VVVVVVVVVV / matrices used for
representmg images. Just as‘a one-dimensional signal ‘can be represented by an
orthogonal series of basis functions, an image can also be expanded in terms of a

discrete set of basis arrays called basis i images. These basis images can be generated
by unitary matrices. Alternatively; a given N X N image can be viewed as an N2 X 1

vector. An image transform provides a set of coordinates or basis vectors for the

vector space.

For continuous functions, gx;tg(_)ggg Jnes—%xpansmns provide series-ee-
efficients which can be used for : any further processing or analysis of the functions.

For a one-dimensional sequence {u(n),0 =n =N — 1}, represented as a vector u of

size N, a unitary transformation is written as
N—-1

v=Au  Sv(E)= D alknuln), O=k=N-1 (.1)
‘ n=_
where A~ = A*" (unitary). This gives
. N-1
u=A*Tv :>u(n)=2 v(k)a*(k,n) O0=n=N-1° (5.2)

Equatlon é. 2) can be viewed as a series representation of the sequence u(n). The
columns of A*”, that is, the vectors af tB{a*(k, n),0=n=<N —1}7 are called The
basis vectors of A. Figure 5.1 shows examples of basis vectors of several orthogonal
“transforms encountered in image processing. The series coefficients v(k) give a
representanon of the original sequence u(n) and are useful .in flltermg, data
compression, feature extraction, and other analyses.
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5.2 TWO-DIMENSIONAL ORTHOGONAL _ vk, 1) =22 a(k, mju(m, n)a(l, n) > V=AUAT (5.11)
AND UNITARY TRANSFORMS - © ma=0 .
. N-1
In the context of image processing a general orthogonal series expansion for an o u(m, n) = %EO a*(k, myv{k, Da* (I, ) U= A*TVA* (5.12)
i ‘ i ir of transformations of the form e
N x N image u(m, 1) 1sNa_ Fa" 1 For an M x N rectapgular image, the transform pair is
vk, )= 22 ulm nari(m,n),  0=kI=N-1 (5:3) V= A, UAy (5.13)
mn=0 3 . .
N1 ' U=ALTVAYT (5.14)
u(m, =SS vk, Natilmn),  0=mn=N-1 5.4) o .
. k1=0 ) where Ay and Ay are M X M and N X N unitary matrices, respectively. These are
here {a1(m, n)}, called an image transform, is a set of complete orthonormal called two-dimensional separable transformations. Unless otherwise stated, we will
:is crete bké’sis f,unct,ions Satisfyjng the propemeg 4 always imply the preceding separability when we mention two-dimensional unitary
' et _ transformations. Note that (5.11) can be written as
 Orthonormality: 220 ar{m, n)at.p(m,n)y=08(k—k', 1 =1") ¢35 - V7= A[AU]" (5.15) ;
: N1 . P which means (5.11) can be performed by first transforming each column of U and—— P
: _-wCompleteness: 2‘120 ons(m, m)ak i m', n7) =8(m = =) G- then transforming each row of the result to obtain the rows of V.
k= - e R —— =
" The elements v(k, 1) are called the transform coefficients and V 8 fv(k, D)} is Basis Images
e e~ called the fransfor med image. The orthonormality property as»surﬁes,tha‘t any. {run- Let af denote the kth column.of A*7. Define the matrices
¥ 72} ; ion of the f — ’
‘v../;’ ) U cated series c:xpalnsmx:’“ol ;_T orm. | . Al =afaiT ) (5.16)
i up, g (m, 1) 4 20 IEO v(k Dati(mn), P=N, Q=N 67 N and the matrix inner product of two N x N matrices F and G as . L
' k=01= ‘ ) _ ' N=1N-1 ' ' i
will minimize the sum of squares error FG=2 > f(m, n)g*(m, n) 5.17)
) 0 0 & i
o~ i ” N-1 . . b m=0n= ‘
A o igr= 3 [u(m, n) — upo (m, n)Y 8 » Then (5.4) and (5.3) give a series representation for the image as ?
) . . mn=0 . ; . Nl i l,
: when the coefficients v (k. {) are given by (5.3). The completeness property assures ' {f U=22 v(k DAL, f (5.18) ;
. /:,./m—\ that this error will be zero for P = Q = N (Problem 5.1). . wi=e. ' : v
AR (A : [y = m,AL) j (5.19)
y Separable Unitary Transforms ; - Equation (5.18) gxpresses any image U as a linear combination of the N2 matrices. >
p Y . . . ned e Y S
‘ . ] ¢ Apyk, 1 =0,...,N—1, which are called the _pasis images,.Figure 5.2 shows 8 X 8 . i
The number of multiplications and additions required to compute the trz.msl orm basis images for the same set of transforms in Fig. 5.1. The transform coefficient
coefficients v (k, 1) using (5.3) is E},LQF ), which is quite excessive for practica f-sxze ! » v(k, I) is simply the inner product of the (k, /)th basis image with the given image. It
images. The dimensionality of theProblem is reduced to O (N?) when the transform © isalso called the projection of the image on the (k, /)th basis image. Therefore, any
is restricted o be separable, that is, , ‘ o . NXNimage can be expanded in a series using a complete set of N° basis images. If
T T T _ A 5.0 : U and V are mapped into vectors by row ordering, then (5.11), (5.12), and (5.16)
. @ (m, 1) = & (m)bi () 2 a(k, )b, n) ( ) ; yield (see Section 2.8, on Kronecker products) ‘ /A :
R where {a,(m),k =0,...,N =1}, {bi(m,1=0,...,N—1} are onedimensions} . . | Ay (o=(A®AWA e S e 520
: / complete orthonormal sets of basis vectors. Im : i &1 , ] . . o i
5 .-/ ) A2 {a(k, m)} and B & {b (1, n)} should be unitary matrices themselves, for example, | o '/'f > e 12 ARA & j“‘* P : Sl (5.21) k:
"?; ’ o o AA*T=ATA* =1 . ‘ (5.10) - - where ’ 'ff;;‘ li.— . ) T‘,,ﬁgaw/&(%!‘/ ‘ P
! . i . R Lo, | . ‘”\,.1/ it .
2 . @ A
7 Often one chooses B to be the same as A so that (5‘.3) and (5.4) reduce to 51 ABARA | (5.22) s
A Image Transforms ~ Chap 5 ' ‘ Sec.5.2 . Two-Dimensional Orthogonal and Unitary Transforms 135 ‘F
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is a unitary matrix. Thus, given any unitary transform A, a two-dimensional sepa-
rable unitary transformation can be defined via (5.20) or (5.13).

Example 5.1
- For the given orthogonal matrix A and image U

L L A

I
> g,

the transformed image, obtained according to (5.11), is

1B D 9k -5

To obtain the basis images, we find the outer product of the columns of A*™, which gives

ol nei( )

* and similarly

: ’ 1 -1 i 1 -i
X j A:.l=%<1;‘ _1)=A.r,€, A:‘.1=%(_1‘ 1)

* | The inverse transformation gives

et el 06 =6 26 -0

| which is U, the original image.

Kronecker Products and Dimensionality

Dimensionality of image transforms can also be studied in terms of their Kronecker
product separability. An arbitrary one-dimensionalstransformation

‘ oz =do ' (5.23)

is called separable if
‘ ‘ A=A ®A, (5.24)

" This is because (5.23) can be reduced to the separable two-dimensional trans-

formation

' Y=A XA ‘ (5.25)

‘where X and 'Y are matrices that map into vectors = and 4, respectively, by row
ordering. If ¢ is N°X N*and A,, A, are N x N, then the number of operations
required for implementing (5.25) reduces from N* to about 2N3. The number of
operations can be reduced further if A; and A, are also separable. Image transforms
such as discrete Fourier, sine, cosine, Hadamard, Haar, and Slant can be factored as
Kronecker products of several smailer-sized matrices, which leads to fast algorithms
for their implementation (see Problem 5.2): In the context of image processing such
matrices are also called | fast image transforms. '
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Dimensionality of Image Transforms -

The 2N? computations fWQL@{ng‘the choice of A to the

fast transforms, whose matrix structure allows 2 Tactorization of the type

‘ A=AnAn .. A (5.26)

where Ag,i =1,...,p(p < Njare matrices with just a few nonzero cntries (say 7,

with r<< N). Thus, a multiplication of the type y = Ax is accomplished in rpN

operations. For Fourier, sine, cosine, Hadamard, Slant, and several other trans-

forms, p = log; N, and the operations reduce to the order of N'log, N {or N* log, N

for N X N images). Depending on the actual transform, one_operation can_be

7 "e&" defined as onc multiplication and one addition or subtraction, as in_the Fourier
' - transform. or one addition of subtraction, as in the Hadamard transform.

- T

o Lv’f; ¢ ’Transform Frequency

]‘/A}M 227 . For a onc-dimensional signal f(x), frequency is defined by the Fourier domain
ATy ""W, " variable £. It is related to the number of zero crossings of the real or imaginary part
AF° M{of the basis function exp{j2m£x}. This concept can be generalized to arbitrary
. unitary transforms. Let the rows of a unitary matrix A be arianged so that the
number of zero crossings increases with the row number. Then in the trans-

. formation
y=Ax

the elements y (k). are ordered according to increasing wave number or_transform.,
. /W R e . = * N e S
- fréguency. In the sequel any reference to frequency will fmply the transform
frequency, that is, discrete Fourier frequency, cosine frequency, and so on. The
term spatial frequency generally refers to the continuous Fourier transform fre-
quency ‘and is not the same as the discrete Fourier frequenty. In the case of
Hadamard transform, a term called segitency is also used. It should be noted that

this concept of frequency is useful only on a relative basis for a particular transform.

Alow-frequency term-ofopgtransform could contain the high-frequency harmonics.
of another transform. __ @ i
ol anotaer rans e -

The Optimum Transform

r_important _consi ecting a transform_is its performance in

f_ij}grjgg,_and data compression of images based on the mean square. criterion. The
Rarhunen-Loeve transform (KLT) is known to be optimum with respect to this

criterion and is discussed in Section 5.11.
5.3 PROPERTIES OF UNITARY TRANSFORMS
Energy Conservation and Rotation

In the unitary transformation,

e T v= Au R
VI = ulf L

341
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This is easily proven by noting that

N-1
A ) N-1
? & kEO WP =vTv=u*TA* " Au=u*Tu= 2, |u(n)] A
= n=0

Jhus a_unpitary transformation preserves the signal energy or, equivalently, the

length of the vector u in the N-dimensional vector space, This means every unitary

Jransformation is sir nply. a rotation-of the vector u in the N-dimensional vector -

space. Alternatively, a unitary transformation is a rotation of the basis coordinates
.and the components of v are the projections of u on-the new basis (see Problem 5.4),
Similarly, for the two-dimensional unitary transformations such as (5.3), (5.4), and
(5.11) to (5.14), it can be proven that ’

53 lu(r, m)ff = 32 ok DF (5.28)

mn=0

Energy Compaction and Variances of Transform Coefficients
y Etﬁ REGAN &

. / :
Most unitary transforms have a tendency.to pack a large fraction of the average

Si.nce the 'total energy is preserved, this means many of the transform coefficients
will contain very little energy. If u, and R, denote the mean and covariance of a
vector u, then the corresponding quantities for the transformed vector v are given

by

w4 E[v] = E[Au] = AE[u] = Ap, (5.29)
R, =E[(v-p)(v— )] ’
=A(E[(u - p)(u—-p)* " DA*T=AR A* (5.30)
“The transform coefficient variances are given by the diagonal elements of R, , that is
‘ o(k) =R, ) = [AR, A* ] & . (5.31)
Since A is unitary, it follows that '
' 4 N-1 ) N-1
L s 5o 230 I (P = s T, = pi TATAp, = 3 i (n)? - (5.32)
et = ! n=0
;Ce} VMQJ& N-1 R N-1
e o ; ! (7) 2 oi(t) = TAR.A"| = THR.] = 3. o%(n) (5.33)
. N-1 N-1 E
> 2 Elv@®=Z Efu(mf] F(5:34)
. = n=0 : :

" The average energy E[[{k)Y] of the transform cocfficients v(k) tends to be un-

evenly distributcd,. although it may be evenly distributed for the input sequence
u(n)..For a two-dimensional random field w(m, n) whose mean is p,(m, n) and
covariance is 7{m, n;m’', n'), its transform coefficients v (k, /) satisfy the properties

ik, 1) = % 2 alk, m)a(l, n)pm, n) - (5.39)

Sec. 5.3 Properties of Unitary Transforms ‘ . 129
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ik, 1= E[v (& 1) = k. DF]

: (5.36)
=33 > alk, mal(l, nyr(m, nym’, n)a*(k,m'ya™ (L n’)
If the covariance of u{m, n) is separable, that is |
r(m,nym', n')=r(m,m"rnn g (5.37)

then the variances of the transform coefficients can be written as a §eparable

product
ok, 1) = gi(k)a3(l)

8 [AR, A*T], JAR; A*T], - (5.38)

where '
R, ={n(m, m')} and R,= {ra(n, n Ot

Decorrelation

hen the input vector elements are highly gﬂdat,@,kmgzm@\mjgcfﬁc%%{;
“tend o be uncorrelated. This means the off-diagonal terms of the covariance jma 19)
R, tend to become small compared to the diagonal elements.

