the first error-free reception of packet i after tl will be accepted and
released to the higher layer at B. Since t2 < t3, node A will retransmit packet i until this
happens. Since there is a probability q > 0 that each retransmission is received correctly,
and retransmissions occur within finite intervals, the time from t t to t2 is finite. Node

SN

Node A

Node 8

RN

[;+2,;+n+1]

; + 1

Packets out

Figure 2.28 S N", 1 n is; at time t I. Packet; is then released to the higher layer at B
at time t2 and the window is increased at .4 at time f,1.

78 Point-to-Point Protocols and Links Chap. 2

B (whether tj < t2 , or vice versa) transmits frames carrying RN 2: i + I from time
t2 until some such frame is received error-free at A at time t 3• Since node A is also
transmitting frames in this interval, the delay between subsequent transmissions from B
is finite, and, since q > 0, the interval from t2 to t3 is finite. Thus the interval from t]
to t3 is finite and the algorithm is live.

It will be observed that no assumption was made in the demonstration above about
the frames traveling in order on the links, and the algorithm above operates correctly
even when frames get out of order. When we look at error recovery at the transport
layer, the role of a link will be played by a subnetwork and the role of a frame will
be played by a packet. For datagram networks, packets can get out of order, so this
generality will be useful.

Go back n with modulus m > n. It will now be shown that if the sequence
number SN and the request number RN are sent modulo m, for some m strictly greater
than the go back number n, the correctness of go back n is maintained as long as we
reimpose the condition that frames do not get out of order on the links. To demonstrate
this correctness, we first look more carefully at the ordering of events when ordinary
integers are used for SNand RN.

Consider the transmission of an arbitrary frame from node A to B. Suppose that
the frame is generated at time t] and received at t2 (see Fig. 2.29). The sequence number
SN of the frame must lie in node A's window at time t j , so

SNmin(td ~ SN ~ SNmin(t]) + n - I

Also, as shown in the figure,

SNmi,,(tt) ~ RN(t2) ~ SNmin(tl) + n

(2.24)

(2.25)

Window [i. i+n -1J

Node A

NodeB

RN

Figure 2.29 Let tj and t2 be the times at which a given frame is generated at A and
received at B respectively. The sequence number in the frame satisfies SNmin(tIl ::;
SN::; SNmin(tl) + n - I. The value i of SNmin(tIl is equal to the last received
value of RN, which is RN(to) ::; RN(t2)' Thus SN",i.n(tIl ::; RN(t2), which is the
left side of Eq. (2.25). Conversely, no frame with sequence number SNmin (til +n can
have been sent before tl since this value is beyond the upper limit of the window. Since
frames travel in order on the link, no frame with this number has arrived at B before t2,
and RN(t2) ::; SNmm(tIl + n, which is the right side of Eq. (2.25).

Sec. 2.4 ARQ: Retransmission Strategies 79

We see from Eqs. (2.24) and (2.25) that SN and RN(h) are both contained in the
interval from SNmin(tj) to SNmin(t)) + n, and thus must satisfy

(2.26)

Now suppose that when packet number S N is sent, the accompanying sequence
number is sent modulo m, and let sn denote SN mod m. Step 3 of the algorithm at
node B must then be modified to: If an error-free frame is received from A containing a
sequence number sn equal to RN mod m, release the received packet to the higher layer
and increment RN. Since m > n by assumption, we see from Eq. (2.26) that sn = RN
mod m will be satisfied if and only if the packet number SN is equal to RN; thus, the
algorithm still works correctly.

Next consider the ordering of arriving request numbers (using ordinary integers)
relative to the window at node A. From Fig. 2.30, we see that

(2.27)

Now suppose that RN is sent modulo m, and let rn = RN mod m. Step 4 of the
algorithm at node A must then be modified to: If an error-free frame is received from
B containing rn 1= SNmin mod m, then increment SNmin until rn = SNmin mod m.
Because of the range of RN in Eq. (2.27), we see that this new rule is equivalent to the
old rule, and it is sufficient to send request numbers modulo m. At this point, however,
we see that it is unnecessary for SNmin , SNmax , and RN to be saved at nodes A and
B as ordinary integers; everything can be numbered modulo m, and the algorithm has
been demonstrated to work correctly for m > n.

For completeness, we restate the algorithm for operation modulo m; since all
numbers are taken modulo m, we use capital letters for these numbers.

Window [i. i+n -1J

Node A

Node B

RN

Figure 2.30 Let tl and t2 be the times at which a given frame with request number
RN is generated at B and received at A, respectively. Let SNmin (t2) = i be the lower
edge of the window at t2 and let to be the generation time of the frame from B that
caused the window at A to move to [i, i + n - I]. Since the frames travel in order on
the link, to < tl, so i :s; RN and thus SNmm (t2) :s; RN. Similarly, node A cannot
have sent packet i + n before t2, so it certainly cannot have been received before t I.

Thus RN :s; SNmw (t2) + n.

80 Point-to-Point Protocols and Links

The go back n algorithm at node A for modulo m operation, m > n:

Chap. 2 r
I

1. Set the modulo m variables SNmin and SNrnax to O.

2. Do steps 3, 4, and 5 repeatedly in any order. There can be an arbitrary but bounded
delay between the time when the conditions for a step are satisfied and when the
step is executed.

3. If (SNIT/ax - SNmin) mod m < n, and if a packet is available from the higher
layer, accept a new packet into the DLC, assign number SNnwx to it, and increment
SNma:l' to (SNma:l' + I) mod rn.

4. If an error-free frame is received from B containing a request number RN, and
(RN - SNmin) mod m S; (SNma:r - SNmin) mod m, set SNmin to equal RN.

S. If SNmin # SNnw:r and no frame is currently in transmission, choose some
number SN such that (SN - SNmin) mod m < (SNma:r - SNrnin) mod m

transmit packet SN in a frame containing SN in the sequence number field.

The go back n algorithm at node B for modulo m operation, m > n:

1. Set the modulo m variable RN to O.

2. Whenever an error-free frame is received from A containing a sequence number
SN equal to RN, release the received packet to the higher layer and increment
RN to (RN + I) mod m.

