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3.2

To be transmitted, data must be 
transformed to electromagnetic signals.

Note



3.3

3-1   ANALOG AND DIGITAL3-1   ANALOG AND DIGITAL

Data can be Data can be analoganalog or  or digitaldigital. The term . The term analog dataanalog data refers  refers 
to information that is continuous; to information that is continuous; digital datadigital data refers to  refers to 
information that has discrete states. Analog data take on information that has discrete states. Analog data take on 
continuous values. Digital data take on discrete values.continuous values. Digital data take on discrete values.

Analog and Digital Data
Analog and Digital Signals
Periodic and Nonperiodic Signals

Topics discussed in this section:Topics discussed in this section:



3.4

Note

Data can be analog or digital. 
Analog data are continuous and take 

continuous values.
Digital data have discrete states and 

take discrete values.



3.5

Signals can be analog or digital. 
Analog signals can have an infinite 
number of values in a range; digital 

signals can have only a limited 
number of values.

Note



3.6

Figure 3.1  Comparison of analog and digital signals



3.7

In data communications, we commonly 
use periodic analog signals and 

nonperiodic digital signals.

Note



3.8

3-2   PERIODIC ANALOG SIGNALS3-2   PERIODIC ANALOG SIGNALS

Periodic analog signals can be classified as Periodic analog signals can be classified as simplesimple or  or 
compositecomposite. A simple periodic analog signal, a . A simple periodic analog signal, a sine wavesine wave, , 
cannot be decomposed into simpler signals. A compositecannot be decomposed into simpler signals. A composite
periodic analog signal is composed of multiple sine periodic analog signal is composed of multiple sine 
waves.waves.

Sine Wave
Wavelength
Time and Frequency Domain
Composite Signals
Bandwidth

Topics discussed in this section:Topics discussed in this section:



3.9

Figure 3.2  A sine wave



3.10

We discuss a mathematical approach to 
sine waves in Appendix C.

Note



3.11

The power in your house can be represented by a sine 
wave with a peak amplitude of 155 to 170 V. However, it 
is common knowledge that the voltage of the power in 
U.S. homes is 110 to 120 V. This discrepancy is due to 
the fact that these are root mean square (rms) values. 
The signal is squared and then the average amplitude is 
calculated. The peak value is equal to 2½ × rms value.

Example 3.1



3.12

Figure 3.3  Two signals with the same phase and frequency, 
                        but different amplitudes



3.13

The voltage of a battery is a constant; this constant value 
can be considered a sine wave, as we will see later. For 
example, the peak value of an AA battery is normally
1.5 V.

Example 3.2



3.14

Frequency and period are the inverse of 
each other.

Note



3.15

Figure 3.4  Two signals with the same amplitude and phase,
                        but different frequencies



3.16

Table 3.1  Units of period and frequency



3.17

The power we use at home has a frequency of 60 Hz. 
The period of this sine wave can be determined as 
follows:

Example 3.3



3.18

Express a period of 100 ms in microseconds.

Example 3.4

Solution
From Table 3.1 we find the equivalents of 1 ms (1 ms is 
10−3 s) and 1 s (1 s is 106 μs). We make the following 
substitutions:.



3.19

The period of a signal is 100 ms. What is its frequency in 
kilohertz?

Example 3.5

Solution
First we change 100 ms to seconds, and then we 
calculate the frequency from the period (1 Hz = 10−3 
kHz).



3.20

Frequency is the rate of change with 
respect to time. 

Change in a short span of time
means high frequency.

 
Change over a long span of 
time means low frequency.

Note



3.21

If a signal does not change at all, its 
frequency is zero.

If a signal changes instantaneously, its 
frequency is infinite.

Note



3.22

Phase describes the position of the 
waveform  relative to time 0.

Note



3.23

Figure 3.5  Three sine waves with the same amplitude and frequency,
                        but different phases



3.24

A sine wave is offset 1/6 cycle with respect to time 0. 
What is its phase in degrees and radians?

Example 3.6

Solution
We know that 1 complete cycle is 360°. Therefore, 1/6 
cycle is



3.25

Figure 3.6  Wavelength and period



3.26

Figure 3.7  The time-domain and frequency-domain plots of a sine wave



3.27

A complete sine wave in the time 
domain can be represented by one 

single spike in the frequency domain.