4 -

Tth tespect to the preceding two properties, the KL transform is optimum, .

that is, it packs the maximum average energy in a given number of trax:liic;rﬁ
coeffic;ents while completely, decorrelating them. These properties are prese

greater detail in Section 5.11.

Cther Properties

i i i minant
Unitary transforms have other interesting properties. For e?(ample, Ithe (i}eliez o
and the eigenvalues of a unitary matrix have unity mafgmtud'e. Al Ssp, . emropypis
i . Sinc
i d under a unitary transformation. Si
a random vector is preserve : / rmati yis
me‘easure of average information, this means information is preserved under a_

7
unitary transformation., //)/ _ /12/} 27.’ [ / / f 7
. inl -
2 (E compaction and decorrelation) y / / Ky
Example 5.2 (Energy comp -~ 4 é/” z

A 2 X 1 zero mean vector u is unitarily transformed as

where Rué<:} F{), O'<p<1

(V3,1
V=i <-1 “Val™

The parameter p measures thé correlation between u(0) and u(1).. The covariance of v
- is obtained as

1+ V3pl2 o2 . )
R, = ( pl2 1=V3p2

Fromthe expression for R,,0%(0) = o%(1) = 1, that is, the totazl(averalge ix}gr;/gg zfn 3
i wee However, o2(0) =1+ V3p

is distributed equally between u(0) and ;‘4(1).. R 3

lsz(d;; t——r_l 1u—e\/§p?2. Tie total average energy is still 2, but the average energy tl: e

Gr:aater than in v(1). I p=0.95, then 91.1% of the total average e'nergg @

iacked in the first sample. The correlation between v (0) and v(1) is given by

Chap. 5
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¥

2

nv(0)is

A

!

AEOv(D)] p
,(0,1) 2 = =
PO ) =17
which is less in absolute value than p| for [p| < 1. For p = 0.95, we find p{0,1) =0.83,
Hence the correlation between the transform coefficients has been reduced. If the
foregoing procedure is repeated for the 2 X 2 transform A of Example 5.1, then we find
ol0)=1+p,0%(1) =1~ p, and p,(0, 1) = 0. For p = 0.95, now 97.5% of the energy is

packed in v(0). Moreover, v(0) and v(lw., B -
) &
4 SR e LM/?& /4{/7’3

, .. e
5.4 THE ONE-DIMENSIONAL DISCRETE Paonge  Por ﬁ/r (ol )% ;?Z? s
FOURIER TRANSFORM (DFT) PR i v Desioidelp
JOUSS EY T oreaDas
The discrete Fourier transform (DFT) of a sequence {u(n),n =0,...,N —1} is
defined as ’ . ‘
N-1 )
vK)= 2 u(mW¥, k=0,1,... N-1 (5.39)
n=0 . . -
where '
Wy A exp{—————;\%w} ' (5.40)

The inverse transform is given by

N-1
u) =y S vOWF,  n=01,...,N-1 (5.41)

The pair of equations (5.39) and (5.41) are not scaled properly to be unitary

transformations. In image processing it is more convenient to consider the unitary
DFT, which is defined as

’ v(k)=\—/1_xl 2 W)W,  k=0,...

,N—-1 (5.42)
1 N-1
u(my=—= 2 v()Wi*, n=0,... N-1. (5.43)
N k=0 )
The N X N unitary DFT matrix F is given by
‘ F={\—/1_NW§"}, 0skn=N-1 ©(5.44)
N Future references to DFT and unitary DFT will imply the definitions of {5.39) and

(5.42), respectively. The DFT is one of the most important transforms in digital
* signal and image processing. It has several properties that make it attractive for -
image processing applications.

Properties of the DFT, /Uﬁ_itary DFT

Let u(n) be an érbitréry sequence defined for n.=0,1,...,N — 1. A circulat shift

of u(n) by /, denoted by u(n — I)c, is defined as u[(n — ) modulo N]. See Fig. 5.3
forl=2,N =35, ;

-Sec. 5.4
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. I

S 1

win) ul{n — 2) modulo 6] . ‘ > v(ﬁ——k>=v* (ﬁ-}-k)’ | k=0’_”,

2 2 2
[It‘_u '

N_, i
71 (5.49)

B B > pE-0=p @ 550

Figure 5.4 shows a 256-sample scan line of an image. The magnitude of its' DFT is

12 3 4 in Fi
shown in Fig. 5.5, which exhibits symmetr, i i
. . ) wn : y about the point 128. If we consider t
n—> Figure 5.3 erculaf shift of u(n) by 2. periodic extension of v (k), we see that er the

v(=k)y=v(N-k) "

£

n-——>

The DFT and Unitary DFT matrices are symmetric. By definition the
- matrix F is symmetric. Therefore, '

Fl=F* (5.45) .

The extensions are periodic.  The extensions of the DFT and unitary DFT
of a sequence and their inverse transforms are periodic with period N. If for
example, in the definition of (5.42) we let k take all integer values, then the
sequence v (k) turns out to be periodic, that is, v (k) = v (k + N for every k.
unj.

The DFT is the sampled spectrum of the finite sequence u (n) extended “
_ by zeros outside the interval [0, N —1]. Ifwe define a zero-extended sequence

a(n)é{u(n), 0=n=N-1 (5.46)

o ! 1 1 i 1 : ,
_ . . ) , 0 50 100 150 ; |
then its Fourier transform is _ . 200 250
@ N—-1 . In-———-—% n

Ow)y= 2 i(n) exp(—jwn)= 2 u(n) exp(~jon) (5.47)'

= n=0

0, otherwise

Figure 54 A 256-sample scan line of an i
image. . a8

Comparing this with (5.39) we see that

v =0/(2%) EERCEON b

Note that the unitary DET of (5.42) would be U (2mk/N)/VN. ' 1 o R ,

" The DFT and unitary DFT of dimension N can be implemented by a fast vik) ’ i

algorithm in O(N log, N) operations. = There exists a class of algorithms, called 2k
*the fast Fourier transform (FFT), which requires O (N log, N) operations for imple- . . v -
menting the DFT or unitary DFT, where one operation is a real multiplication and a. : ' - ‘ i
real addition. The exact-operation count depends on N as well as the particular i :
choice of the algorithm in that class. Most common FFT algorithms require N =27, '

where p is a positive integer.

i The DFT or unitary DFT of a real sequence {x(n),n =0,...,N—1}is
] conjugate symmetric about N/2. From (5.42) we obtain :
2

& Nil Nil : 0 50 100 150 200 250
V(N =K)y= 3 ()W = 2 u(m)Wx=v(k ’ . : . ' ) ) )
( ) ot ( ) N = ( ) N ( ) . » . Figure 5.5 Unitary disc.ite Fourier
e —_’rr/——- £ K e - transform of Fig. 5.4.
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itary e ies- ( k=0;...,N2~1 are simply the
Jence the (unitary) DFT frequencies N2+ k, k=0, ; ) L
i)eL;;t?ve f;équenci)e)s at w = (2w/N)(=N/2 + k) in the Fourier spectrum of the fm;re
sec‘;uence {u(n),0=n <N —1}. Also, from (5.39) and (5.49), we see that v(0) and
v(N/2) are real, so that the N X 1 real sequence

v (0), {Re{v(k)},k =1,... ,%— 1},{Im{v(k)},k -1, = ,%— 1},v (—g—’) (5.51)

i ¢ Therefore, it can be said that
completely defines the DFT of the real sequence u(n). ,
the BFT gr unitary DFT of an N X 1 real sequence has N degrees of frgedom and

requires the same storage capacity as the sequence itself.

The basis vectors of the unitary DFT are the orthonormal eigenvgctors
of any circulant matrix. Moreover, the eigenvalues of a cnrcul.ant matrix are
given by the DFT of its first column. Let H be an N X N circulant matrix.

Therefore, its elements satisfy z |
. [H],»=h(m —n) =h[(m —n) modulo N},

. r_ .
The basis vectors of the unitary DFT are columns of F** =F~, that is,

0=mn=N-1.(552)

j e v :
¢k={71_1\—]W;,"",OSnSN,~1}, k=0 N-1 (3

Consider the expression

N-1 )
(Bl = S hlm = mWi (5.54)
n=0
Writing m — n =/ and rearranging terms, we can write
N-1 -1 N-1
=Ly g: ROWE— S ROWE]  (5.59)
e LI R

Using (5.52) and the fact that Wy'= W}~ (since. WY =1), the second and third
terms in the brackets cancel, giving the desired eigenvalue equation

[H¢k]m = N i(m)

or .

}hbkz:Akd% (S.J6)
where A, , the eigenvalues of H, are defined as
' N-1 S . v
NAS hWH,  0sk=N-1 | (5.57)
A
This is simply the DFT of the first column of H. -

“Based or the preceding properties of the DFT, the following'ad_ditional
properties can be proven (Problem 5.9). :

Circular convolution theorem.  The DFT of the circular convo tion of two
sequences is equal to the product of their DFTSs, thatis, if i )

image Transforms Chap. 5
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The two-dimensional DFT of an-N X N image {u(m, n)} is a separat

Xo(n) = Nz_lh(n = k) xy(k), O=n=N-1 (5.58)
k=0
then '
DFT{y(n)}v = DFT{h (n)hy DET{xy(n)} (5.59)

where DFT{x (n)}y denotes the DFT of the sequence x(r) of size N. This means we
can calculate the circular convolution by first calculating the DFT of x,(n) via (5.59)
and then taking its inverse DFT. Using the FFT this will take O(N log, N) oper-
ations, compared to N? operations required for direct evaluation of (5.58).

A linear convolution of two sequences can also be obtained via the FFT
by imbedding it into a circular convolution. In general, the linear convolution
of two sequences {h{n),n =0,..:,N' =1} and {x,(n),n =0,... N— 1} is a se-
quence {x,(n),0=n =< N'+ N — 2} and can be obtained by the following algorithm:

Step 1: Let M = N’ + N — 1 be an integer for which an FFT élgorithm is available.

Step 2: Define A (n) and %,(n),0=n <M —1, as zero extended sequences corre-
sponding'to 4 () and x,(n), respectively.

 Step3: Let 1(k) = DFT{E(m)h M =DFT{h(n)}y. Define jo(k) =M yi(k), k =

0,...,M~-1. ) .
Step 4: Take the inverse DFT of $2(k) to obtain #,(n). Then x2(n) = %,(n) for
O=n=N+N'—-2. - ’ ’
Any circulant matrix can be diagonalized by the DFT/unitary DFT.
That is, .

where A =Diag{\,,0=k <N ~ 1} and X, are given by (5.57). It follows that if
C, C; and C, are circulant matrices, then the following hold.