3. At arbitrary times, but within bounded delay after receiving any error-free data
frame from A, transmit a frame to A containing RN in the request number field.

Efficiency of go back n implementations Retransmissions, or delays wait
ing for time-outs, occur in go back n ARQ for the following three reasons: first, errors in
the forward direction, second, errors in the feedback direction, and third, longer frames
in the feedback than in the forward direction. These will be discussed in reverse order.

The likelihood of retransmissions caused by long reverse frames can be reduced
by increasing the go back number n. Unfortunately, the normal value of modulus in the
standard protocols is m = 8, which constrains n to be at most 7. Figure 2.31 illustrates
that even in the absence of propagation delay, reverse frames more than three times the
length of forward frames can cause retransmissions for n = 7. Problem 2.23 also shows
that if frames have lengths that are exponentially distributed, with the same distribution

SN
L---+--r--+-+--t--.----j:---+--t-~+----'

RN

Figure 2.31 Go back 7 ARQ with long
frames in the reverse direction. Note that
the ack for packet 1 has not arrived at
the sending side by the time packet 6
finishes transmission, thereby causing a
retransmission of packet O.

Sec. 2.4 ARQ: Retransmission Strategies 81

in each direction, the probability p that a frame is not acked by the time the window is
exhausted is given by

p = (l + n)Tl1 (2.28)

For n = 7, p is equal to 1/16. Frames normally have a maximum permissible length
(and a minimum length because of the control overhead), so in practice p is somewhat
smaller. However, links sometimes carry longer frames in one direction than in the other,
and in this case, there might be considerable waste in link utilization for n = 7. When
propagation delay is large relative to frame length (as, for example, on high-speed links
and satellite links), this loss of utilization can be quite serious. Fortunately, the standard
protocols have an alternative choice of modulus as m = 128.

When errors occur in a reverse frame, the acknowledgment information is post
poned for an additional reverse frame. This loss of line utilization in one direction due
to errors in the other can also be avoided by choosing n sufficiently large.

Finally, consider the effect of errors in the forward direction. If n is large enough
to avoid retransmissions or delays due to large propagation delay and long frames or
errors in the reverse direction, and if the sending DLC waits to exhaust its window of
n packets before retransmitting, a large number of packets are retransmitted for each
forward error. The customary solution to this problem is the use of time-outs. In its
simplest version, if a packet is not acknowledged within a fixed time-out period after
transmission, it is retransmitted. This time-out should be chosen long enough to include
round-trip propagation and processing delay plus transmission time for two maximum
length packets in the reverse direction (one for the frame in transit when a packet is
received, and one to carry the new RN). In a more sophisticated version, the sending
DLC, with knowledge of propagation and processing delays, can determine which reverse
frame should carry the ack for a given packet; it can go back if that frame is error free
and fails to deliver the ack.

In a more fundamental sense, increasing link utilization and decreasing delay is
achieved by going back quickly when a forward error occurs, but avoiding retransmis
sions caused by long frames and errors in the reverse direction. One possibility here is for
the receiving OLC to send back a short supervisory frame upon receiving a frame in error.
This allows the sending side to go back much sooner than if RN were simply piggy
backed on a longer reverse data frame. Another approach is to insert RN in the trailer of
the reverse frame, inserting it before the CRC and inserting it at the last moment, after the
packet part of the frame has been sent. This cannot be done in the standard OLC proto
cols, but would have the effect of reducing the feedback delay by almost one frame length.

It is not particularly difficult to invent new ways of reducing both feedback delay
and control overhead in ARQ strategies. One should be aware, however, that it is not
trivial to ensure the correctness of such strategies. Also, except in special applications,
improvements must be substantial to outweigh the advantages of standardization.

2.4.3 Selective Repeat ARQ

Even if unnecessary retransmissions are avoided, go back n protocols must retransmit
at least one round-trip-delay worth of frames when a single error occurs in an awaited

82 Point-to-Point Protocols and Links Chap. 2

packet. In many situations, the probability of one or more errors in a frame is 10-4

or less, and in this case, retransmitting many packets for each frame in error has little
effect on efficiency. There are some communication links, however, for which small
error probabilities per frame are very difficult to achieve, even with error correction in
the modems. For other links (e.g., high-speed links and satellite links), the number of
frames transmitted in a round- trip delay time is very large. In both these cases, selective
repeat ARQ can be used to increase efficiency.

The basic idea of selective repeat ARQ for data on a link from A to B is to accept
out-of-order packets and to request retransmissions from A only for those packets that are
not correctly received. There is still a go back number, or window size, n, specifying how
far A can get ahead of RN, the lowest-numbered packet not yet correctly received at B.

Note that whatever ARQ protocol is used, only error-free frames can deliver packets
to B, and thus, if p is the probability of frame error, the expected number 1] of packets
delivered to B per frame from A to B is bounded by

1]~I-p (2.29)

As discussed later, this bound can be approached (in principle) by selective repeat
ARQ; thus I - P is sometimes called the throughput of ideal selective repeat. Ideal go
back n ARQ can similarly be defined as a protocol that retransmits the packets in one
round-trip delay each time that a frame carrying the packet awaited by the receiving
OLC is corrupted by errors. The throughput of this ideal is shown in Problem 2.26 to be

I-p
1] <-- 1+ pj3

(2.30)

where /3 is the expected number of frames in a round-trip delay interval. This indicates
that the increase in throughput available with selective repeat is significant only when
p8 is appreciable relative to 1.

The selective repeat algorithm at node A, for traffic from A to B, is the same as
the go back n algorithm, except that (for reasons soon to be made clear) the modulus
m must satisfy m ::=: 2n. At node B, the variable RN has the same significance as in
go back n; namely, it is the lowest-numbered packet (or the lowest-numbered packet
modulo m) not yet correctly received. In the selective repeat algorithm, node B accepts
packets anywhere in the range RN to RN + n - I. The value of RN must be sent
back to A as in go back n, either piggybacked on data frames or sent in separate frames.
Usually, as discussed later, the feedback from node B to A includes not only the value of
RN but also additional information about which packets beyond RN have been correctly
received. In principle, the OLC layer still releases packets to the higher layer in order,
so that the accepted out-of-order packets are saved until the earlier packets are accepted
and released.