Note



3.28

The frequency domain is more compact and 
useful when we are dealing with more than one 
sine wave. For example, Figure 3.8 shows three 
sine waves, each with different amplitude and 
frequency. All can be represented by three 
spikes in the frequency domain.

Example 3.7



3.29

Figure 3.8  The time domain and frequency domain of three sine waves



3.30

A single-frequency sine wave is not 
useful in data communications;

we need to send a composite signal, a 
signal made of many simple sine waves.

Note



3.31

According to Fourier analysis, any 
composite signal is a combination of

simple sine waves with different 
frequencies, amplitudes, and phases.

Fourier analysis is discussed in 
Appendix C.

Note



3.32

If the composite signal is periodic, the 
decomposition gives a series of signals 

with discrete frequencies; 
if the composite signal is nonperiodic, 

the decomposition gives a combination 
of sine waves with continuous 

frequencies.

Note



3.33

Figure 3.9 shows a periodic composite signal with 
frequency f. This type of signal is not typical of those 
found in data communications. We can consider it to be 
three alarm systems, each with a different frequency. 
The analysis of this signal can give us a good 
understanding of how to decompose signals.

Example 3.8



3.34

Figure 3.9  A composite periodic signal



3.35

Figure 3.10  Decomposition of a composite periodic signal in the time and
                          frequency domains



3.36

Figure 3.11 shows a nonperiodic composite signal. It 
can be the signal created by a microphone or a telephone 
set when a word or two is pronounced. In this case, the 
composite signal cannot be periodic, because that 
implies that we are repeating the same word or words 
with exactly the same tone.

Example 3.9



3.37

Figure 3.11  The time and frequency domains of a nonperiodic signal



3.38

The bandwidth of a composite signal is 
the difference between the

highest and the lowest frequencies 
contained in that signal.

Note



3.39

Figure 3.12  The bandwidth of periodic and nonperiodic composite signals



3.40

If a periodic signal is decomposed into five sine waves 
with frequencies of 100, 300, 500, 700, and 900 Hz, what 
is its bandwidth? Draw the spectrum, assuming all 
components have a maximum amplitude of 10 V.
Solution
Let fh be the highest frequency, fl the lowest frequency, 
and B the bandwidth. Then

Example 3.10

The spectrum has only five spikes, at 100, 300, 500, 700, 
and 900 Hz (see Figure 3.13).



3.41

Figure 3.13  The bandwidth for Example 3.10



3.42

A periodic signal has a bandwidth of 20 Hz. The highest 
frequency is 60 Hz. What is the lowest frequency? Draw 
the spectrum if the signal contains all frequencies of the 
same amplitude.
Solution
Let fh be the highest frequency, fl the lowest frequency, 
and B the bandwidth. Then

Example 3.11

The spectrum contains all integer frequencies. We show 
this by a series of spikes (see Figure 3.14).



3.43

Figure 3.14  The bandwidth for Example 3.11



3.44

A nonperiodic composite signal has a bandwidth of 200 
kHz, with a middle frequency of 140 kHz and peak 
amplitude of 20 V. The two extreme frequencies have an 
amplitude of 0. Draw the frequency domain of the 
signal.

Solution
The lowest frequency must be at 40 kHz and the highest 
at 240 kHz. Figure 3.15 shows the frequency domain 
and the bandwidth.

Example 3.12



3.45

Figure 3.15  The bandwidth for Example 3.12



3.46

An example of a nonperiodic composite signal is the 
signal propagated by an AM radio station. In the United 
States, each AM radio station is assigned a 10-kHz 
bandwidth. The total bandwidth dedicated to AM radio 
ranges from 530 to 1700 kHz. We will show the rationale 
behind this 10-kHz bandwidth in Chapter 5.

Example 3.13



3.47

Another example of a nonperiodic composite signal is 
the signal propagated by an FM radio station. In the 
United States, each FM radio station is assigned a 200-
kHz bandwidth. The total bandwidth dedicated to FM 
radio ranges from 88 to 108 MHz. We will show the 
rationale behind this 200-kHz bandwidth in Chapter 5.