1. C,C,=C,C,, thatis, circulant matrices commute.
2. C'is a circulant matrix and can be computed in O(N log N} operations.

3. C7, C,+Cy, and £(C) are all circulant matrices, whére f(x) is an arbitrary
function of x.

55 THE TWO-DIMENSIONAL DFT o >

definedas . .. :
’ N-1N-1 - . ) .
vik,)=2 3 u(m, nWEWS,  O0skisN-1 (5.61)
m=0n=0 : .
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and the inverse transform is

N-1N~1

S 2 vk DWW,
k=0 (=0

. 1 dSm,ﬂ =N-1
u(m, n)=7v-g

-di i nitary DFT pair is defined as
The two-dimensional u itary D p

V(k’l)=1%m§0n§0u(m’n)wg‘vmwx£’ Osk)lsN_l
| N=~1N-1 .
—km y7=In = -1
wmm =13 S o nwim Wi, 0=mnsN

In matrix notation this becomes
V=FUF

(5.62)

(5.63)

(5.64)

(5.65)

4
- : ' ’
’ T {c} agnitud;' e {d) magnitude centered. o
C) m: :
Figure 5.6 Two-dimensional unitary DFT of a 256 X 256 image.
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S

Figure 5.7 Unitary DFT of images

(a) Resolution chart;

(b) its DFT;

(c) binary image;

(d) its DFT. The two parallel lines are due
to-the '/’ sign in the binary image.

o A B e il T

U=F*VF* (5.66)
If U and V are mapped into row-ordered vectors « and o, respectively, then
o=Fu, w=F*p . (5.67)
F=FRF (5.68)
The N* x N” matrix & represents the N X N two-dimensional unitary DFT. Figure
5.6 shows an original image and the magnitude and phase components of its unitary
DFT. Figure 5.7 shows magnitudes of the unitary DFTs of two other images.
Properties of the Two-Dimensicnal DFT

The properties of the two-dimensional ynjtary DFT are quite similar to the one-
dimensional case and are summarized next,

Symmetric, unitary.

F'=F, Fl=gF* =Rl (5.69)°

Periodic extensions.
vk + N, I+N)=v(k 1), VkI
u(m +tN,n+N)=u(m,n), Ym, n

* (5.70)

Sampled Fourier spectrum. If ii(m, n) = u(m,n),0 sm,n=<N—1, and
i(m, n) = 0 otherwise, then , » :

7 (Z”_Nk ZT“’) = DET{u(m, n)} = v(k, 1) )

where U (w1, w,) is the Fourier transform of i (m,n).
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Since the two-dimensional DFT is geparable, the tr;n;;
formation of (5.65) is equivalent to 2N one-dix.nensanal umtary}?F’fg;:cmtal
which can be performed in O (N log, N) operations via the FFT. Hen

number of operations is O (N 1og: V). |
Conjugate symmetry. The DFT and unitary DFT of real images exhibit
conjugate symmetry, that is,
N

v(—ZYtk,%,tl)=v*<N2—$k,-1§-T-l), 0ski=8-1 | (.72)

.Fast transform.

or

vk ) =v*(N-kN=1I),  0ski=N-1  (573)

is, 1 ly N? independent real elements. For
this, it can be shown that v (%, [) has on y ‘ ; ,
S)Icﬁplel Stlie samples in the shaded region of Fig. 5.8 determine the complete DFT

or unitary DFT (see problem 5.10).

Basis images. The basis images are given by definition [see (5.16) and
(5.53)]:

| R — < =N-1}, 0sklil=N-1 ~ (5.74)
A:1=¢k¢lT=jV‘{WN( ,  O0=mn } |
Two-dimensional circular convolution‘ theorem. The I')I;)TF;‘f the two-
dimensional circular convolution of two arrays is the product of their i s. 2 and
Two-dimensional circular convolution of two N X N arrays (m,

w,(m, n) is defined as

N—-1N-1 . , _ ) ‘
uy(m, n) = S T h(m-m',n—n)um(m’,n’), 0=mnsN-1 (5.75)
m=0n'=0 . . .

where !

h(m, n). = h(m modulo N, n modulo N ) (5.76)

k . |
SN2 - 17(
' N/2
i ier transform
Figure 5.8 Discrete Fourier i
coefficients v(k, I) in the sh?(%ed ?rea de
n termine the remaining coefficients.

Image Transforms
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N =1 o e sy uy (m, n}

! '
. - - 1
) W 2
Alm,n)=0

bim = m',n - a),

o~ us(m', n')
_ hlm, n)#0 \
M-1 o - i
7 E !
m E{ 2 '
TR <

{b} Circular convolution of
him, n) with u, (m, n}
over N X N region.

{a) Array Aim, n).

Figure 5.9 Two-dimensional circular convolution.

Figure 5.9 shows the meaning of circular convolution. Itis the same when a periodic
extension of k(m, n) is convolved over an N x N region with w;(m, n). The two-
dimensional DFT of 2(m —m', n —n’), for fixed m’, n' is given by
N-1IN~1 N-l-m'N~-1~-n'
Z 2 him—m',n—n) Wik =g S R(, j)e WD,
m=0n=0 i=-m' j=-n'
) N-1N-1 !
=WEE D Z 3 hm WD . (5.77)
m=0n=0

=W "D DFT{h (m, n)}y
where we have used (5.76). Taking the DFT of both sides of (5.75) and using the

preceding result, we obtain'

DFT{u;(m, n)}x = DFT{h (m, n)ly DFT{uy(m, n)}y (5.78)

From this and the fas} transform property (page 142), it follows that an N X N
circular convolution can be performed in O {N? log, N) operations. This property is
also useful in calculafing two-dimensional convolutions such as
. M-1M-1
x(mny= 2 X xm-m',n—n x(m’, n’) . (5.79)
m =0n'=0 .

where x;(m, n) and x,(m, n) are assumed to be zero for m,n &[0,M ~1). The
region of support for the result x;(m, n)is{0=m,n <2M —2}. Let N =2M —1 and

. define N x N arrays 4
h(m, n)é{"z‘m’”)' Om,n=M-1 (5.80)
. , otherwise
dy(m, n) & {xl(’”’ n) 0=mn=M-1 (5.81)
s otherwise

'We denote DFT{x (m, n)}y as the two-dimensional DFT of an N X N array x(h, n),0smn=N-1.
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Evaluating the circular convolution of /i(m, n) and &(m, n) according to (5.75), it
can be seen with the aid of Fig. 5.9 that o
xi(m, n)y=u(m,n), 0=mn=2M - 2 ' (5.82)

This means the two-dimensional linear convolution of (5.79) can be performed in
O(N? log, N) operations.

Block circulant operations. Dividing bothi sides of (5.77) by N and using
the definition of Kronecker product, we obtain

FRFI =D FRF) (5.83)
where S is doubly circulant and & is diagonal whose elements are given by
[@]kwﬁ,mwédk,'l=DFT{h(m, mivs OSk, I=sN-1 (5.84)

Eqn. (5.83) can be written as
FH=PF or FHAT*=D . (5.85)

that is, a doubly block circulant matrix is diagonalized by the two-dimensional
unitary DFT. From (5.84) and the fast transform property (page 142), we conclude
that a doubly block circulant matrix can be diagonalized in O(N? log; N) opera-
“‘tions. The eigenvalues of 9T, given oy the two-dimensional DFT of & (m, n), are the
same as operating N on the first column of . This is because the elements of the
first column of 7 are the elements & (m, n) mapped by lexicographic ordering.

Block Toeplitz operations. Our discussion on linear convolution implies
that any doubly block Toeplitz matrix operation can be imbedded into a double’
block circulant operation, which, in turn, can be implemented using the two-

dimensional unitary DFT.

. 5.6 THE COSINE TRANSFORM

The N X N cosine transform matrix C = {c(k, n)}, also called the discrete cc;sine
transform (DCT), is defined as

1 ,
= \/12 ’ - : k=0,0sn=N-1 536
\/:1\:1005_—_27’\7——’, 1=k=N-1,0=n=N-1- .
The one-dimensional DCT of a sequence {1 (n),0=<n <N — 1}is defined as
v(k) = (k) Ni:u(n) o TEADE]  gsk=N-1 (8D
where :
a(O)-A_-\/% ' a(k)é'\/]% for 1sk=N-1 " (5.88)
150 Image Transforms . Chap. 5

822 -

633

443 =

-314 b

1 50 100 150 200 250

. Figure 5.10 Cosine transform of the im-
i age scan line shown in Fig. 5.4.

The inverse transformation is given by

u()= T ok (k) cos| T2+ Lk 1)"],' Osn=N-1 (589

Th; basis vectors of th? 8 x 8 DCT are shown in Fig. 5.1. Figure 5.10 shows the
ggzlfx;i it;:a?sform of tll;e image scan line shown in Fig. 5.4. Note that many transform
nts are small, that is, most i i
tstonts are small ost of the energy of the data is packed in a few
Ao A’{h_e Ctx;_vrcl)—zisinlxi;xsior;al(s clozs)ine transform pair is obtained by substituting

=A"= -11) and (5.12). The basis images of the 8 X 8 two-di i
cosine transform are shown in Fig. 5.2. Fi " lmeﬂSlO{lal
Cranstorm of difienent meanes g . Figure 5.11 s}how5 examples of the cosine

Properties of the Cosine Transforﬁ.

1. The cosine transform is real and orthogonal, that is, '
C=C* >C'=r - (5.90)

2. The cosine transform is not the re ; i
; _ al part of the unitary DFT. This can be seei
gz' inspection of C and the DFT matrix F. (Also see Problem 5.13.) Howes\?::]
e cosine transform of a sequence is related to the DFT of its symmet ic
extension (see Problem 5.16). ‘ et
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{a) Cosine transform examples of monochrome im-

SN 770,
NN /////%

N\
N

e

'y

¥

! .
{b) Cosine transform examples of binary images.

ages;-. !
Figure 5.11

3. The cosine transform is a fast transform. The cosine Fransfc?rm ofa vector of N
elements can be calculated in O(N log, N) operations via an N-point FFT
'[19]. To show this we define a new sequence & (n) by reordering the even and

odd elements of u(n) as |
_ Em=u@n) | gep= (%) -1 (5.91)
AN -n-1)=un+1)

wa, we split the summation term in (5.87) into even and odd terms and use

(5.91) to obtain :
. (N~ 1 4n + 1)k
v (k) =a(k)[ go u{2n) cos[“_(_zz_v_l_}
)~ 3 k
R |
E n=0

= a(k){[(N%; 1 u(n) cos[g(-{‘fm:—%]

Y aw-n -y _cos[———*f(4”2 L ”

Changing the index of summation in the second term to n' =N —n — 1 and
combining terms, we obtain :

w(4n + Dk ]

v (k) = a(k) Aéo ‘1('?) COS[ N (5.92)

152 _ ) " Image Transforms Chap..fi

= Re[a(k)e—iﬂm NE:I i (n)e—izﬂk"W] = Re[a(k) W DFT{i (n)h]

which proves the previously stated result. For inverse cosine transform we
write (5.89) for even data points as

N-1 -
u(2n) =i(2n) A Re[ > [a(k)v(k)ehm]eﬂm“"},
Lo (5.93)
N
O=n= (2) 1
The odd data points are obtained by noting that
u@n+1)=4R2(N-1-n)], O=n= (—ZY) -1 (5.0

Therefore, if we calculate the N-point inverse FFT of the sequence
! a(k)v(k) exp(jwk/2N), we can also obtain the inverse DCT in O(N logN)
~ operations. Direct algorithms that do not require FFT as an intermediate step,
so that complex arithmetic is avoided, are also possible [18]. The computa-
tional complexity of the direct as well as the FFT based methods is about the
' same. }
4. The cosine transform has excellent energy compaction for highly correlated
data. This is due to the following properties.
5. The basis vectors of the cosine transform (that is, rows of C) are the eigen-
vectors of the symmetric tridiagonal matrix Q, , defined as.

l-a —a 0

0.= _: 1\\\ _ | (5."95)

The proof is left as an exercise. .
"6, The N X N cosine transform is very close to the KL transform of a first-order
stationary Markov sequence of length N whose covariance matrix is given by
. (2.68) when the correlation parameter p is close to 1. The reason is that R™! is
a symmetric tridiagonal matrix, which for a scalar 24 (1—p?/(1 + p*.and
@ 2 p/(1 + p?) satisfies the relation v

—a l1-a

. ! o 1 “-pa —a 0‘ .
, e ] - »
Bt s I \ - (5.96)
. \\ 1 - .
0 —a 1-pa
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This gives the approximation )
- p*R'=Q, for p=1
s of Q., that is, the cosine
nsidered in greater depth in

(5.97)

Hence the eigenvectors of R and the eigenvector
transtorm, will be quite close. These aspects are €O
Section 5.12 on sinusoidal transforms.