We now assume again that frames do not get out of order on the links and proceed
to see why a larger modulus is required for selective repeat than for go back n. Assume
that a frame is received at node B at some given time t2 and that the frame was generated
at node A at time t). If 5 Nand RN are considered as integers, Eqs. (2.24) and (2.25)

Sec. 2.4 ARQ: Retransmission Strategies 83

are still valid, and we can conclude from them that the sequence number SN in the
received frame must satisfy

(2.31)

If sequence numbers are sent mod m, and if packets are accepted in the range
RN(t2) to RN(t2) + n - I, it is necessary for node B to distinguish values of SN in
the entire range of Eq. (2.31). This means that the modulus m must satisfy

m 22n, for selective repeat (2.32)

With this change, the correctness of this class of protocols follows as before. The
real issue with selective repeat, however, is using it efficiently to achieve throughputs
relatively close to the ideal I - p. Note first that using RN alone to provide acknowl
edgment information is not very efficient, since if several frame errors occur in one
round-trip delay period, node A does not find out about the second frame error until one
round-trip delay after the first error is retransmitted. There are several ways of providing
the additional acknowledgment information required by A. One is for B to send back the
lowest j packet numbers that it has not yet received; j should be larger than p(3 (the ex
pected number of frame errors in a round-trip delay time), but is limited by the overhead
required by the feedback. Another possibility is to send RN plus an additional k bits (for
some constant k), one bit giving the ack/nak status of each of the k packets after RN.

Assume now that the return frames carry sufficient information for A to determine,
after an expected delay of (3 frames, whether or not a packet was successfully received.
The typical algorithm for A is then to repeat packets as soon as it is clear that the
previous transmission contained errors; if A discovers multiple errors simultaneously,
it retransmits them in the order of their packet numbers. When there are no requested
retransmissions, A continues to send new packets, up to SNma", - I. At this limit, node
A can wait for some time-out or immediately go back to SNmin to transmit successive
unacknowledged packets.

Node A acts like an ideal selective repeat system until it is forced to wait or go
back from SNmax - I. When this happens, however, the packet numbered SNmin

must have been transmitted unsuccessfully about n/ (3 times. Thus, by making n large
enough, the probability of such a go back can be reduced to negligible value. There are
two difficulties with very large values of n (assuming that packets must be reordered
at the receiving DLC). The first is that storage must be provided at B for all of the
accepted packets beyond RN. The second is that the large number of stored packets are
all delayed waiting for RN.

The amount of storage provided can be reduced to n - (3 without much harm, since
whenever a go back from SNmax - 1 occurs, node A can send no new packets beyond
SNmax - 1 for a round-trip delay; thus, it might as well resend the yet-unacknowledged
packets from to SNI/ lax - (3 to SN ma:r - 1; this means that B need not save these packets.
The value of n can also be reduced, without increasing the probability of go back, by re
transmitting a packet several times in succession if the previous transmission contained er
rors. For example, Fig. 2.32 compares double retransmissions with single retransmissions
for n = 2(3 + 2. Single retransmissions fail with probability p and cause (3 extra retrans-

84 Point-to-Point Protocols and Links Chap. 2

Ymin

Packet
number

RN

Packets
saved

{3

(a)

o

Ymin

Packet
number

RN

Packets
saved

(b)

{3 o

Figure 2.32 Selective repeat ARQ with Tl = 23 + 2 and receiver storage for 3 + 1 packets. (a)
Note the wasted transmissions if a given packet (0) is transmitted twiee with errors. (b) Note that
this problem is cured. at the cost of one extra frame. if the second transmission of packet 0 is
doubled. Feedback contains not only RX but additional information on accepted packets.

missions; double retransmissions rarely fail, but always require one extra retransmission.
Thus, double retransmissions can increase throughput if pn > I, but might be desirable
in other cases to reduce the variability of delay. (See [WeI82] for further analysis.)

2.4.4 ARPANET ARQ

The ARPANET achieves efficiency by using eight stop-and-wait strategies in parallel,
multiplexing the bit pipe between the eight. That is, each incoming packet is assigned
to one of eight virtual channels, assuming that one of the eight is idle; if all the virtual
channels are busy, the incoming packet waits outside the DLe (see Fig. 2.33). The busy
virtual channels are multiplexed on the bit pipe in the sense that frames for the different
virtual channels are sent one after the other on the link. The particular order in which
frames are sent is not very important, but a simple approach is to send them in round
robin order. If a virtual channel's tum for transmission comes up before an ack has
been received for that virtual channel, the packet is sent again, so that the multiplexing
removes the need for any time-outs. (The actual ARPANET protocol, however, does use

I

Sec. 2.4 ARQ: Retransmission Strategies

Stop and wait virtual channel A

85

Incoming packets

Stop and wait virtual channel H

(a)

Bit pipe

RN

One bit RN for each virtual channel

(b)

Packet 1

(c)

Packet 3 Packet 2

Figure 2.33 ARPANET ARQ. (a) Eight multiplexed. stop-and-wait virtual channels.
(b) Bits in the header for ARQ control. (c) Operation of multiplexed stop and wait
for two virtual channels. Top-la-bottom frames show SN and the channel number. and
bottom-to-top frames show RN for both channels. The third frame from bottom to lOp
acks packet I on the A channel.

time-outs.) When an ack is received for a frame on a given virtual channel, that virtual
channel becomes idle and can accept a new packet from the higher layer.

Somewhat more overhead is required here than in the basic stop-and-wait protocol.
In particular, each frame carries both the virtual channel number (requiring three bits)
and the sequence number modulo 2 (i.e., one bit) of the packet on that virtual channel.
The acknowledgment information is piggybacked onto the frames going in the opposite
direction. Each such frame, in fact, carries information for all eight virtual channels. In
particular, an eight-bit field in the header of each return frame gives the number modulo
2 of the awaited packet for each virtual channel.

