
  

Image Restoration and Reconstruction



  

Preview
 Goal of image restoration

 Improve an image in some predefined sense
 Difference with image enhancement ?

 Features
 Image restoration v.s image enhancement
 Objective process v.s. subjective process
 A prior knowledge v.s heuristic process
 A prior knowledge of the degradation 

phenomenon is considered
 Modeling the degradation and apply the 

inverse process to recover the original 
image



  

Preview (cont.)

 Target
 Degraded digital image
 Sensor, digitizer, display degradations are 

less considered
 Spatial domain approach
 Frequency domain approach



  

Outline
 A model of the image degradation / 

restoration process
 Noise models
 Restoration in the presence of noise only – 

spatial filtering
 Periodic noise reduction by frequency 

domain filtering
 Linear, position-invariant degradations
 Estimating the degradation function
 Inverse filtering



  

A model of the image 
degradation/restoration 
process

g(x,y)=f(x,y)*h(x,y)+(x,y)

G(u,v)=F(u,v)H(u,v)+N(u,v)



  

Noise models 
 Source of noise

 Image acquisition (digitization)
 Image transmission

 Spatial properties of noise
 Statistical behavior of the gray-level values 

of pixels
 Noise parameters, correlation with the image

 Frequency properties of noise
 Fourier spectrum
 Ex. white noise (a constant Fourier spectrum)



  

Noise probability density 
functions

 Noises are taken as random variables
 Random variables

 Probability density function (PDF)



  

Gaussian noise

 Math. tractability in spatial and 
frequency domain

 Electronic circuit noise and sensor 
noise

p( z )=
1

√2 π σ
e−( z−μ )2/2 σ

2

mean variance

∫
−∞

∞

p ( z )dz= 1Note: 



  

Gaussian noise (PDF)

70% in [(), ()]
95% in [(  ), 
()]



  

Uniform noise

p( z )={
1

b−a
    if a≤ z≤b

0         otherwise }
μ=

a+b
2

σ 2=
(b−a )2

12

Mean:

Variance:

 Less practical, used for random number 
generator



  

Uniform PDF



  

Impulse (salt-and-pepper) nosie

p( z )={
Pa    for z=a

Pb    for z=b
0   otherwise

}
If either Pa or Pb is zero, it is called unipolar.Otherwise, it is called bipoloar.

•In practical, impulses are usually stronger than image
 signals. Ex., a=0(black) and b=55(white) in 8-bit image.

 Quick transients, such as faulty switching 
during imaging



  

Impulse (salt-and-pepper) nosie PDF



  

PDFs of some important 
noise models



  

Test for noise behavior

 Test pattern

Its histogram:

0 55







  

Periodic noise

 Arise from electrical or 
electromechanical interference during 
image acquisition

 Spatial dependence
 Observed in the frequency domain



Sinusoidal noise:
Complex conjugate
pair in frequency
domain



  

Estimation of noise 
parameters

 Periodic noise
 Observe the frequency spectrum

 Random noise with unknown PDFs
 Case 1: imaging system is available

 Capture images of “flat” environment
 Case 2: noisy images available

 Take a strip from constant area
 Draw the histogram and observe it
 Measure the mean and variance



  

Observe the histogram

Gaussian uniform



  

 Histogram is an estimate of PDF

Measure the mean and 
variance

μ= ∑
zi∈S

zi p( zi )

σ 2
=∑

z i∈S

( zi−μ )
2 p( zi )


Gaussian: 
Uniform: a, b



  

Outline
 A model of the image degradation / 

restoration process
 Noise models
 Restoration in the presence of noise only – 

spatial filtering
 Periodic noise reduction by frequency 

domain filtering
 Linear, position-invariant degradations
 Estimating the degradation function
 Inverse filtering



  

Additive noise only

g(x,y)=f(x,y)+(x,y)

G(u,v)=F(u,v)+N(u,v)



  

Spatial filters for de-
noising additive noise

 Skills similar to image enhancement
 Mean filters
 Order-statistics filters
 Adaptive filters



  

Mean filters

 Arithmetic mean

 Geometric mean

f̂ ( x,y )=
1

mn ∑
( s,t )∈Sxy

g( s,t )

Window centered at (x,y)

g( s,t )1/mn { f̂ ( x,y )=¿



original Noisy
Gaussian

0



Arith.mean Geometric
mean



  

Mean filters (cont.)