7 i i ith the fact that it is a fast
This property of the cosine transform together wit )
' {\transfimﬁ has made it a useful substitute for the KL transform of highly

] e
correlated first-order Markov sequences.

5.7 THE SINE TRANSFORM

The N X N sine transform matrix ¥ = {yi(k, n)}, also called the fii“‘r'et&‘___'ﬂﬂ_&_m_

form (DST), is defined as

/ k+Dn+1) I
q;(k,n):\’Nilsinw( Nl('; ) osknsN-1  (598)

dimensional sequences is defined as

The sine transform pair of one-

PR Cak+ Dn +1) N
v(k) = N%ngou(n)sgx.i-ﬁﬁ——, 0=k=<N-1 (5.99)

oo kD B

u(n) = N2+ L 2 v® sin—(—W):(-l———-)j, 0<n=N-1 (5.100)

The two-dimensional sine transform pair for N XN 'images is obtained b.y

substituting A= A" = AT = in (5.11) and (5.12). The basis vectors and the l?asxs

images of the sine transform are shown in FxgsSl and 5.2. Figure 5.12 §how> the

sine transform of a 255 x 255 image. Once again it1s seen that a large fraction of the
total energy is concentrated in a few transform coefficients.

5 Properties of the Sine Transform

‘1. The sine transform is real, symmetric, and orthogonal, that is, ‘
' T ==Y = (5.101)

Thus, the forward and inverse sine transforms are identical.

Figure 5.12  Sine transfprm of a 255%
255 portion of the 256 X 256 image shown

in Fig. 5.6a.
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2. The sine transform is not the imaginary part of the unitary DFT. The sine
transform of a sequence is related to the DFT of its antisymmetric extension
{sce Problem 5.16). !

3. The sine transform is a fast transform. The sine transform (or its inverse) of a

vector of N elements can be calculated in O(N log; N) operations via a
2(N + 1)-point FFT.
Typically this requires N + 1=2?, that is, the fast sine transform is usually
defined for N =3, 7, 15, 31, 63, 255, . . . . Fast sine transform algorithms that
tdo not require complex arithmetic (or the FFT) are also possible. In fact, these
algorithms are somewhat faster than the FFT and the fast cosine transform
algorithms [20]. '

4. The basis vectors of the sine transform are the eigenvectors of the symmetric
tridiagonal Toeplitz matrix ' .

[ 1 —(x\():l N
Q=|~a —a 5.102
NG RRCATE)

5. The sine transform is close to the KL transform of first order: stationary

Markov sequences, whose covariance matrix is given in (2.68), when the

%Q:correlation parameter p-lies in the interval (—0.5,0.5). In general it has very
'+ -; good to excellent energy compaction property for images. )

6. The sine transform leads to a fast KL transform algorithm for Markov se-
quences, whose boundary values are given.. This makes it useful in many
image processing problems. Details are considered in greater depth in
Chapter 6 (Sections 6.5 and 6.9) and Chapter 11 (Section 11.5). -

5.8 THE HADAMARD TRANSFORM

Unlike the previously discussed transforms, the elements of the basis vectors of the
Hadamard transform take only the binary values =1 and are, therefore, well suited
for digital signal processing. The Hadamard transform matrices, H,, are N X N
matrices, where N22", n =1,2,3. These can be easily generated by the core
matrix '

-1t ]

== (1 B  Gam)

and the Kronecker product recursion Y

 _1(H., H
H,=H,- . ®@H=H,®H,_,=—= (" ol .
1QH=H® k \/E(Hm —H,._1> : (5.104)
As an example, for # = 3, the.Hadamard matrix becomes

H=H®H . (5.105)
H,=H,®H, (5.106)
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- which gives
Sequency
- &
o1 1.1 41 1 1.1 0
1 -1 1—1.'1—'1 1 -17- 7
1 01-1-1 11—1-} i g
e =1 =1- -1 -1
IR St Nt (5107
R T S B A s ;
1-1.,1-1 -1 1-1 1 6
1 1-1-1 1-1-1 1 1 2
1-1-1 1 -1 1 110 s

The basis vectors of the Hadamiard transform can also be gf:nerated by samg.lm%g‘
class of functions called the Walsh_functions. These functions also takef vomyﬁ;) 1c
‘binary values =1 and form a complete orthonormal basis for square integrable

functions. For this reason the Hadamard transform just defined is also called the

Ish-Hadamard transform. . . ’ -
e The number of zero crossings of a Walsh function or the number of transitions.

in a basis vector of the Hadamard transform is&aucdﬁfs_sfquwax. ch;?gl;h;;t f}(:;
i i i \ fined in terms of the zero crossings.

nusoidal signals, frequency can be de : i
i—lladamard n%atrix generated via (5.104), the row vectors are not sequency zrde{;‘:}?'
The existing sequency order of these vectors i_s called the Hadamard order. The
Hadamard transform of an N X 1 vector u1s written as

v=Hu o ' (5.108)
and the inverse transform is given by v
u=Hv . (5.109)
where H 4 H,,n =log, N. In series form the transform pair becomes
4 N-1
1 _1pem Q=K =N-1 (5.110)
=—= u(n)(—1) , 0
v =5 Z )
; N-1
1 A(~1)6m,  0=m<=N-1 .111)
(m) =—== 2, v{k)}(—1) , 0=m
u(m) == 2 VIR |
where ]
: n—1 g )
bk, )= 2 kimi;  ki,mi=0,1 . (5.112)
T =0

and {k} {m} are the binary representations of k and m, respectively, that is,
k=kot 2k + o 2 ks }

(5.113)
m=me+2m+ o +20ma

. . . ined by
Th i i for N X N images is obtained b;

two-dimensional Hadamard transform pair 1or . . el
subestivtvuotinlomA= A* = AT=H in (5.11fand (5.12). The basis vectors an@ the basis

ap. 5
image Transforms ‘Ch_.,ﬁ.
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(a) Hadamard transforms of monochrome images. (b) Hadamard transforms of binary images.

Figure 5.13 Examples of Hadamard transforms.

images of the Hadamard transform are shown in Figs. 5.1 and 5.2. Examples of
two-dimensional Hadamard transforms of images are shown in Fig. 5.13.

Properties of the Hadamard Transform

1. The Hadamard transform H is real, symmetric, and orthogonal, that s, '

H=H*=HT=H" - (5.114)

L 2. The Hadamard transform is a fast transform. The one-dimensional trans-.

formation of (5.108) can be implemented in O (N log, N) additions and sub-
tractions. , ' o '

. Since the Hadamard transform contains only *1 values, no multiplica-

tions are required in the transform calculations. Moreover, the number of

additions or subtractions required can be reduced from N 1o about N log, V.

This is due to the fact that H, can be written as a product of  sparse matrices,

.. thatis,
. H=H,=H, n=logN T (5.115)
where . oL “ :
. { | s — : .
' S T Lo
001 100 . ~ Tows
‘ 0.0 f 1 1 1
~A 1
HE— |-— - . © (5.116)
\/i 1 =1-07 0 f :
0 _ ‘
? : 11 N
: I — rows
0o o 1=t (A

157




s g S g R

Since H contains only two nonzero terins per row, ihe transformation

v=Rru=d.. i, n=lopN (5.117)

iH .,
lAgan
aerms
can be accomplished by operating H 7 times on u. Due to the structure of K
only N additions or subtractions are required each time H operates on a
vector giving a total of Nn = N log. N additions or subtractions.
’ . .
The natural order of the Hadamard transform coefficients turns out to be

¢qual to the bit reversed gray code representation of its sequency s. If the .

sequency s has the binary representation_b,. bp-1...by and if thg correspond-
ing gray code is g.g«-1. - - &1, then the bit-reversed repg‘esentatlon 8182 - - &n
gives the natural order. Table 5.1 shows the conversion of sequency s t0
natural order A, and vice versa, for N = 8. In géneral,

gksbk@bkn, 1c=1,...,n~1 ' _
& =ba (5.118)
M= gn-k+1

and
gk=hn—k+l A )
bi=g®bx1, k=n-1,...,1 (5.119)
b, = g,

give the forward and reverse conversion {formulas for the sequency and natural
ordering. o
The Hadamard transform has good to ve .energy;gompactxgu.jm
highly correlated images. Let {u(n),0=n =N~ 1} be a stationary random
e e e ) .

TABLE 5.1 Natural Ordering versus Sequency Ordering of Hadamard

Transform Coefficienis for ¥ =8

Gray code of 5
or )
: Binary reverse binary Sequency binary
Natural order  representation  representation representation Sequency

h hsho 838281 =izl bsb by s
0 000 ©. 000 = 000 -0

1 001 » 100 111 7
2 010 - 010 011 3
3 011 116 100 4
4 100 oot - 601 1
5 101 101 110 ]
6 110 011 010 2
7 1i1 111 101 5
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@ Example 5.3

5.9 THE HAAR TRANSFORM

sequence with autocorrelation r(n),0sn =N — 1. The fraction of the ex-
pected energy packed in the first N/2’ sequency crdered Hadamard transform

coefficients is given by [23] '

-1
/=1 k r(k)}
By ’ 1+2 2, <l - —*)-——-
Ny A = Di [ kg‘ 27 r(0)
6’(5) =N = — (5.120)
Z D
={
DA [HRH], - RE{r(m - n} . (5.121)

where Dy are the first N/2/ sequeney ordered elements Dy
are simply the mean square values of t

significance of this result is that & (N/2) depends on the first 2 auto-
correlations only. For j =1, the fractional energy packed in the first N/2
scquency ordered coefficients will be {1+ r(1)/r(0)/2 and depends only upon
the one-step correlation p a 7(1)/r(0). Thus for p=0.95, 97.5% of the total
energy is concentrated in half of the transform coefficients. The result of

(5.120) is useful in calculating the energy compaction efficiency of the
Hadamard transform. '

. Note that the D,

Consider the covariarice matrix R of (2.68) for N = 4. Using the definition of H, we
obiain . ‘ ’ :

Sequency

4+ 6p + 4p* + 2p° 0 0
4—6p +4p*—2p° 3
4+2p~4p7~2p? 11
2

4—2p—4p* + 2p°

D = diagonal [H, RH,] =}
0

This gives D¢ = Do, Dj = D,, D}= D5, D} =D, and

)
4

N 1<, 1 S~ 1+
o(i>=Zk§-:oDk=1—6(4+6p+4p2+2p3+4+2p-—4p2—2p’)=_._§ 29)

as expected according to (5.120).