One of the desirable features of this strategy is that the ack information is repeated
so often (i.e., for all virtual channels in each return frame) that relatively few retrans
missions are required because of transmission errors in the reverse direction. Typically,
only one retransmission is required for each frame in error in the forward direction. The

86 Point-to-Point Protocols and Links Chap. 2

undesirable feature of the ARPANET protocol is that packets are released to the higher
layer at the receiving OLC in a different order from that of arrival at the sending OLe.
The OLC layer could, in principle, reorder the packets, but since a packet on one virtual
channel could be arbitrarily delayed, an arbitrarily large number of later packets might
have to be stored. The ARPANET makes no effort to reorder packets on individual
links, so this protocol is not a problem for ARPANET. We shall see later that the lack
of ordering on links generates a number of problems at higher layers. Most modem net
works maintain packet ordering for this reason, and consequently do not use this protocol
despite its high efficiency and low overhead. For very poor communication links, where
efficiency and overhead are very important, it is a reasonable choice.

2.5 FRAMING

The problem of framing is that of deciding, at the receiving OLC, where successive
frames start and stop. In the case of a synchronous bit pipe, there is sometimes a period
of idle fill between successive frames, so that it is also necessary to separate the idle fill
from the frames. For an intermittent synchronous bit pipe, the idle fill is replaced by
dead periods when no bits at all arrive. This does not simplify the problem since, first,
successive frames are often transmitted with no dead periods in between, and second,
after a dead period, the modems at the physical layer usually require some idle fill to
reacquire synchronization.

There are three types of framing used in practice. The first, character-based fram
ing, uses special communication control characters for idle fill and to indicate the begin
ning and ending of frames. The second, bit-oriented framing with fiags, uses a special
string of bits called a flag both for idle fill and to indicate the beginning and ending of
frames. The third, length counts, gives the frame length in a field of the header. The fol
lowing three subsections explain these three techniques, and the third also gives a more
fundamental view of the problem. These subsections, except for a few comments, ignore
the possibility of errors on the bit pipe. Section 2.5.4 then treats the joint problems of
ARQ and framing in the presence of errors. Finally, Section 2.5.5 explains the trade-offs
involved in the choice of frame length.

2.5.1 Character-Based Framing

Character codes such as ASCII generally provide binary representations not only for
keyboard characters and terminal control characters, but also for various communication
control characters. In ASCII, all these binary representations are seven bits long, usually
with an extra parity bit which might or might not be stripped off in communication
[since a cyclic redundancy check (CRC) can be used more effectively to detect errors in
frames].

SYN (synchronous idle) is one of these communication control characters; a string
of SYN characters provides idle fill between frames when a sending OLC has no data
to send but a synchronous modem requires bits. SYN can also be used within frames,

Sec. 2.5 Framing 87

sometimes for synchronization of older modems, and sometimes to bridge delays in
supplying data characters. STX (start of text) and ETX (end of text) are two other
communication control characters used to indicate the beginning and end of a frame, as
shown in Fig. 2.34.

The character-oriented communication protocols used in practice, such as the IBM
binary synchronous communication system (known as Bisynch or BSC), are far more
complex than this, but our purpose here is simply to illustrate that framing presents
no insurmountable problems. There is a slight problem in the example above in that
either the header or the CRC might, through chance, contain a communication control
character. Since these always appear in known positions after STX or ETX, this causes
no problem for the receiver. If the packet to be transmitted is an arbitrary binary string,
however, rather than a string of ASCII keyboard characters, serious problems arise;
the packet might contain the ETX character, for example, which could be interpreted
as ending the frame. Character-oriented protocols use a special mode of transmission,
called transparent mode, to send such data.

The transparent mode uses a special control character called DLE (data link escape).
A DLE character is inserted before the STX character to indicate the start of a frame in
transparent mode. It is also inserted before intentional uses of communication control
characters within such a frame. The DLE is not inserted before the possible appearances
of these characters as part of the binary data. There is still a problem if the DLE character
itself appears in the data, and this is solved by inserting an extra DLE before each
appearance of DLE in the data proper. The receiving DLC then strips off one DLE from
each arriving pair of DLEs, and interprets each STX or ETX preceded by an unpaired
DLE as an actual start or stop of a frame. Thus, for example, DLE ETX (preceded by
something other than DLE) would be interpreted as an end of frame, whereas DLE DLE
ETX (preceded by something other than DLE) would be interpreted as an appearance of
the bits corresponding to DLE ETX within the binary data.

With this type of protocol, the frame structure would appear as shown in Fig. 2.35.
This frame structure is used in the ARPANET. It has two disadvantages, the first of
which is the somewhat excessive use of framing overhead (i.e., DLE STX precedes each
frame, DLE ETX follows each frame, and two SYN characters separate each frame for
a total of six framing characters per frame). The second disadvantage is that each frame
must consist of an integral number of characters.

Let us briefly consider what happens in this protocol in the presence of errors.
The CRC checks the header and packet of a frame, and thus will normally detect errors

SYN

Frame--------..j

Packet

SYN = Synchronous idle

STX = Start of text

ETX = End of text

Figure 2.34 Simplified frame structure with character-based framing.

SYN

88 Point-to-Point Protocols and Links

k-----------Frame-----------+-I

Chap. 2

SYN Packet SYN

D LE = Data link escape

Figure 2.35 Character-based framing in a transparent mode as used in the ARPANET.

there. If an error occurs in the DLE ETX ending a frame, however, the receiver will not
detect the end of the frame and thus will not check the CRC; this is why in the preceding
section we assumed that frames could get lost. A similar problem is that errors can cause
the appearance of DLE ETX in the data itself; the receiver would interpret this as the
end of the frame and interpret the following bits as a CRe. Thus, we have an essentially
random set of bits interpreted as a CRC, and the preceding data will be accepted as
a packet with probability 2- L

, where L is the length of the CRe. The same problems
occur in the bit-oriented framing protocols to be studied next and are discussed in greater
detail in Section 2.5.4.