Example 3.14



3.48

Another example of a nonperiodic composite signal is 
the signal received by an old-fashioned analog black-
and-white TV. A TV screen is made up of pixels. If we 
assume a resolution of 525 × 700, we have 367,500 
pixels per screen. If we scan the screen 30 times per 
second, this is 367,500 × 30 = 11,025,000 pixels per 
second. The worst-case scenario is alternating black and 
white pixels. We can send 2 pixels per cycle. Therefore, 
we need 11,025,000 / 2 = 5,512,500 cycles per second, or 
Hz. The bandwidth needed is 5.5125 MHz. 

Example 3.15



3.49

3-3   DIGITAL SIGNALS3-3   DIGITAL SIGNALS

In addition to being represented by an analog signal, In addition to being represented by an analog signal, 
information can also be represented by a information can also be represented by a digital signaldigital signal. . 
For example, a 1 can be encoded as a positive voltage For example, a 1 can be encoded as a positive voltage 
and a 0 as zero voltage. A digital signal can have more and a 0 as zero voltage. A digital signal can have more 
than two levels. In this case, we can send more than 1 bit than two levels. In this case, we can send more than 1 bit 
for each level.for each level.

Bit Rate
Bit Length
Digital Signal as a Composite Analog Signal
Application Layer

Topics discussed in this section:Topics discussed in this section:



3.50

Figure 3.16  Two digital signals: one with two signal levels and the other
                          with four signal levels



3.51

Appendix C reviews information about exponential and logarithmic 

functions.

Note

Appendix C reviews information about 
exponential and logarithmic functions.



3.52

A digital signal has eight levels. How many bits are 
needed per level? We calculate the number of bits from 
the formula

Example 3.16

Each signal level is represented by 3 bits.



3.53

A digital signal has nine levels. How many bits are 
needed per level? We calculate the number of bits by 
using the formula. Each signal level is represented by 
3.17 bits. However, this answer is not realistic. The 
number of bits sent per level needs to be an integer as 
well as a power of 2. For this example, 4 bits can 
represent one level.

Example 3.17



3.54

Assume we need to download text documents at the rate 
of 100 pages per minute. What is the required bit rate of 
the channel?
Solution
A page is an average of 24 lines with 80 characters in 
each line. If we assume that one character requires 8 
bits, the bit rate is

Example 3.18



3.55

A digitized voice channel, as we will see in Chapter 4, is 
made by digitizing a 4-kHz bandwidth analog voice 
signal. We need to sample the signal at twice the highest 
frequency (two samples per hertz). We assume that each 
sample requires 8 bits. What is the required bit rate?

Solution
The bit rate can be calculated as

Example 3.19



3.56

What is the bit rate for high-definition TV (HDTV)?

Solution
HDTV uses digital signals to broadcast high quality 
video signals. The HDTV screen is normally a ratio of 16 
: 9. There are 1920 by 1080 pixels per screen, and the 
screen is renewed 30 times per second. Twenty-four bits 
represents one color pixel. 

Example 3.20

The TV stations reduce this rate to 20 to 40 Mbps 
through compression. 



3.57

Figure 3.17  The time and frequency domains of periodic and nonperiodic
                         digital signals



3.58

Figure 3.18  Baseband transmission



3.59

A digital signal is a composite analog 
signal with an infinite bandwidth.

Note



3.60

Figure 3.19  Bandwidths of two low-pass channels



3.61

Figure 3.20  Baseband transmission using a dedicated medium



3.62

Baseband transmission of a digital 
signal that preserves the shape of the 

digital signal is possible only if we have 
a low-pass channel with an infinite or 

very wide bandwidth.

Note



3.63

An example of a dedicated channel where the entire 
bandwidth of the medium is used as one single channel 
is a LAN. Almost every wired LAN today uses a 
dedicated channel for two stations communicating with 
each other. In a bus topology LAN with multipoint 
connections, only two stations can communicate with 
each other at each moment in time (timesharing); the 
other stations need to refrain from sending data. In a 
star topology LAN, the entire channel between each 
station and the hub is used for communication between 
these two entities. We study LANs in Chapter 14.