- The Haar functions &, (x) are defined on a continuous interval, x € [0, 1], and for

k=0,..v‘,N~—1,whereN=2’5

. Sec.5.9

« The integer & can be uniquely decomposed as

k=Z+q-1 (5.122)
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§

where0=p=n—~1;4=0,1forp = Oand1<q <2"forp #0. Forexample when
N =4, we have

kio123

plo o 11

0112

-

Representing k by (p, ¢), the Haar functions are defined as

ho(x)éhﬂ,o(x)=\/il_v . xelo1]. (5.123a)
- 1
e g 11 = <q2p 2

I (x) q(x) \/N —2en qu 12, <% (5.123b)

0, otherwise for x € [0 1]

The Haar transform is obtained by letting x take discrete values at m/N, m =0,

., N — 1. For N =8, the Haar transform is given by

Sequency

1 1 1 11 1 1 1] o0

1 1 1 1-1-1 -1 -1 1

V2 V2 -VZ V3 vg \/9 \/9 \/(_) 2

_ 1 0 0 0 0V2V2-V2-\V2 2

== 122 o0 o000 o0 of 2 G129

00 2 -2 0 0 0 0 2

0 0 0 0 2-2 0 0] 2

L0 0 0 0 0 0- 2 =21 2

The basis vectors and the basis images of the Haar transform are shown in Figs. 5.1
and 5.2. An example of the Haar transform of an image is shown in Fig. 5.14. From
the structure of Hr [see (5.124)] we see that the Haar transform takes differences of
the samples or differences of local averages of the samples of the input vector.
Hence the two-dimensional” Haar transform coefficients y(k;[), except for
k =1 =0, are the differences along rows and columns of the local averages of pixels
in the image. These are manifested as several “edge extractions” of the orxgmal
image, as is evident from Fig. 5.14.

Although some work has been done for using the Haar transform in image

data compression problems, its full potential in feature extraction and image anal- .

ysis problems has not been determined.
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Figure 5.15 Slant transform of the 256 X 256
image shown in Fig. 5.6a.

Figure 5.14 Haar transform of the 256 X 256
image shown in Fig. 5.6a.

Properties of the Haar Transform

1. The Haar transform is real and orthogonal. Therefore,
Hr = Hr*

Hr'=Hr" (5.125)
2. The Haar transform is a very fast transform. On an N X 1 vector it can be
implemented in O (N) operations.
3. The basis vectors of the Haar matrix are sequency ordered.
4. The Haar transform has poor energy compaction for images.

5.10 THE SLANT TRANSFORM

The N X N Slant transform matrices are defined by the recursion

1 0| 1 ol ar |
| o | I o |
an byl } Y {
| I I I_.____}__.__ S
* 0 | vy -2 I 0 | Ty -2 | ,
1 .
S, =—= I | | (5.126)
A2 )N N I N RO | ST N S
0 1| |0 -1 | |
10 | o 0 | Sui|
_b,, a,,,l l bn anh ' ' ,
PRI SR SRS SR
TV ] 0 e 1
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where N = 2", 1, denotes an M x M identity matrix, and

=L 1 : e
. 5 =5 [1 r-l] ‘ (5.127)
The parameters a, and b, are defined by the recursions
=) @ 1}‘ (5.128)
a,=2b, @y~
which solve to give'
3N? ”n (N-1 n . ‘
a,.+x=(m7_—‘1') s b= m‘;:’l' ;. N=2 - (5.129)
Using these formulas, the 4 X 4 Slant transformation matrix is obtained as
Sequency
1 1 1 1 0
3 _1 -t =3 1
1 V5 V5 V5 VS ('5 130)
$:=3 1 -1 -1 1 2 :
1 =3 3 -1 3
V5 V5 V5 V5 : .

Figure 5.1 shows the basis vectors of the 8 X 8 Slant transform. Figure 5.2 shows the
basis images of the 8 X 8 two dimensional Slant transform. Figure 5.15 shows the

Slant transform of a 256 x 256 image. v :

Properties of the Slant Transform

1. The Slant transform is real and orthogonal. Therefore,

§=5 S'=8T , (.131)

3. The Slant transform is a fast transform, which can be implemented in
O(N log; N) operations on an N X 1 vector. ’

3. It has very.good to excellent energy compaction for images.

4, The basis vectors of the Slant transform matrix S are not sequency ordered for
n=3. If 8,_, is sequency ordered, the ith row sequency of S, is given as
follows. E :

i=0, sequency=0

. i=1, sequency = 1
. _N : . 2i, i = even
25‘15—5—' i, . sequency=-{2i+1’ i =odd -
z=%,' sequency = 2

162 . . : ~ Image Transforms Chap. 5

i=%+ 1, = sequency =3

Z

2 i——)+l, i = even

N ) : 2
3+251.<.N—1, sequency = .
, N ,
2(1—7), i = odd

5.11 THE KL TRANSFORM

The KL transform was originally introduced as a series expansion for continuous

random processes by Karhunen [27] and Loeve [28]. For random sequences Hotel- .

ling [26] first studied what was called a method of principal components, which is
the discrete equivalent of the KL series expansion. Consequently, the KL transform
is also called the Hotelling transform or the method of principal components.

For a real N X 1 random vector u, the basis vectors of the KL transform (see
Section 2.9) are given by the orthonormalized eigenvectors of its autocorrelation
matrix R, that is,

R, = My, 0=k=N-1 (5.132)
The KL transform of u is defined as .
. v=0"u %ﬁwﬁg A (5.133)
and the jnverse transform is ' /N% B — Bj',ﬂ,rs i
u=dv= kzov(k)q;k (5.134)

where &, is the kth column of ®. From (2.44) we know @ reduces R to its diagonal |

form, that is, .
®*TR® = A = Diag{\;} (5.135)

We often work with the covariance matrix rather than thé autocorrelation
matrix. With p 2 E[u], then ‘
R, 4 covfu] A E[(u - p)(u— p)"] = E[m"] - pp” =R~ pp”  (5.136)

If the vector g is known, then the eigenmatrix of Ry determines the KL

transform of the zero mean random process u — . In general, the KL transform of
v and u — p need not be identical.

Note that whereas the image transforms considered earlier were functionally -
" independent of the data, the KL transform depends on the (second-order) statisti
—

_of the data. » W7,

.. Example 5.4 (KL Transform of Markov-1 Sequences)

- The covariance matrix of a zero mean Markov sequence of N elements is given by
(2.68). Its eigenvalues A, and the eigenvectors ¢ are given by '
. - g . o

A S———i—e
, 1~2p cosawy +p?
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& (m) = b(ri, k) ' (5.137)
' v N1y (kD
=( ) sin (l)k(m+1_— +-—T—, OSm,kSN"l
N + A -2
" where the {w,} are the positive roots of the equation .
S
tan(Nw) = ——G g sine Neven (5.138)

cosw—2p+p® cosw’

A similar result holds when N is odd. This is a transcendental equation that gives rise to
nonharmonic sinusoids & (m). Figure 5.1 shows the basis vectors of this 8 X8 I$L
transform for p = 0.95. Note the basis vectors of the KLT and the DCT are quite

similar. Because d (m) are nonharmonic, a fast ?lgg yrithm for this transform does not

exist. Also note, the KL transform matrix is ®7 = {d(k , m)}.

Example 5.5 p

Since the unitary DFT reduces any circulant matrix to a diagonal form, it is the KI1.

transform of all random sequences with circulant autacorrelation matrices, that is, for
all periodic equenees. ]
The DCT is the KL transform of a random sequence whose au(ocorrel.atlofl
matrix R commutes with Q, of (5.95) (that is, if RQ. = Q:R). Simlla.rly, the DST is t.he
KL transform of all random sequences whose autocorrelation matrices commute with

Q of (5.102). A ‘
mf“"’r"ﬁroba
KL Transform of Images VAR VRS

If an N X N image u(m, n) is represented by a random field whose autocorrelation
function is given by .
E[u(m,myu(m’',n)}=r(m,n;m',n’), Osm,m',n,n'=N-1 (5.139)

then the basis images of the KL transform arr the orthonormalized eige-nfunctioqs
.1 (m, n) obtained by solving A é_,M,i_,/ e Euss 5 fwa Pt

y

N-1 N-1 ot PISYIYE¢.
vty i etttV LG
S rim,n;m'n' W, (m’,n') vg prgrgit PANIINE
""2=°"'=° i’ ’ L (5.140)

=Mali(m,n), 0=k, I=sN-1,0sm,n=N-1
In matrix notation this can be written as . .
Rdi=\b, i=0,...,N*~1 (5.141)

. . . 2
where {; is an N? X 1 vector representation of \bk,,(nzz, n) and 9 is an N2 XN
autocorrelation matrix of the image mapped into an N? X 1 vector «. Thus

R=E[ua”] (5.142)

If G is separable, then the N?x N? matrix ¥ whose columns are {{s} ‘becomes |

separable (see Table 2.7). For example, let
r(m,nym',n")=r(m,m"r(n,n’) (5.143)
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g
|

‘ | ' @t.@'i.

i (m, n) =i (m, )b (n, ) - - (5.144)
" In matrix notation this means '
‘ R=R,®R;, V=&, (5.145)
where . "-———_——-——_ ‘
ORDT=4;, - j=1,2 S (5.146)
and the KL transform of « is ‘
e=VT4=[D}TR D} e . C(5.147)

For row-ordered vectors this is equivalent to

v=oilue; . (5.148)

and the inverse KL transform is

U=@ VP o (5.149)
e . 3
The advantage in modeling the image autocorrelation by a separable function-is-that

instead of solving the N?X N? matrix eigenvalue prablem of (5.141), only two
N X N matrix eigenvalue problems of (5.146} need to.be solved. Since an N X N
matrix eigenvalue problem requires O (N?) computations, the reduction in dimen-
sionality achieved by the separable model is O (N)/O(N®) = O(N?), which is very
significant. Also, the transformation calculations of (5.148) and (5.149) require 2N°
operations compared to N* operations required for W*7 4.

Example 5.6 )
Consider the separable covariance function for a zero mean random field
r(m,nim’, n')=pghm=lgh-nt (5.150)

This gives & = R @ R, where R is given by (2.68). The eigenvectors of R are given by
&« in Example 5.4. Hence ¥ = ®®® and the KL transform matrix is ®T® ®".
Figure 5.2 shows the basis images of this 8 x 8 two-dimensional KL transform for
p=10.95.

Properties of the KL Transform

The KL transform has many desirable properties, which mak_é it Woptimal in many
signal processing applications. Some .of these properties are discussed here. For

simplicity we assume u has zero mean and a positive definite covariance matrix R.
a5 Zero meapy _posiive achinite co 0.9

Decorrelation. The KL transform coefficients {v (k), k = 0,...,N—1}are
uncorrelated and have zero mean, thatis, ' - Co S 1

Elvti)] =0 o
Ev(kp* Ol =Nk =) (5.151)
The proof follows directly from (5.133) and (5.135), since - . o
E[w*T 2 ®*" E[uu"}® = ®*TR® = A = diagonal (5.152)
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which implies the latter relation in (5.151). It should be noted that @ is not a unigue
matrix with respect to this property. There.could’be many matrices (unitary and
nonunitary) that would decorrelate the transformed sequence. For example, a lower
triangular matrix ¢ could be found that satisfies (5.152).

Example 5.7 )
The covariance matrix R of (2.68) is diagonalized by the lower triangular matrix

‘ 2
0 1-p 0

—n2
Ld TP& SLRL=| 1\" Ap (5153
0 ~—p 1 1-¢? ; '

Hence the transformation v = L7u, will cause the sequence v(k) to be uncorrelated.
Comparing with Example 5.4, we see that L # ®. Moreover, L is not unitary and the
diagonal elements of D are not the eigenvalues of R. |

Basis restriction mean square error. - Consider the operations in Fig. 5.16.