2.5.2 Bit-Oriented Framing: Flags

In the transparent mode for character-based framing, the special character pair DLE ETX
indicated the end of a frame and was avoided within the frame by doubling each DLE
character. Here we look at another approach, using a flag at the end of the frame. A
flag is simply a known bit string, such as DLE ETX, that indicates the end of a frame.
Similar to the technique of doubling DLEs, a technique called hit stuffing is used to
avoid confusion between possible appearances of the flag as a bit string within the frame
and the actual flag indicating the end of the frame. One important difference between
bit-oriented and character based framing is that a bit-oriented frame can have any length
(subject to some minimum and maximum) rather than being restricted to an integral
number of characters. Thus, we must guard against appearances of the flag bit pattern
starting in any bit position rather than just on character boundaries.

In practice, the flag is the bit string 01 60, where the notation 1j means a string
of j 1'so The rule used for bit stuffing is to insert (stuff) a 0 into the data string of
the frame proper after each successive appearance of five 1's (see Fig. 2.36). Thus, the
frame, after stuffing, never contains more than five consecutive 1's, and the flag at the
end of the frame is uniquely recognizable. At the receiving DLC, the first 0 after each
string of five consecutive 1's is deleted; if, instead, a string of five 1's is followed by a
1, the frame is declared to be finished.

Stuffed bits

~/~
o 0 0 0

1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0

I- Original frame ~ I

Figure 2.36 Bit stuffing. A 0 is stuffed
after each consecutive five I's in the
original frame. A flag, 01111110, without
stuffing, is sent at the end of the frame.

Sec. 2.5 Framing 89

Bit stuffing has a number of purposes beyond eliminating flags within the frame.
Standard DLCs have an abort capability in which a frame can be aborted by sending
seven or more]'s in a row; in addition, a link is regarded as idle if]5 or more] 's in a row
are received. What this means is that 0]6 is really the string denoting the end of a frame.
If 01 6 is followed by a 0, it is the flag, indicating normal frame termination; if followed
by a], it indicates abnormal termination. Bit stuffing is best viewed as preventing the
appearance of 01 6 within the frame. One other minor purpose of bit stuffing is to break
up long strings of] 's, which cause some older modems to lose synchronization.

It is easy to see that the bit stuffing rule above avoids the appearance of 01 6

within the frame, but it is less clear that so much bit stuffing is necessary. For example,
consider the first stuffed bit in Fig. 2.36. Since the frame starts with six]'s (following
a distinguishable flag), this could not be logically mistaken for 0]6. Thus, stuffing is
not logically necessary after five I's at the beginning of the frame (provided that the
receiver's rule for deleting stuffed bils is changed accordingly).

The second stuffed bit in the figure is clearly necessary to avoid the appearance of
0]6. From a strictly logical standpoint, the third stuffed bit could be eliminated (except
for the synchronization problem in older modems). Problem 2.3] shows how the receiver
rule could be appropriately modified. Note that the reduction in overhead, by modifying
the stuffing rules as above, is almost negligible; the purpose here is to understand the
rules rather than to suggest changes.

The fourth stuffed bit in the figure is definitely required, although the reason is
somewhat subtle. The original string 01 50 surrounding this stuffed bit could not be
misinterpreted as 0]6, but the receiving DLC needs a rule to eliminate stuffed bits; it
cannot distinguish a stuffed 0 following 01 5 from a data 0 following 01 5

. Problem 2.32
develops this argument in detail.

There is nothing particularly magical about the string 0]6 as the bit string used to
signal the termination of a frame (except for its use in preventing long strings of I's on
the link), and in fact, any bit string could be used with bit stuffing after the next-to-Iast
bit of the string (see Problem 2.33). Such strings, with bit stuffing, are often useful in
data communication to signal the occurrence of some rare event.

Consider the overhead incurred by using a flag to indicate the end of a frame.
Assume that a frame (before bit stuffing and flag addition) consists of independent,
identically distributed, random binary variables, with equal probability of 0 or I. Assume
for increased generality that the terminating signal for a frame is olj for some j (with
OPO being the flag and 0Ij+1 indicating abnormal termination); thus, j = 6 for the
standard flag. An insertion will occur at (i.e., immediately following) the i th bit of the
original frame (for i 2:: j) if the string from i - j +] toi is 01 j -I; the probability of
this is 2-]. An insertion will also occur (fori 2:: 2j - I) if the string from i - 2j + 2 to
i is 0]2j-2; the probability of this is 2-2J +1• We ignore this term and the probability of
insertions due to yet longer strings of I's: first, because these probabilities are practically
negligible, and second, because these insertions are used primarily to avoid long strings
of I 's rather than to provide framing. Bit j - I in the frame is somewhat different than
the other bits, since an insertion here occurs with probability 2-j+l (i.e., if the first j -]
bits of the frame are all] 's).

90 Point-to-Point Protocols and Links Chap. 2

Recall that the expected value of a sum of random variables is equal to the sum of
the expected values (whether or not the variables are independent). Thus, the expected
number of insertions in a frame of original length K is the sum, over i, of the expected
number of insertions at each bit i of the frame. The expected number of insertions at a
given bit, however, is just the probability of insertion there. Thus, the expected number
of insertions in a string of length K 2: j - 1 is

(K-j+3)Tj

Taking the expected value of this over frame lengths K (with the assumption that
all frames are longer than j - 1) and adding the j + 1 bits in the termination string, the
expected overhead for framing becomes

E{OV} = (E{ K} - j + 3)Tj + j + 1 (2.33)

Since E{K} is typically very much larger than j, we have the approximation and upper
bound (for j 2: 3)

E{OV} :::; E{K}2- j + j + 1 (2.34)

One additional bit is needed to distinguish a normal from an abnormal end of frame.
It will be interesting to find the integer value of j that minimizes this expression

for a given value of expected frame length. As j increases from 1, the quantity on the
right-hand side of Eq. (2.34) first decreases and then increases. Thus, the minimizing j
is the smallest integer j for which the right-hand side is less than the same quantity with
j increased by 1, that is, the smallest j for which

E{K}Tj + j + 1 < E{K}Tj-1 + j + 2 (2.35)

This inequality simplifies to E{K} 2- j -I < 1, and the smallest j that satisfies this is

(2.36)

where lxJ means the integer part of x. It is shown in Problem 2.34 that for this optimal
value of j,

E{OV} :::; log2 E{K} + 2 (2.37)

For example, with an expected frame length of 1000 bits, the optimal j is 9 and the
expected framing overhead is less than 12 bits. For the standard flag, with j = 6, the
expected overhead is about 23 bits (hardly cause for wanting to change the standard).