 Harmonic mean filter

 Contra-harmonic mean filter

f̂ ( x,y )=

∑
( s,t )∈Sxy

g( s,t )Q+1

∑
( s,t )∈Sxy

g (s,t )Q

f̂ ( x,y )=
mn

∑
( s,t )∈Sxy

1
g (s,t )

Q=-1, harmonic

Q=0, airth. mean
Q=+, ?



PepperNoise黑點
SaltNoise白點

Contra-
harmonic
Q=1.5

Contra-
harmonic

Q=-1.5



  

Wrong sign in contra-harmonic filtering

Q=-1.5 Q=1.5



  

Order-statistics filters

 Based on the ordering(ranking) of pixels
 Suitable for unipolar or bipolar noise (salt and pepper noise)

 Median filters
 Max/min filters
 Midpoint filters
 Alpha-trimmed mean filters



  

Order-statistics filters

 Median filter

 Max/min filters

{g (s,t ) }

{g (s,t ) }
{g (s,t ) }



bipolarNoisePa = 0.1Pb = 0.1

3x3
Median

Filter
Pass 1

3x3
Median
Filter
Pass 

3x3
Median

Filter
Pass 3



Pepper
noise

Salt
noise

Max
filter

Min
filter



  

Order-statistics filters 
(cont.)

 Midpoint filter

 Alpha-trimmed mean filter
 Delete the d/ lowest and d/ highest gray-

level pixels

{g (s,t ) }

f̂ ( x,y )=
1

mn−d ∑
( s,t )∈S xy

gr ( s,t )
Middle (mn-d) pixels



Uniform noise

0
800

Left +Bipolar NoisePa = 0.1Pb = 0.1

5x5Arith. Meanfilter
5x5

Geometric
mean

5x5
Median

filter

5x5
Alpha-trim.

Filter
d=5



  

Adaptive filters

 Adapted to the behavior based on the statistical characteristics of the image inside the filter region Sxy
 Improved performance v.s increased complexity
 Example: Adaptive local noise reduction filter



  

Adaptive local noise 
reduction filter

 Simplest statistical measurement
 Mean and variance

 Known parameters on local region Sxy
 g(x,y): noisy image pixel value
 

: noise variance (assume known a prior)
 mL : local mean
 L: local variance



  

Adaptive local noise 
reduction filter (cont.)

 Analysis: we want to do
 If 

is zero, return g(x,y)
 If L> 

, return value close to g(x,y)
 If L= 

, return the arithmetic mean mL

 Formula

f̂ ( x,y )=g( x,y )−
ση

2

σ L
2 [ g( x,y )−mL ]



0
1000

Gaussian
noise

Arith.mean7x7

Geometric
mean
7x7

adaptive



Adaptive Median Filter
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Periodic noise reduction

 Pure sine wave
 Appear as a pair of impulse (conjugate) in 

the frequency domain

f ( x,y )=A sin (u0 x+v0 y )

F (u,v )=− j
A
2 [δ(u−

u0

2 π
,v−

v0

2 π
)−δ (u+

u0

2 π
,v+

v0

2 π
)]



  

Periodic noise reduction 
(cont.)

 Bandreject filters
 Bandpass filters
 Notch filters
 Optimum notch filtering



  

Bandreject filters
* Reject an isotropic frequency

ideal Butterworth Gaussian



noisy spectrum

bandreject

filtered



  

Bandpass filters
 Hbp(u,v)=1- Hbr(u,v)

ℑ
−1 {G(u,v )H bp(u,v ) }



  

Notch filters
 Reject(or pass) frequencies in 

predefined neighborhoods about a 
center frequency

ideal

Butterworth Gaussian



Horizontal
Scan lines

Notch
passDFT

Notch
pass

Notch
reject
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