The vector u is first transformed to v. The elements of w are chosen to be the first m
elements of v and zeros elsewhere. Finally, w is transformed to z. A and B are

N X N matrices and L, is a matrix with 1s along the first m diagonal terms and zeros

elsewhere. Hence . N
k), O=k=m-1
W= T (5,154

Therefore, whereas u and v are vectors in an N-dimensional vector space, w is a
vector restricted to an m < N-dimensional subspace, The average mean square

error between the sequences u(n) and z(n) is defined as
N-1

rALE (2 lu(n) - z(n)lz') - TE(u - 2)w-2"T] (5.155)

n=0 ' . .
This quantity is called the basis restriction error. It is desired to find the matrices A
and B such that J, is minimized for each and every value of me[1l, N]. This
minimum is achieved by the KL transform of u.

The error J,, in (5.155) is minimum when

A=@*T, B=®, AB=I1 . (5.156)
where the columns of & are arranged according to the  decreasing order of the
eigenvalues of R. ' - S
Proof. From Fig. 5.16, we have

rem 5.1,

v =Au, w=1IL,v, and z=Bw (5.157)

u A v L, w B z
1 wxw “tismenl T NXWN

Figure 5;16 KL transform basis restriction. .
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Using these we can rewrite (5.155) as
1
J= 5 Tr[(I - BI, A)R(I ~ BI,A)*7]

To minimize J, we first differentiate it with respect to the elements of A and set the
result to zero [see Problem 2.15 for the differentiation rules]. This gives

L.BI1-BI,A*R=0 (5.158)
which yields
=1 -1, A)R] |
=% - (5.159)
L.B*"=1,B*"BI A (5.160)
Atm = N, the minimum value of Jy must be zero, which requires . i
I-BA=0 or B=A"' . (5.161)

Using this in (5.160) and rearranging terms, we obtain
L.B*"B=1,B*’Bl,, l=m=N (5.162)

Fo_r (5_.116_2)'to be true for every m, it is necessary that B*"B be diagonal. Since
g— A gt is easy to see that (5.160) remains invariant if B is replaced by DB or
nD, w]}.lereBD 1sha (i;igonal matrix. Hence, without loss of generality we can
crmalize B so that B =1, that is, B is a unitary matri i
unitary and B = A*”, This give; v rix. Thesfore, A s alko

_1 1 '
In =5 TH(@~ A*L, A)R) = ~ TH(R — L, ARA*T) (5.163)
Since R is fixed, J,, is minimized if the quantity
i m—1 . "L
J. A Te(1, ARA*T) = 3 ol Ra? ‘ (5.164)
’ k=0 )
is maximized where al is the kth row of A. Since A s unitary,
alaf =1 L (5.165)
To maximize J, subject to (5. 165), we form the Lagrangian '
. . m=1 m~1 '
S :
Jn Eﬂ a[Ra} + Eo M(1- alad) .. (5.166).

and dlffergntiateit with respect to a;. The result give§ a necessary condition

- Raf =nar AT

where a7 are orthonormalized eigenvectors of R. This yields

m—1 . . ) .
h=Zh L (5.168)
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which is maximized if {a*, 0=j=m — 1} correspond to the largest m eigenvalues
of R. Because J, must be maximized for every m, it is necessary to arrange
NZ M= Z A Then a,T, the rows of A, are the conjugate transpose of the
eigenvectors of R, that is, A is the KL transform of u. ’

Distribution of variances. &@g@iﬂh&uitaq transformations v = Au,
‘the KL transform @*7 packs \aximum average energyinm = N samples of v.
Define ' :
AAEp@A, obzol- =k
m=1 (5.169)
SHA)R T o}
k=0
Then for any fixed m e[1, N] . . ’
S(®*T) = S.(A) ’ ‘ (5.170) .

Proof. Note that
m-1
Sn(A) = kZ (ARA* )
=0

=Tr(I,A*"RA)
= jm

transform. Since o = A, when A = ®*7, from (5.168)

m-1 m—1
M=ok, l=m=N (5.171)
k=0 k=0 ) X .

Threshold representation. The KL transform also minimizes E{m], the

which, we know from the last proi)erty [see (5.164)], is maximized when A is the KL

expected number of transform coefficients required, so that their energy just

ceeds a prescribed»_ggg_s}‘l'ql_d (see roblemr%.%ﬁ and [33)).

=

@/ T Lt [aesinird Lo _
. A fast KL transform.  In application of the KL transform to images, there
are dimensionality difficulties. The KL transform depends on the statistics as well as
the size of the image and, in general, the basis vectors are not known analytically.
After the transform matrix has been computed, the operations for performing the
transformation are quite large for images.
1t has been shown that certain statistical image models yield a fast KL trans-
form algorithm as an alternative to the conventional KL transform for images. It is
based on a stochastic decomposition of an image as a sum of two random sequences.
The first random sequence is such that its KL transform is a fast transform and the
second sequence, called the boundary response, depends only on information at the
boundary points of the image. For details see Sections 6.5 and 6.9.

"The rate-distortion function. Suppose a random vector u is unitary trans-
formed to v and transmitted over a communication channel (Fig. 5.17). Let ¥/ andu

Image Transforms ~ Chap &
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o A v . v u
{Unitary) Channel > AT
Figure 5.17 Unitary transform data tr ission. Each el t of v is coded

independently.

b.e the reprosiuced values of v and u, respectively. Further, assume that u, v, v', and
u’ are Gaussian. The average distortion in u is ’

=1 .
D =~ E[(-w)"(u-w)] : (5.172)
Since A is unitary and u = A*"vand v = A*Tv', we have

1
D= NE[(V ~v)*TAA* (v —v)]
) . (5.173)
= NE[(V vy (v —v)] = —ﬁE(Sv*Tav)
where 8v = v — v’ represents the error in the reproduction of v. From the preceding,

D is invariant under all unita; i i
inv ry transformations. The rate-distortion function i
obtained, following Section 2.13, as : Hon s now

K R =‘1—NE_1 max 0,11 ok '
NSy »7 10827 (5179
Rt ’ )
= 2 min(o, oi] (5.175)
where
ok =E[v(k)f] =[ARA* ],  (5.176)
depend on the transform A. Therefore, the rate o '
R=R(A) A

also depends on A. For each fixed D th ie
‘ . , the KL transform achieves the mini,
among all unitary transforms, that is, ‘ form ackieves the minimuam rat

R@ T =R@A) Y A4 (5.178)
. . . . o :c‘ ' )
B Th;s property is discussed further in Chapter 11, on transform coding S
Example 5.8 ) o
‘Consic_ler a2 x1vector fx, whose covariance matrix is ' s
o R ' ‘ :
. : 3 : R",[p ‘1)]' o<1 Ve
The KL transform is L S
@'T‘—" (D = ___1‘_ 1 1 ¢
V21 -1
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Variance o}

100.00

10.00

T T

The transformation v = ®u gives
E{vOFt=r=1+p, * E{v(D)I}=1-p ,
+ - ' 1-p
R(P)= %[max(o, ilog 1—6—E> + max(O, ilog ——e——)]

Compare this with the case when A =1 (that is, u is transmitted), which gives

od=0%=1, and

 R@=Y-2loge], 0<0 <1 _
Suppose we let 6 be small, say 6 < 1.— |p|. Then it is easy to show that
R(®)<R()

This means for a fixed level of distortion, the numker of bits rec_;uifed to transm.it ‘the
KLT sequence would be less than those required for transmission of the original

sequence.

T TTTTIT

0.10 =
- N,
B ﬁ\\
3 Cosine, KL
i i i L
1 1 1 1 L I ! ] L 1
0-010 1I ; 3 4 5 6 7 8 9 10 1 12 13 14 15

. Indexk
Figure 5.18 Distribution of‘ variances of the transform coefficients (in decreasi;lg
order) of a stationary Markov sequence with N =16, p= 0.95 (sce Example 5.9).
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TABLE 5.2 Variances &% of Transform Coefficienté of a Stationary Markov
Seqience with p = 0.95 and N = 16. See Example 5.9.

Transform Unitary )
Lk KL Cosine Sine DFT Hadamard  Haar Slant
0 12.442 12.406 11.169 12.406 12.406 12.406  12.406
1 1.946 1.943 1.688 1.100 1.644 1.644 1.904
2 0.615 0.648 1.352 0.292 0.544 0.487 0.641
3 0.292 0.295 0.421 0.139 0.431 0.487 0.233
4 0.171 0.174 0.463 0.086 0.153 0.144 0.173
5 0.114 0.114 0.181 0.062 0.152 0.144 0.172
6 0.082 0.083 0.216 . 0.051 0.149 0.144 0.072
7 0.063 0.063 0.098 0.045 0.121 0.144 - 0.072
8 0.051 0.051 0.116 0.043 0.051 0.050 . 0.051
9 0.043 0.043 0.060 0.045 0.051 0.050 0.051
10 0.037 0.037 0.067 0.051 0.051 0.050 0.051
11 0.033 0.033 0.049 0.062 0.051 0.050 0.051
12 0.030 0.030 0.042 0.086 0.051 0.050. 0.031
13 0.028 0.028 0.031 0.139 0.051 0.050 0.031
14 0.027 0.027 0.029 0.292 0.050 0.050 0.031
15

0.02¢ 0.026 0.026 1.100 0.043 0.050 0.031

Example 5.9 (Comparison Among Unitary Transforms for a Markov Sequence)

Consider a first-order zero mean stationary Markov sequence of length N whose -

covariance matrix R is given by (2.68) with p = 0.95. Figure 5.18 shows the distribution
of variances o} of the transform coefficients (in decreasing order) for different
transforms. Table 5.2 lists ¢ for the various transforms.

Define the normalized basis restriction error as

N1
2 ok

Jo=%"" s m=0,...,N~1 (5.179)
2 ok

w0

where 0% have been arranged in decreasing order.
‘ Figure 5.19 shows J,, versus m for the various transforms. It is seen that the
cosine transform performance is indistinguishable from that of the KL transform for
p=0.95. In general it seems possible to find a fast sinusoidal transform (that is, a
transform consisting of sine or cosine functions) as a good substitute for the KL
- transform for different values of p as well as for higher-ordet stationary random
sequences {see Section 5.12), :
The mean square performance of the various transforms also depends on the
dimension N of the transform. Such comparisons are made in Section 5 12, -

' I*fxamplc 3,10 (Performance of Transforms on Images)

The mean square error test of the last example can be extended to actual images.
Consideran N x N image u (m, n) from which its mean is subtracted out to make it zero
mean. The transform coefficient variances are estimated as g

Ak, 0= Elv Gk D= (&, D
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3 4 5 6 71 8 -9
Samples retained {m)

Figul

restriction errors (J,
sequence with N = 16, p = 0.95.

Fi 11, 4:1,
Figure 5.20 Zonal .ﬁlters for 2.. ,4:1,
8:1, 16: 1 sample reduction. White areas
are passbands, dark areas are stopbands.

di i ith respect to basis .
5.19 Performance of different unitary txtansfomls with re
e ) versus the number .of basis (m) for a stationary Markov

Image Transforms

15 16

The image transform is filtered by a zonal mask (Fig. 5.20) such that only a fraction of
the transform coefficients are retained and the remaining ones are set to zero. Define
the normalized mean square error ’

ZZ ‘ ,Vk IIZ

7, A Kiestopbona " _ energy in stopband
°T total energy

i_El ’Vk, i lz

ki=0 )
Figure 5.21 shows an original image and the image obtained after cosine transform
zonal filtering to achieve various sample reduction ratios. Figure 5.22 shows the zonal
filtered images for different transforms at a 4: 1 sample reduction ratio. Figure 5.23
shows the mean square error versus sample reduction ratio for different transforms.
Again we find the cosine transform to have the best performance.

&

{c) 8: 1 sample reductin; ) {d)16:1 sampie reduction.

Figure 5.21 Basis restriction zonal filtered images in cosine transform domain.
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{b) sine;

: o L o d
{d) Hadamard;

{c) unitary DFT;

sy

i

(“) !;laar ) (f) Slant.
0 H
Figure 5.22 Basis restriction zo

nal filtering using different transforms with 4:1
sample reduction. . o

Hadamard

Normalized MSE %
o

Haar

r Hadamard
1 Cosine

Figure 5.23 Performance comparison of
0 L 1 . } different transforms with respect to basis

16 8 » 4 2 restriction zonal filtering for 256 x 256
) Sample reduction ratio ' - images. .