2.5.3 Length Fields

The basic problem in framing is to inform the receiving DLC where each idle fill string
ends and where each frame ends. In principle, the problem of determining the end of an
idle fill string is trivial; idle fill is represented by some fixed string (e.g., repeated SYN
characters or repeated flags) and idle fill stops whenever this fixed pattern is broken. In
principle, one bit inverted from the pattern is sufficient, although in practice, idle fill is
usually stopped at a boundary between flags or SYN characters.

Sec. 2.5 Framing 91

Since a frame consists of an arbitrary and unknown bit string, it is somewhat harder
to indicate where it ends. A simple alternative to flags or special characters is to include
a length field in the frame header. DECNET, for example, uses this framing technique.
Assuming no transmission errors, the receiving DLC simply reads this length in the
header and then knows where the frame ends. If the length is represented by ordinary
binary numbers, the number of bits in the length field has to be at least llogz KmaxJ + I,
where K max is the maximum frame size. This is the overhead required for framing in
this technique; comparing it with Eq. (2.37) for flags, we see that the two techniques
require similar overhead.

Could any other method of encoding frame lengths require a smaller expected
number of bits? This question is answered by information theory. Given any probability
assignment P(K) on frame lengths, the source coding theorem of information theory
states that the minimum expected number of bits that can encode such a length is at least
the entropy of that distribution, given by

I
H = L P(K) logz --p--

K (K)
(2.38)

According to the theorem, at least this many bits of framing overhead, on the
average, must be sent over the link per frame for the receiver to know where each
frame ends. If P(K) = 1/K max , for I ::; K ::; K max , then H is easily calculated to
be logz K max . Similarly, for a geometric distribution on lengths, with given E{K},
the entropy of the length distribution is approximately logz E{ K} + logz e, for large
E{ K}. This is about 1/2 bit below the expression in Eq. (2.37). Thus, for the geometric
distribution on lengths, the overhead using flags for framing is essentially minimum.
The geometric distribution has an interesting extremal property; it can be shown to have
the largest entropy of any probability distribution over the positive integers with given
E{ K} (i.e., it requires more bits than any other distribution).

The general idea of source coding is to map the more likely values of K into
short bit strings and less likely values into long bit strings; more precisely, one would
like to map a given K into about logz[I/P(K)] bits. If one does this for a geometric
distribution, one gets an interesting encoding known as the unary-binary encoding. In
particular, for a given j, the frame length K is represented as

K = i2j + r; 0::; r < 2j (2.39)

The encoding for K is then i O's followed by a I (this is known as a unary encoding of
i) followed by the ordinary binary encoding of r (using j bits). For example, if j = 2
and K = 7, K is represented by i = I, r = 3, which encodes into 0111 (where 01 is
the unary encoding of i = I and II is the binary encoding of r = 3). Note that different
values of K are encoded into different numbers of bits, but the end of the encoding can
always be recognized as occurring j bits after the first I.

In general, with this encoding, a given K maps into a bit string of length lK /2 j J+
I + j. If the integer value above is neglected and the expected value over K is taken,
then

E{OV} = E{K}2- j + I + j (2.40)

92 Point-to-Point Protocols and Links Chap. 2

r

Note that this is the same as the flag overhead in Eq. (2.34). This is again minimized
by choosing j = llog2 E {K} J. Thus, this unary-binary length encoding and flag fram
ing both require essentially the minimum possible framing overhead for the geometric
distribution, and no more overhead for any other distribution of given E{K}.

2.5.4 Framing with Errors

Several peculiar problems arise when errors corrupt the framing information on the
communication link. First, consider the flag technique. If an error occurs in the flag at
the end of a frame, the receiver will not detect the end of frame and will not check the
cyclic redundancy check (CRC). In this case, when the next flag is detected, the receiver
assumes the CRC to be in the position preceding the flag. This perceived CRC might
be the actual CRC for the following frame, but the receiver interprets it as checking
what was transmitted as two frames. Alternatively, if some idle fill follows the frame in
which the flag was lost, the perceived CRC could include the error-corrupted flag. In any
case, the perceived CRC is essentially a random bit string in relation to the perceived
preceding frame, and the receiver fails to detect the errors with a probability essentially
2-L , where L is the length of the CRe.

An alternative scenario is for an error within the frame to change a bit string into
the flag, as shown for the flag 01 60:

o 1 001 101 1 100 1

o 1 001 III I 100 I

(sent)

(received)

It is shown in Problem 2.35 that the probability of this happening somewhere in a frame
of K independent equiprobable binary digits is approximately (l /32)Kp, where p is
the probability of a bit error. In this scenario, as before, the bits before the perceived
flag are interpreted by the receiver as a CRC, and the probability of accepting a false
frame, given this occurrence, is 2- L. This problem is often called the data sensitivity
problem of DLC, since even though the CRC is capable of detecting any combination
of three or fewer errors, a single error that creates or destroys a flag, plus a special
combination of data bits to satisfy the perceived preceding CRC, causes an undetectable
error.

If a length field in the header provides framing, an error in this length field again
causes the receiver to look for the CRC in the wrong place, and again an incorrect frame
is accepted with probability about 2- L. The probability of such an error is smaller using
a length count than using a flag (since errors can create false flags within the frame);
however, after an error occurs in a length field, the receiver does not know where to look
for any subsequent frames. Thus, if a length field is used for framing, some synchronizing
string must be used at the beginning of a frame whenever the sending DLC goes back
to retransmit. (Alternatively, synchronization could be used at the start of every frame,
but this would make the length field almost redundant.)