Example 3.21



3.64

Figure 3.21  Rough approximation of a digital signal using the first harmonic 
                          for worst case



3.65

Figure 3.22  Simulating a digital signal with first three harmonics



3.66

In baseband transmission, the required bandwidth is proportional to 

the bit rate;

if we need to send bits faster, we need more bandwidth.

Note

In baseband transmission, the required 
bandwidth is proportional to the bit rate;
if we need to send bits faster, we need 

more bandwidth.



3.67

Table 3.2  Bandwidth requirements



3.68

What is the required bandwidth of a low-pass channel if 
we need to send 1 Mbps by using baseband transmission?

Solution
The answer depends on the accuracy desired.
a. The minimum bandwidth, is B = bit rate /2, or 500 kHz.
 
b. A better solution is to use the first and the third
    harmonics with  B = 3 × 500 kHz = 1.5 MHz.

c. Still a better solution is to use the first, third, and fifth
    harmonics with B = 5 × 500 kHz = 2.5 MHz.

Example 3.22



3.69

We have a low-pass channel with bandwidth 100 kHz. 
What is the maximum bit rate of this
channel?

Solution
The maximum bit rate can be achieved if we use the first 
harmonic. The bit rate is 2 times the available bandwidth, 
or 200 kbps.

Example 3.22



3.70

Figure 3.23  Bandwidth of a bandpass channel



3.71

If the available channel is a bandpass 
channel, we cannot send the digital 

signal directly to the channel; 
we need to convert the digital signal to 
an analog signal before transmission.

Note



3.72

Figure 3.24  Modulation of a digital signal for transmission on a bandpass 
                          channel



3.73

An example of broadband transmission using 
modulation is the sending of computer data through a 
telephone subscriber line, the line connecting a resident 
to the central telephone office. These lines are designed 
to carry voice with a limited bandwidth. The channel is 
considered a bandpass channel. We convert the digital 
signal from the computer to an analog signal, and send 
the analog signal. We can install two converters to 
change the digital signal to analog and vice versa at the 
receiving end. The converter, in this case, is called a 
modem which we discuss in detail in Chapter 5.

Example 3.24



3.74

A second example is the digital cellular telephone. For 
better reception, digital cellular phones convert the 
analog voice signal to a digital signal (see Chapter 16). 
Although the bandwidth allocated to a company 
providing digital cellular phone service is very wide, we 
still cannot send the digital signal without conversion. 
The reason is that we only have a bandpass channel 
available between caller and callee. We need to convert 
the digitized voice to a composite analog signal before 
sending.

Example 3.25



3.75

3-4   TRANSMISSION IMPAIRMENT3-4   TRANSMISSION IMPAIRMENT

Signals travel through transmission media, which are not Signals travel through transmission media, which are not 
perfect. The imperfection causes signal impairment. This perfect. The imperfection causes signal impairment. This 
means that the signal at the beginning of the medium is means that the signal at the beginning of the medium is 
not the same as the signal at the end of the medium. not the same as the signal at the end of the medium. 
What is sent is not what is received. Three causes of What is sent is not what is received. Three causes of 
impairment are impairment are attenuationattenuation, , distortiondistortion, and , and noisenoise..

Attenuation
Distortion
Noise

Topics discussed in this section:Topics discussed in this section:



3.76

Figure 3.25  Causes of impairment



3.77

Figure 3.26  Attenuation



3.78

Suppose a signal travels through a transmission medium 
and its power is reduced to one-half. This means that P2 
is (1/2)P1. In this case, the attenuation (loss of power) 
can be calculated as

Example 3.26

A loss of 3 dB (–3 dB) is equivalent to losing one-half 
the power.



3.79

A signal travels through an amplifier, and its power is 
increased 10 times. This means that P2 = 10P1 . In this 
case, the amplification (gain of power) can be calculated 
as

Example 3.27



3.80

One reason that engineers use the decibel to measure the 
changes in the strength of a signal is that decibel 
numbers can be added (or subtracted) when we are 
measuring several points (cascading) instead of just two. 
In Figure 3.27 a signal travels from point 1 to point 4. In 
this case, the decibel value can be calculated as

Example 3.28



3.81

Figure 3.27  Decibels for Example 3.28



3.82

Sometimes the decibel is used to measure signal power 
in milliwatts. In this case, it is referred to as dBm and is 
calculated as dBm = 10 log10 Pm , where Pm is the power 
in milliwatts. Calculate the power of a signal with dBm = 
−30.