5.12 A SINUSOIDAL FAMILY OF UNI‘TARY TRANSFORMS

This is a class of complete orthonormal sets of eigenvectors generated by the
. parametric family of matrices whose structure is similar to that of R [see (5.96)],

r l—qu -

1

—-a

(5.180)

. k30£ ‘ . - 1"‘sz__1 }
Infact, for ki =k, = p, k3 =0, B2= (1 = pA)/(1 +p%), and o = p/(1 + p?), we have
J(p,p,0) =B*R"! : _ . (5.181)

Since R-and B2R™! have an identical set of eigenvectors, the KL transform
associated with R can be determined from the eigenvectors of J(p, p, 0). Similarly, it
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can be shown that the basis vectors of previously discussed cosine, sine, and discrete
Fourier transforms are the eigenvectors of J(1;1,0), J(0,0,0), and J(1,1,-1),
respectively. In fact, several other fast transforms whose basis vectors are sinusoids
can be generated for different combinations of k;, k», and k;. For example, for

0=<m, k =N — 1, we obtain the following transforms:

1. Oddsine = 1: ky = k; =0,k; = 1

2 gkt D@m D
d),,,(k)—-\/z_j_v__l__ism AN 1 (5.182)
2. Odd cosine - 1: ky =1,k =k; =0 ()
k + + i
2 @2k + 1)(2m + D (5.18)

(k)= o5 O 20N +1)

Other members of this family of transforms are given in [34].,

Approximation to the KL Transform

The J matrices play a useful role in performance evaluation of the sinusoidal trans-
forms. For example, two sinusoidal transforms can be compared with the KL

transform by comparing corresponding J-matrix distances
- A, Ky, ks) & 13 ks, Kz, ) = 3o, 0, O

This measure can also explain the close performance of the DCT ‘and the
KLT. Further, it can be shown that the DCT performs better than the sine trans-
form for 0.5 = p < 1 and the sine transform performs better than the cosine for other
values of p. The J matrices are also useful in finding a fast sinusoidal transform

(5.184)

approximation to the KL t |
variance matrix is A. If A commutes with aJ matrix, that is, AJ = JA, then they will
have an identical set of eigenvectors. The best fast sinusoidal transform may be

chosen as the one whose corresponding J matrix minimizes the commuting distance

|AJ — JA|?. Other uses of the J mats ices are (1) finding fast algorithms for inversion -

(2) efficient calculation of transform coefficient vari-
domain processing algorithms, and (3) estab-
f these transforms. For details see [34].

of banded Toeplitz matrices,
ances, which are needed in transform
lishing certain useful asymptotic properties 0

5.13 OUTER PRODUCT EXPANSION .
AND SINGULAR VALUE DECOMPOSITION

In the foregoing transform theory, we considered an N X M image U to be a vector
in an NM-dimensional vector space. However, it is possible to represent any such
image in an r-dimensional subspace where r is the rank of the matrix U. o
Let the image be real and M =N. The matrices UUT and UTU are non-
negative, symmetric and have the identical eigenvalues, {\.}. Since M = N, there
are at most r =M nonzero eigenvalues. It is possible to find » orthogonal, M X1
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ransform of an arbitrary random sequence whose co-

WW

S ———

eigenvectors {¢,,} of U"U and r orthogonal N X 1 eigenvectors {\s} of UU7, that is,
UTUd, = A b, (5.185)
UU Yo = At (5.186)

The matrix U has the representation
U=WTARPT

= 3 Vo,
m=1

W r i
q,he:::d‘fb and ¢ are N X rand zllg .>< r matrices whose mth columns are the vectors
- m » Fespectively, and A" is an r X r diagonal matrix, defined as ' :

“ ‘[\ffl\\ 0 J

m=1,...,r

m=1,...,r

(5.187)

(5.188)

AV = -

0 Vi (5.189) -

Equation (5.188) is called the spect : i ‘

) pectral representation, the outer product i
%rr ltjl;e}\smgularl valuil o‘ijec;:mpositian (SVD) of U. The nonzefo eig’;n‘ifg;z::u(’z%
t , A » are also called the singular values of U. If r < M, then the i i
ing NT sarmoles o b . » then the image contain-
T d),,,;:m =1’.”e’r}r.epresented by (M +N)r samples of the vectors

Since ¥ and & have ortho 1
kg 1 s gonal columns, from (5.187) the SVD transform of

A =wTud " (5.190)
which is a separable transform that di i i i .
(5.158) s outtnod i pasrorm th iagonalizes the given image.The proof o{

Properties of the SVD Transform

L. O = i an be
nce ¢, ,m =1,...,r are known, the eigenvectors s, can be determined as

n & F=Ud,

m=1,...,r (5.191)
It can be shown that ¥s,, are orth igeni ’ A
_ - on \ i
. orthonormal eigenvectors of U7 U. ormal cigenvectors of UUTIl ¢, are the
2, i '
, g‘:cea Sz?ltt;ixésg)z?eii ;itefme;i by (5.190) is not a unitary transform. This is
e angular matrices. However, we can i i
:Inl _acidfn;mal o;t{hoggnalr eigenvectors ,, and v, , which ;:fii‘;;ieg:b@fl:)d
=r+1,...,Man U, =0,m=r+1,... . ftrices
are unitary and the unitary SVD transform is, oAV such that Hhese matrices

l/z .
[A J =¥Tyd

0 (5.192)
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3. The image U; generated by the partial sum

; 4
- ¢
Ul S VR . oL, k=r (5.193)

m=1
is the best least squares rank-k approximation of U'if A, are in decreasing
order of magnitude. For any k =, the least squares error

M N .
&= X lutmmy—uwmnf, k=12,...,r (5.194)
m=ln=1
reduces to , ‘
&= DI (5.195)
. m=k+1

Let L A NAL. Note that we can always write a two-dim;nsion'al unitary transfox;m
representation as an outer product expansion in an L-dimensional space, namely,

L
U= 2 wab] (5.196)
=1 .
f orthogonal basis vectors of
here w; are scalars and & and b, are sequences O
Zl"in‘:;nsio’ns N x1and M X 1, respectively. The least squares error between U and

any partial sum . i ,
0,43 wab , (5.197)
f=1

is minimized for any k €[1, L] when the above expansion coincides with (5.193),
that lfi‘l:‘:: f,?e:]r:s ﬂ:l;kenergy concentrated in the tran'sform coefficients wf, = t N If
is maximized by the SVD transform for the given image. Recall that the K :ra:}:e
form, maximizes the average energy in a given m.unber of transform goeﬁ‘sczer; S, <
average being taken over the ensemble for' whzchﬂ the autocorrelatzf;;z func ;(::ate
defined. Hence, on an image-to-image bz?s?s, the SVD. tran,sform wi bconieu]awd
more energy in the same number of coefficients. But the SVD has to le 1catcd ae
for each image. On the other hand the KL transforrp needs to be cal g;.l ate Lo Z
once for the whole image ensemble. Therefore, while one may be al e):tot tm '
reasonable fast transform approximatign of t.h:a KL transform, no such fast trans
i for the SVD is expected to exist. '

form ;‘:lt::(:tl?gtﬁ applicable in image restoration anq image data c'ompress;ox;-plzct):é
lems, the usefulness of SVD in such image processing prob‘lcms is severe ); 1m1a ol
because of large computational effert required for calcul:.itmg the elgenvil ues and
eigenvectors of large image matrices. However, th'e SVP is-a fundgmer;ta 1'es:xr‘ces
matrix theory that is useful in finding the generahzed inverse of singular matric
and in the analysis of several image processing problems.

Example 5.11
Let 1 2
U=i2 -1
1 3

: -3
age Transforms. Chap-
178 Imag cn

_ DFT/unitary DFT

The eigenvalaes of UTU are found to be A, = 18.06, A, = 1.94, which giver =2, and the
SVD transform of U is
A2 [4.25 0 ]

0 1.39

The eigenvectors are found to be
. 10.5019 _| 0.8649
b= [0.8649]’ b= [—0.5019]

TABLE 5.3 Summary of Image Transforms

(continued on page 180)

Fast transform, most useful in digital signal processing, convolution,
digital filtering, analysis of circulant and Toeplitz systems. Requires
- complex arithmetic. Has very good energy compaction for images.

Cosine ' Fast transform, requires real operations, near optimal substitute for
the KL transform of highly correlated images. Useful in designing
transform coders and Wiener filters for images. Has excellent
energy compaction for images. .

Sine About twice as fast as the fast cosine transform, symmetric, requires
real operations; yields fast KL transform algorithm which yields
recursive block processing algorithms, for coding, filtering, and so
on; useful in estimating performance bounds of many image )
processing problems. Energy compaction for images is very good.

Hadamard ' Faster than sinusoidal transforms, since fio multiplications are

- required; useful in digital hardware implementations of image
processing algorithms. Easy to simulate but difficult to analyze.

Applications in image data compression, filtering, and design of

codes. Has good energy compaction for images. .

Haar Very fast transform. Useful in feature extracton; image coding, and
. image analysis problems. Energy compaction is fair.
Slant Fast transform. Has “image-like basis”; useful in image coding. Has

very good energy compaction for images.

Is optimal in many ways; has no fast algorithm; useful in performance
evaluation and for finding performance bounds. Useful for small
size vectors e.g., color multispectral or other feature vectors. Has
the best energy compaction in the mean square sense over an
ensemble.

Fast KL | ] Useful for designing fast, recursive-block processing techniques,
including adaptive techniques. Its performance is better than
independent block-by-block processing technigues.

Many members have fast implementation, useful in finding practical

. substitutes for the KL transform, analysis of Toeplitz systems,

| mathematical modeling of signals, Energy compaction for the

. ) optimum-fast transform is excellent.

Karhunen-Loeve

Sinusoidal transforms

SVD transform Best energy-packing efficiericy for any given image. Varies drastically

from image to image; has no fast algorithm or a reasonable fast
transform substitute; useful in design of separable FIR filters,
finding least squares and minimum norm solutions of linear
equations, finding rank of large matrices, and 50 on. Potential
image processing applications are in image restoration, power.
spectrum estimation and data compression. :
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From above W, is obtained via (5 .191) to yield

, [1.120 1.94
U=V d]=10935 1.62
: . [1.549 2.70

as the best least squéres rank-1 approximation of U. Let us compare this with the two

dimensional cosine transform U, which is given by

vz vi Vi |1 27[1 1] , [10v2 -2V2
[\/50 -Vv3j2 1jt1 -1 12—\/5\/5
1 -2 1 1 3] | -1 -5

v— { APt ‘
=Gue Vvi2 ‘

It is easy to see that ZE v2(k, 1) =\ + N2 The energy concentrated in the K
K

samples of SVD 3K ik, K =1,2, is greater than the energy concentraEed inany K
samples of the cosine transform coefficients (show!).

5.14 SUMMARY

e studied the theory of unitary transforms and their proper-

‘uni i ine, Hadamard, Haar, Slant, KL,
i 1 unitary tranforms, DFT, cosine, sine, .
;ii;sgg;r?a;rill;, f):;st KL, and SVD, were discussed. Table 5.3 summarizes the

various transforms and their applications.

In this chapter we hav

PROBLEMS

of (5.8) is minimized when the series coefficients

i 2
i Tor @
51 Forgven P O oo O Ao, t t the basis images must form a complete set for

v(k, 1) are given by (5.3). Also show thai
gitobezerofor P=Q =N. v

rms and Kronecker separability) From . <
52 S)I;ag;tri‘;’r’lséfoin implementing the matrix-vector pioduct is reduced from O(NY to

O(N?) if A is a Kronecker product. Apply this idea inductively to show that if A is
M x M and ' o
«/¢=A1®Az.®. ..®Am
i f (5.23) can be imple-
i X te, M =11 ne, then the transfgrmatlon o e i
l‘:‘lll:ll;ZdAi:l 13(";4 E',:'k 1hE), wf\iclh equals nM log, M if nkh= n. Many fi:td all)gyogt;l:;s[fgolr
i . i is i i hich was sugges .
itary matrices can be given this mterpretat}on W]
;;lslfszsrms possessing this property are sometimes called Good transforms.