There are several partial solutions to these problems, but none are without disad
vantages. DECNET uses a fixed-length header for each frame and places the length of
the frame in that header; in addition, the header has its own CRe. Thus, if an error

f
!
!
I
I

j

Sec. 2.5 Framing 93

occurs in the length field of the header, the receiver can detect it by the header CRC,
which is in a known position. One difficulty with this strategy is that the transmitter
must still resynchronize after such an error, since even though the error is detected, the
receiver will not know when the next frame starts. The other difficulty is that two CRCs
must be used in place of one, which is somewhat inefficient.

A similar approach is to put the length field of one frame into the trailer of the
preceding frame. This avoids the inefficiency of the DECNET approach, but still requires
a special synchronizing sequence after each detected error. This also requires a special
header frame to be sent whenever the length of the next frame is unknown when a given
frame is transmitted.

Another approach, for any framing technique, is to use a longer CRC. This at least
reduces the probability of falsely accepting a frame if framing errors occur. It appears
that this is the most likely alternative to be adopted in practice; a standard 32 bit CRC
exists as an option in standard DLCs.

A final approach is to regard framing as being at a higher layer than ARQ. In such
a system, packets would be separated by flags, and the resulting sequence of packets
and flags would be divided into fixed-length frames. Thus, frame boundaries and packet
boundaries would bear no relation. If a packet ended in the middle of a frame and
no further packets were available, the frame would be completed with idle fill. These
frames would then enter the ARQ system, and because of the fixed-length frames, the
CRC would always be in a known place. One disadvantage of this strategy is delay; a
packet could not be accepted until the entire frame containing the end of the packet was
accepted. This extra delay would occur on each link of the packet's path.

2.5.5 Maximum Frame Size

The choice of a maximum frame length, or maximum packet length, in a data network
depends on many factors. We first discuss these factors for networks with variable packet
lengths and then discuss some additional factors for networks using fixed packet lengths.
Most existing packet networks use variable packet lengths, but the planners of broadband
ISDN are attempting to standardize on a fonn of packet switching called asynchronous
transfer mode (ATM) which uses very short frames (called cells in ATM) with a fixed
length of 53 bytes. The essential reason for the fixed-length is to simplify the hardware
for high-speed switching. There are also some advantages of fixed-length frames for
multiaccess systems, as discussed in Chapter 4.

Variable frame length Assume that each frame contains a fixed number 1/ of
overhead bits, including frame header and trailer, and let KII/ I1 l' denote the maximum
length of a packet. Assume, for the time being, that each message is broken up into as
many maximum-length packets as possible, with the last packet containing what is left
over. That is, a message of length 1\1 would be broken into IAI /](""ul packets, where
I:cl is the smallest integer greater than or equal to :1:. The first IAi / K I1U1 l'l - I of these
packets each contain K",u.(bits and the final packet contains between I and KII/u,l' bits.

94 Point-to-Point Protocols and Links Chap. 2

1

The total number of bits in the resulting frames is then

. rAIl'total bits = AI + y- V
,flO.T

(2.41)

We see from this that as K,,"U' decreases, the number of frames increases and
thus the total overhead in the message, INIIK max1V, increases. In the limit of very
long messages, a fraction V I(V + K ma .r) of the transmitted bits are overhead bits. For
shorter messages, the fraction of overhead bits is typically somewhat larger because of
the reduced length of the final packet.

A closely related factor is that the nodes and external sites must do a certain amount
of processing on a frame basis; as the maximum frame length decreases, the number of
frames, and thus this processing load, increase. With the enormous increase in data
rates available from optical fiber, it will become increasingly difficult to carry out this
processing for small frame lengths. In summary, transmission and processing overhead
both argue for a large maximum frame size.

We next discuss the many factors that argue for small frame size. The first of
these other factors is the pipelining effect illustrated in Fig. 2.37. Assume that a packet
must be completely received over one link before starting transmission over the next.
If an entire message is sent as one packet, the delay in the network is the sum of the
message transmission times over each link. If the message is broken into several packets,
however, the earlier packets may proceed along the path while the later packets are still
being transmitted on the first link, thus reducing overall message delay.

Since delay could be reduced considerably by starting the transmission of a packet
on one link before receiving it completely on the preceding link, we should understand
why this is not customarily done. First, if the DLC is using some form of ARQ, the CRC
must be checked before releasing the packet to the next link. This same argument holds
even if a CRC is used to discard packets in error rather than to retransmit them. Finally,
if the links on a path have different data rates, the timing required to supply incoming
bits to the outgoing link becomes very awkward; the interface between the DLC layer
and the network layer also becomes timing dependent.

Let us investigate the combined effect of overhead and pipelining on message
delay, assuming that each packet is completely received over one link before starting
transmission on the next. Suppose that a message of length Al is broken into maximum
length packets, with a final packet of typically shorter length. Suppose that the message
must be transmitted over j equal-capacity links and that the network is lightly loaded, so
that waiting at the nodes for other traffic can be ignored. Also, ignore errors on the links
(which will be discussed later), and ignore propagation delays (which are independent
of maximum packet length). The total time T required to transmit the message to the
destination is the time it takes the first packet to travel over the first j - I links, plus
the time it takes the entire message to travel over the final link (i.e., when a nonfinal
frame finishes traversing a link, the next frame is always ready to start traversing the
link). Let C be the capacity of each link in bits per second, so that TC is the number of
bit transmission times required for message delivery. Then, assuming that Nl 2: K"wI'

Sec. 2.5 Framing 95

Packet t
transm ission
time Total packet

delay over
both links

Time

(a)

Half-packet
transm ission ~
time

Total delay for the
two half packets
over both Iinks

Time

(b)

Figure 2.37 Decreasing delay by shortening packets to take advantage of pipelining.
(a) The total packet delay over two empty links equals twice the packet transmission
time on a link plus the overall propagation delay. (b) When each packet is split in two,
a pipelining effect occurs. The total delay for the two half packets equals 1.5 times the
original packet transmission time on a link plus the overall propagation delay.