Solution
We can calculate the power in the signal as

Example 3.29



3.83

The loss in a cable is usually defined in decibels per 
kilometer (dB/km). If the signal at the beginning of a 
cable with −0.3 dB/km has a power of 2 mW, what is the 
power of the signal at 5 km?
Solution
The loss in the cable in decibels is 5 × (−0.3) = −1.5 dB. 
We can calculate the power as

Example 3.30



3.84

Figure 3.28  Distortion



3.85

Figure 3.29  Noise



3.86

The power of a signal is 10 mW and the power of the 
noise is 1 μW; what are the values of SNR and SNRdB ?

Solution
The values of SNR and SNRdB can be calculated as 
follows:

Example 3.31



3.87

The values of SNR and SNRdB for a noiseless channel 
are

Example 3.32

We can never achieve this ratio in real life; it is an ideal.



3.88

Figure 3.30  Two cases of SNR: a high SNR and a low SNR



3.89

3-5   DATA RATE LIMITS3-5   DATA RATE LIMITS

A very important consideration in data communications A very important consideration in data communications 
is how fast we can send data, in bits per second, over a is how fast we can send data, in bits per second, over a 
channel. Data rate depends on three factors:channel. Data rate depends on three factors:
      1.1. The bandwidth available The bandwidth available
      2.2. The level of the signals we use The level of the signals we use
      33. The quality of the channel (the level of noise). The quality of the channel (the level of noise)

Noiseless Channel: Nyquist Bit Rate
Noisy Channel: Shannon Capacity
Using Both Limits

Topics discussed in this section:Topics discussed in this section:



3.90

Increasing the levels of a signal may 
reduce the reliability of the system.

Note



3.91

Does the Nyquist theorem bit rate agree with the 
intuitive bit rate described in baseband transmission?

Solution
They match when we have only two levels. We said, in 
baseband transmission, the bit rate is 2 times the 
bandwidth if we use only the first harmonic in the worst 
case. However, the Nyquist formula is more general than 
what we derived intuitively; it can be applied to baseband 
transmission and modulation. Also, it can be applied 
when we have two or more levels of signals.

Example 3.33



3.92

Consider a noiseless channel with a bandwidth of 3000 
Hz transmitting a signal with two signal levels. The 
maximum bit rate can be calculated as

Example 3.34



3.93

Consider the same noiseless channel transmitting a 
signal with four signal levels (for each level, we send 2 
bits). The maximum bit rate can be calculated as

Example 3.35



3.94

We need to send 265 kbps over a noiseless channel with 
a bandwidth of 20 kHz. How many signal levels do we 
need?
Solution
We can use the Nyquist formula as shown:

Example 3.36

Since this result is not a power of 2, we need to either 
increase the number of levels or reduce the bit rate. If we 
have 128 levels, the bit rate is 280 kbps. If we have 64 
levels, the bit rate is 240 kbps.



3.95

Consider an extremely noisy channel in which the value 
of the signal-to-noise ratio is almost zero. In other 
words, the noise is so strong that the signal is faint. For 
this channel the capacity C is calculated as

Example 3.37

This means that the capacity of this channel is zero 
regardless of the bandwidth. In other words, we cannot 
receive any data through this channel.



3.96

We can calculate the theoretical highest bit rate of a 
regular telephone line. A telephone line normally has a 
bandwidth of 3000. The signal-to-noise ratio is usually 
3162. For this channel the capacity is calculated as

Example 3.38

This means that the highest bit rate for a telephone line 
is 34.860 kbps. If we want to send data faster than this, 
we can either increase the bandwidth of the line or 
improve the signal-to-noise ratio.



3.97

The signal-to-noise ratio is often given in decibels. 
Assume that SNRdB = 36 and the channel bandwidth is 2 
MHz. The theoretical channel capacity can be calculated 
as

Example 3.39



3.98

For practical purposes, when the SNR is very high, we 
can assume that SNR + 1 is almost the same as SNR. In 
these cases, the theoretical channel capacity can be 
simplified to

Example 3.40

For example, we can calculate the theoretical capacity of 
the previous example as



3.99

We have a channel with a 1-MHz bandwidth. The SNR 
for this channel is 63. What are the appropriate bit rate 
and signal level?