§3 For the 2 x 2 transform A and the image U . |
' Jvi u-l2 3 e »
A=:il_1 V3] 12 4 .

: ‘ - P
cal¢ulate the. transforn:ned image V and the basis lma;ges. - g >/

. Image Transforms Chap: 5
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(5.23) we see that the number of ’

l

5.4

5.5
6
&
@

5.7

58
5.9

Consider the vector x and an orthogonal transform A

x= xo" A= cos.e sin 6

Xy —sin® cos@
Let a, and a; denote the columns of A7 (that is, the basis vectors of A). The trans-
_formation' y = Ax can be written as y, =alx,y; = alx. Represent the vector x in

Cartesian coordinates on a plane. Show that the transform A is a rotation of the

coordinates by 6 and y, and y; are the projections of x in the new coordinate system
(see Fig. P5.4). ' -

Figure P5.4,

Prove that the magnitude of determinant of a unitary transform is unity, Also show

that all the eigenvalues of a unitary matrix have unity magnitude.

Show that the entropy of an N X 1 Gaussian random vector u with mean » and

covariance R, given by . ‘}
%y

" o 7L

is invariant unde i

itary transformation. \

Consider the zero mean random vector u with covariance R, discussed in Example 5.2,

From the class of unitary transforms .
Ry=A. G R
w--”s

], v=Au W

A, = | 08 0 sind
¢ ~sin® cos 0

determine the value of 9 for which (a) the aver energy compressed_in vq is

+ maximum and (b) the comxzo_nznis_uf_umm@yrel_ated.
Prove the two-dimensional energy conservatioif relation of (5.28).

(DFT and circulant matrices) .

a. Show that (5.60) follows directly from (5.56) if ¢ is chosen as the kth column of the
unitary DFT F. Now write (5.58) as a circulant matrix operation x; = Hx,. Take
unitary DFT of both sides and apply (5.60) to prove the circular convolution
theorem, that is, (5.59). : )

b. Using (5.60) show that the inverse of an N X N circulant matrix can be obtained in
O(N log N) operations via the FFT by calculating the elements of its first column

‘ TNt : s
[H 0 =3 2 W*"\i' = inverse DFT of {\;} '

km=Q
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¢. Show that the N X 1 vector x; = 'fx;, where T is N-x N Toeplitz but not circulant,

can be evaluated in O (N log N) operations via the FFT. = ot . 1 ]
i DFT of a real sequence
he N? complex elemerts v(k, 1) of the unitary ‘
s10 {S:EJ: rtz};a(t);_iz n=<N E 1} can be determined from the knowledge of the partial

sequence

M (o N) o<k <X
ook} (e Home)

{v(k, 1,0k =N - 1,1515-’;1—1}, (N even)

which contains only N* nonzéro real elements, in general. .
5,11 a. Find the eigeﬁvalues of the 2 x 2 doubly block circulant matrix

b. Given the arrays x, (m, n) and x2 (m, n) as follows:

x(m,n n 4 x2(m,n)
o omwn) o mpmimm
1 3 4 0 "1 4 "‘1
0o |12 -1{0 -1 0
lo1 m -1 0 1

Write their convolution x; (m, n) = x2(m, n)@x, (m, n) as a doubly block circulant

matrix operating on a vector of size 16 and calculate the result. Verify your result by-.

performing the convolution directly.. erbond
if an i ‘N — 1} is multiplied by the checkerboar
that if an image {u(m,n),0=smn =N 1} is mu .

1 g:ft:]m (G} i thfn its unitary DFT is centered at (N/2, N/2). If the unitary D.PT o;
u(m, n) has its region of support-as shown in Fig. P5.12, what would be the rgglgn of
supp;ort of the unitary DFT of (—1)™ 7" u(m, n)? Figure 5.6 shows the magnitude o

. - Y
he unitary DFTs of an image u(m, n) and the image ( . .
::a:l ‘ll)e us?d for computing the unitary DFT whose origin is at tl.le' center of the image
matrix. The frequency increases as one moves away from the origin.
k ——

Image Transforms
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Y™ **u(m, n). This methodl .

Chap. 5

—£25.13

5.14

5.15

/gs.lﬁ

. 5.17

5.18

§.19

5.20
5.21

5.22

5.24

§.25%

Show that the real and imaginary parts of the unitary DFT matrix are not orthogonal
matrices in general. . :

Show that the N X N cosine transform matrix C is orthogonal. Verify your proof for

the case N = 4. .

Show that the N X N sine transform is orthogonal and is the eigenmatrix of Q given by
(5.102). Verify.your proof for the case N = 3.

Show that the cosine and sine transforms of an N x 1 sequence {u(0), ..., u(N = 1)}
can be calculated from the DFTs of the 2N x 1 symmetrically extended sequence
{uN-1), u(N=-2), ..., u(1), u(0), u), u(l), ..., u(N~1)} and of the
(2N +2) x 1 antisymmetrically extended sequence {0 — u(N — 1), ..., ~u(1), ~u(0),
0, u(0), u(1), ..., u(N —1)}, respectively. -
Suppose an N X N image U is mapped into a row-ordered N2 X 1 vector «. Show
that the N?x N” one-dimensional Hadamard transform of « gives the N X N two-

-dimensional Hadamard transform of U. Is this true for the other transforms discussed

in the text? Give reasons. . ‘
Using the Kronecker product recursion (5.104), prove that a 2" X 2" Hadamard trans-
form is orthogonal.

Calculate and plot the energy packed in the first 1, 2, 4, 8, 16 sequency ordered
samples of the Hadamard transform of a 16 x 1 vector whose autocorrelations are
=095y . | '

Prove that an N X N Haar transform matrix is orthogonal and can be implemented in
O(N) operations on an N X 1 vector.

Using the recursive formula for generating the slant transforms prove that these
matrices are orthogonal and fast.

If the KL transform of a zero mean N X 1 vector. u is @, then show that the KL>

transform of the sequence
Jdry=u(m)+p,

where p is a constant, remains the same only if the vector 1 a (1,1,...,1)7is an
eigenvector of the covariance matrix of u. Which of the fast transforms discussed in the
text satisfy this property? :

0sn=N-1

If w, and u;, are random vectors whose autocorrelation matrices commute, then show

that they have a common KL transform. Hence, show that the KL transforms for

autocorrelation matrices R, R™*, and f(R), where f() is an arbitrary function, are

identical. What are the corresponding eigenvalues? « '

The autocorrelation array of a 4 x 1 zero nlean vector u is given by {0.95™-,

O=mn=<3} '

a. What is the KL transform. of u?

b. Compare the basis vectors of the KL transform with the basis vectors of the 4 x 4
unitary DFT, DCT, DST, Hadamard, Haar, and Slant transforms.

¢. Compare the performance of the various transforms by plotting the basis restriction _

error J,, versus m. .
The autocorrelation function of 4 zero mean random field is given by (5.150), where

_p=0.95. A 16 X 16 segment of this randomi field is unitarily transformed,

Chap.

a. What is the maximum energy concentrated in 16, 32, 64, and 128 transform coeffi-
cienits for each of the seven transforms, KL, cosine, sine, unitary DFT, Hadamard,
Haar, and Slant? .~ : ;
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b. Compare the performance of these transforms for this random field by ?lotting
the mean square error for sample reduction ratios of 2, 4, 8, and 16. (Hint: Use

Table 5.2.) ; . - .
8.26 (Threshold representation) Referring to Fig. 5.16, where u(n) is a Gaussian random

sequence, the quantity )
N-1 m—1
LS ) - 2~ ="S b i)
Cn=y 2 [u) = 2(IF =y 3 @) = 2 b
is a random variable with respect to m. Let m be such that}
Coi>€’, Cn=¢€ foranyfixed €>0

. ‘s minimized
stricted to be unitary transforms, then show that E[m] is minimize
ghlzlf ?&d=B d?ii r; =A™, where ®*7 is the KL transform of u(n). For details see [33].

‘ i entropy in the -
§.27 (Minimum entropy property of the KL transform) [30] Deifme an py

A-transform domain as
N—-1

H[A]= - kgo o% log. %

. where o are the variances of the transformed variables v (k). Shov.v that an:oni 21 f:x]e
unitary transforms the KL transform minimizes this entropy, that is, H[®*"] < H| ]
528 a. Write the N x N covariance matrix R defined in (2.68) as :

BZR;‘ =J(ky, k2, ks) — A

where AJ is a sparse N X N matrix with nonzero terms at the four corners. Show -

that the above relation yields
R=p2J + B2 ANT + AR

where AR A AJRAJ is also a sparse matrix, which has at Fnost four (corner) frxon-
zero terms. If @ diagonalizes J, then show tha; the variances of the transform

coefficients are given by

i gt 281
uié[«b*fmh,k=§—k+%[¢"mh.k+xz;{¢* AR®D).. PS5

Now verify the formulas )
-p)e? : k 1
a%(DCT) = B —i(—l——‘if-[l - (=1)*p" [cos2 (ﬁ ) - i&(k)] P5.28-2

Ak N¥p
where A = 1—2a cos kw/N, N ”
2 2. e+ D A
O'Zk(DST) = ‘:— +W‘:‘Eﬁx{ [1 + (“'1)" p”* l] SIHZ(—W y .
| " C R | P5.283
' 0=k=N-1

" where Ay = 1 — 2 cos(k + 1)yw/(N + 1), and | |
' g2 2(1-pYafcos@mk/N) ~2a] ps 284

(!'zk (DFT) =)\—k N}\zp;
where A =1~ 2 cos2wk/N, 0=k =N - 1.
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b. Using the formulas P5.28-2-P5.28-4 and (5.120), calculate the fraction of energy
packed in N/2 transform coefficients arranged in decreasing order by the cosine, -
sine, unitary DFT, and Hadamard transforms for .N = 4, 16, 64, 256, 1024, and
'4096 for a stationary Markov sequence whose autocorrelation matrix is given by
R={p"""},p=0095. : .

5.29 a. Foranarbitrary real stationary sequence, its autocorrelation matrix, R a {r(m —n)},
is Toeplitz. Show that A-transform coefficient variances denoted by o2 (A), can be
obtained in O(N log N) operations via the formulas

N—-1

Gi®) =1 T (V-ln)r(Ws*, F= unitary DFT
Nn-—N-O-l

oLDST) = 7(0) + 5 [211 (k) +b (k) cot (31(%%12)]

a(k) +jb(ic) & 2:‘,1 [ () + r(=n)] exp[%g]

where 0=k =N — 1. Find a similar expression for the DCT. ;
b. In two dimensions, for stationary random fields, (5.36) implies we have to evaluate

o%i(A) =2 2T T alk, ma*(k, m")r(m —m',n - n")a(l, n)a* in)
Show that 6., (A) can be evaluated in O (N? log N) operations, when A is the FFT,
DST, or DCT. ’ : :

5.30  Compare the maximum energy packed in k SVD transform coefficients for k = 1,2,0f

the 2 x 4 image
_(1-2 5 6
v= (3 4.7 8) _
with that packed by the cosine, unitary DFT, and Hadamard transforms. .
§.31 (Proof of SVD representation) Define é,, such that Udn=0form=r+1,... Mso\ i
that the set ¢, 1=m <M is complete and orthonormal. Substituting for ¢, from - o

(5.191) in (5.188), obtain the following result: ) : S
r . M i
2 V>T;¢M¢L=U[2 ¢m¢£}=u[2 ¢m¢£.J=U ?
me=1 mem me :
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