I 1'.1 1TC = (Kmax + V)(j - 1) + M + -- V
K max

(2.42)

In order to find the expected value of this over message lengths lvI, we make
the approximation that E{lM/Kmaxl} = E{M/Kmax } + ~ (this is reasonable if the
distribution of M is reasonably uniform over spans of K max bits). Then

E{M}V V
E{TC} ~ (Kmax + V)(j - 1) + E{M} + K + -

max 2
(2.43)

We can differentiate this with respect to K max (ignoring the integer constraint) to find
the value of K max that minimizes E{TC}. The result is

K max ~
E{2v1}V

j - 1
(2.44)

This shows the trade-off between overhead and pipelining. As the overhead V
increases, K rnax should be increased, and as the path length j increases, K rnax should
be reduced. As a practical detail, recall that delay is often less important for file transfers
than for other messages, so file transfers should probably be weighted less than other

96 Point-to-Point Protocols and Links Chap. 2

r
I

messages in the estimation of EPI}, thus arguing for a somewhat smaller K"IU[than
otherwise.

As the loading in a network increases, the pipelining effect remains, although
packets typically will have to queue up at the nodes before being forwarded. The effect
of overhead becomes more important at heavier loads, however, because of the increased
number of bits that must be transmitted with small packet sizes. On the other hand, there
are several other effects at heavier loads that argue for small packet sizes. One is the
"slow truck" effect. If many packets of widely varying lengths are traveling over the
same path, the short packets will pile up behind the long packets because of the high
transmission delay of the long packets on each link; this is analogous to the pileup of
cars behind a slow truck on a single-lane road. This effect is analyzed for a single
link in Section 3.5. The effect is more pronounced over a path, but is mathematically
intractable.

Delay for stream-type traffic (such as voice) is quite different from delay for data
messages. For stream-type traffic, one is interested in the delay from when a given bit
enters the network until that bit leaves, whereas for message traffic, one is interested in
the delay from arrival of the message to delivery of the complete message. Consider the
case of light loading again and assume an anival rate of R and a packet length K. The
first bit in a packet is then held up for a time K / R waiting for the packet to be assembled.
Assuming that the links along the path have capacities C 1, C2 , •.. , each exceeding R,
and assuming V bits of framing overhead, a given packet is delayed by (I(+ V)/Ci on
the ith link. When a given packet is completely received at the last node of the network,
the first bit of the packet can be released immediately, yielding a total delay

K I
T = - + (K + V) L -

R . C i
I

(2.45)

Assuming that the received data stream is played out at rate R, all received bits have the
same delay, which is thus given by Eq. (2.4S). We have tacitly assumed in deriving this
equation that (K +V) / Ci S K / R i for each link i (i.e., that each link can transmit frames
as fast as they are generated). If this is violated, the queueing delay becomes infinite, even
with no other traffic in the network. We see then from Eq. (2.45) that T decreases as K
decreases until (K +V)/Ci = K / R for some link, and this yields the minimum possible
delay. Packet lengths for stream traffic are usually chosen much larger than this minimum
because of the other traffic that is expected on the links. As link speeds increase, however,
the dominant delay term in Eq. (2.45) is K / R, which is unaffected by other traffic. For
64 kbps voice traffic, for example. packets usually contain on the order of 500 bits or less,
since the delay from the K / R term starts to become objectionable for longer lengths.

Note that under light loading, the delay of a session (either message or stream) is
controlled by the packet length of that session. Under heavy-loading conditions, however,
the use of long packets by some users generally increases delay for all users. Thus a
maximum packet length should be set by the network rather than left to the users.

Several effects of high variability in frame lengths on go back n ARQ systems were
discussed in Section 2.4.2. High variability either increases the number of packets that
must be retransmitted or increases waiting time. This again argues for small maximum

Sec. 2.6 Standard DLCs 97

packet size. Finally, there is the effect of transmission errors. Large frames have a
somewhat higher probability of error than small frames (although since errors are usually
correlated, this effect is not as pronounced as one would think). For most links in use
(with the notable exception of radio links), the probability of error on reasonable-sized
frames is on the order of 10-4 or less, so that this effect is typically less important than
the other effects discussed. Unfortunately, there are many analyses of optimal maximum
frame length in the literature that focus only on this effect. Thus, these analyses are
relevant only in those special cases where error probabilities are very high.

In practice, typical maximum frame lengths for wide area networks are on the order
of I to a few thousand bits. Local area networks usually have much longer maximum
frame lengths, since the path usually consists of a single multiaccess link. Also, delay
and congestion are typically less important there and long frames allow most messages
to be sent as a single packet.

Fixed frame length When all frames (and thus all packets) are required to be
the same length, message lengths are not necessarily an integer multiple of the packet
length, and the last packet of a message will have to contain some extra bits, called
fill, to bring it up to the required length. Distinguishing fill from data at the end of a
packet is conceptually the same problem as determining the end of a frame for variable
length frames. One effect of the fill in the last packet is an additional loss of efficiency,
especially if the fixed packet length is much longer than many messages. Problem 2.39
uses this effect to repeat the optimization of Eq. (2.44), and as expected, the resulting
optimal packet length is somewhat smaller with fixed frame lengths than with variable
frame lengths. A considerably more important practical effect comes from the need to
achieve a small delay for stream-type traffic. As was pointed out earlier, 64 kbps voice
traffic must use packets on the order or 500 bits or less, and this requirement, for fixed
frame length, forces all packets to have such short lengths. This is the primary reason
why ATM (see Section 2.10) uses 53 byte frames even though very much longer frames
would be desirable for most of the other traffic.

2.6 STANDARD DLCs

There are a number of similar standards for data link control, namely HDLC, ADCCP,
LAPB, and SDLC. These standards (like most standards in the network field) are uni
versally known by their acronyms, and the words for which the acronyms stand are
virtually as cryptic as the acronyms themselves. HDLC was developed by the Inter
national Standards Organization (ISO), ADCCP by the American National Standards
Institute (ANSI), LAPB by the International Consultative Committee on Telegraphy and
Telephony (CCITT), and SDLC by IBM. HDLC and ADCCP are virtually identical and
are described here. They have a wide variety of different options and modes of opera
tion. LAPB is the DLC layer for X.25, which is the primary standard for connecting an
external site to a subnet; LAPB is, in essence, a restricted subset of the HDLC options
and modes, as will be described later. Similarly, SDLC, which was the precursor of
HDLC and ADCCP, is essentially another subset of options and modes.

	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63