Solution
First, we use the Shannon formula to find the upper 
limit.

Example 3.41



3.100

The Shannon formula gives us 6 Mbps, the upper limit. 
For better performance we choose something lower, 4 
Mbps, for example. Then we use the Nyquist formula to 
find the number of signal levels.

Example 3.41 (continued)



3.101

The Shannon capacity gives us the 
upper limit; the Nyquist formula tells us 

how many signal levels we need.

Note



3.102

3-6   PERFORMANCE3-6   PERFORMANCE

One important issue in networking is the One important issue in networking is the performanceperformance of  of 
the network—how good is it? We discuss quality of the network—how good is it? We discuss quality of 
service, an overall measurement of network performance, service, an overall measurement of network performance, 
in greater detail in Chapter 24. In this section, we in greater detail in Chapter 24. In this section, we 
introduce terms that we need for future chapters.introduce terms that we need for future chapters.

Bandwidth
Throughput
Latency (Delay)
Bandwidth-Delay Product

Topics discussed in this section:Topics discussed in this section:



3.103

In networking, we use the term 
bandwidth in two contexts.

❏ The first, bandwidth in hertz, refers to
      the range of frequencies in a
      composite signal or the range of
      frequencies that a channel can pass.

❏ The second, bandwidth in bits per
       second, refers to the speed of bit
       transmission in a channel or link.

Note



3.104

The bandwidth of a subscriber line is 4 kHz for voice or 
data. The bandwidth of this line for data transmission
can be up to 56,000 bps using a sophisticated modem to 
change the digital signal to analog.

Example 3.42



3.105

If the telephone company improves the quality of the line 
and increases the bandwidth to 8 kHz, we can send 
112,000 bps by using the same technology as mentioned 
in Example 3.42.

Example 3.43



3.106

A network with bandwidth of 10 Mbps can pass only an 
average of 12,000 frames per minute with each frame 
carrying an average of 10,000 bits. What is the 
throughput of this network?

Solution
We can calculate the throughput as

Example 3.44

The throughput is almost one-fifth of the bandwidth in 
this case.



3.107

What is the propagation time if the distance between the 
two points is 12,000 km? Assume the propagation speed 
to be 2.4 × 108 m/s in cable.

Solution
We can calculate the propagation time as

Example 3.45

The example shows that a bit can go over the Atlantic 
Ocean in only 50 ms if there is a direct cable between the 
source and the destination.



3.108

What are the propagation time and the transmission 
time for a 2.5-kbyte message (an e-mail) if the 
bandwidth of the network is 1 Gbps? Assume that the 
distance between the sender and the receiver is 12,000 
km and that light travels at 2.4 × 108 m/s.

Solution
We can calculate the propagation and transmission time 
as shown on the next slide:

Example 3.46



3.109

Note that in this case, because the message is short and 
the bandwidth is high, the dominant factor is the 
propagation time, not the transmission time. The 
transmission time can be ignored.

Example 3.46 (continued)



3.110

What are the propagation time and the transmission 
time for a 5-Mbyte message (an image) if the bandwidth 
of the network is 1 Mbps? Assume that the distance 
between the sender and the receiver is 12,000 km and 
that light travels at 2.4 × 108 m/s.

Solution
We can calculate the propagation and transmission 
times as shown on the next slide.

Example 3.47



3.111

Note that in this case, because the message is very long 
and the bandwidth is not very high, the dominant factor 
is the transmission time, not the propagation time. The 
propagation time can be ignored.

Example 3.47 (continued)



3.112

Figure 3.31  Filling the link with bits for case 1



3.113

We can think about the link between two points as a 
pipe. The cross section of the pipe represents the 
bandwidth, and the length of the pipe represents the 
delay. We can say the volume of the pipe defines the 
bandwidth-delay product, as shown in Figure 3.33.

Example 3.48



3.114

Figure 3.32  Filling the link with bits in case 2



3.115

The bandwidth-delay product defines 
the number of bits that can fill the link.

Note



3.116

Figure 3.33  Concept of bandwidth-delay product
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