
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

5th

Edition

Chapter 4

The Processor

Chapter 4 — The Processor — 2

Introduction
 CPU performance factors

 Instruction count
 Determined by ISA and compiler

 CPI and Cycle time
 Determined by CPU hardware

 We will examine two MIPS implementations
 A simplified version
 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw
 Arithmetic/logical: add, sub, and, or, slt
 Control transfer: beq, j

§4.1 Int roductio n

Chapter 4 — The Processor — 3

Instruction Execution
 PC  instruction memory, fetch instruction
 Register numbers  register file, read registers
 Depending on instruction class

 Use ALU to calculate
 Arithmetic result
 Memory address for load/store
 Branch target address

 Access data memory for load/store
 PC  target address or PC + 4

Chapter 4 — The Processor — 4

CPU Overview

Chapter 4 — The Processor — 5

Multiplexers
 Can’t just join

wires together
 Use multiplexers

Chapter 4 — The Processor — 6

Control

Chapter 4 — The Processor — 7

Logic Design Basics
§4.2 Lo gic D

es ign C
on ventio ns

 Information encoded in binary
 Low voltage = 0, High voltage = 1
 One wire per bit
 Multi-bit data encoded on multi-wire buses

 Combinational element
 Operate on data
 Output is a function of input

 State (sequential) elements
 Store information

Chapter 4 — The Processor — 8

Combinational Elements

 AND-gate
 Y = A & B

A
B

Y

I0
I1

Y
M
u
x

S

 Multiplexer
 Y = S ? I1 : I0

A

B

Y+

A

B

YALU

F

 Adder
 Y = A + B

 Arithmetic/Logic Unit
 Y = F(A, B)

Chapter 4 — The Processor — 9

Sequential Elements
 Register: stores data in a circuit

 Uses a clock signal to determine when to
update the stored value

 Edge-triggered: update when Clk changes
from 0 to 1

D

Clk

Q
Clk

D

Q

Chapter 4 — The Processor — 10

Sequential Elements
 Register with write control

 Only updates on clock edge when write
control input is 1

 Used when stored value is required later

D

Clk

Q

Write

Write

D

Q

Clk

Chapter 4 — The Processor — 11

Clocking Methodology
 Combinational logic transforms data

during clock cycles
 Between clock edges
 Input from state elements, output to state

element
 Longest delay determines clock period

Chapter 4 — The Processor — 12

Building a Datapath
 Datapath

 Elements that process data and addresses
in the CPU

 Registers, ALUs, mux’s, memories, …

 We will build a MIPS datapath
incrementally
 Refining the overview design

§4.3 B
u ilding a D

atapa th

Chapter 4 — The Processor — 13

Instruction Fetch

32-bit
register

Increment by
4 for next
instruction

Chapter 4 — The Processor — 14

R-Format Instructions
 Read two register operands
 Perform arithmetic/logical operation
 Write register result

Chapter 4 — The Processor — 15

Load/Store Instructions
 Read register operands
 Calculate address using 16-bit offset

 Use ALU, but sign-extend offset
 Load: Read memory and update register
 Store: Write register value to memory

Chapter 4 — The Processor — 16

Branch Instructions
 Read register operands
 Compare operands

 Use ALU, subtract and check Zero output
 Calculate target address

 Sign-extend displacement
 Shift left 2 places (word displacement)
 Add to PC + 4

 Already calculated by instruction fetch

Chapter 4 — The Processor — 17

Branch Instructions

Just
re-routes

wires

Sign-bit wire
replicated

Chapter 4 — The Processor — 18

Composing the Elements
 First-cut data path does an instruction in

one clock cycle
 Each datapath element can only do one

function at a time
 Hence, we need separate instruction and data

memories
 Use multiplexers where alternate data

sources are used for different instructions

Chapter 4 — The Processor — 19

R-Type/Load/Store Datapath

Chapter 4 — The Processor — 20

Full Datapath

Chapter 4 — The Processor — 21

ALU Control
 ALU used for

 Load/Store: F = add
 Branch: F = subtract
 R-type: F depends on funct field

§4.4 A
 S

im
ple Im

plem
entation S

chem
e

ALU control Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR

Chapter 4 — The Processor — 22

ALU Control
 Assume 2-bit ALUOp derived from opcode

 Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control

lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010

beq 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

subtract 100010 subtract 0110

AND 100100 AND 0000

OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

Chapter 4 — The Processor — 23

The Main Control Unit
 Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always
read

read,
except
for load

write for
R-type

and load

sign-extend
and add

Chapter 4 — The Processor — 24

Datapath With Control

Chapter 4 — The Processor — 25

R-Type Instruction

Chapter 4 — The Processor — 26

Load Instruction

Chapter 4 — The Processor — 27

Branch-on-Equal Instruction

Chapter 4 — The Processor — 28

Implementing Jumps

 Jump uses word address
 Update PC with concatenation of

 Top 4 bits of old PC
 26-bit jump address
 00

 Need an extra control signal decoded from
opcode

2 address

31:26 25:0

Jump

Chapter 4 — The Processor — 29

Datapath With Jumps Added

Chapter 4 — The Processor — 30

Performance Issues
 Longest delay determines clock period

 Critical path: load instruction
 Instruction memory  register file  ALU 

data memory  register file
 Not feasible to vary period for different

instructions
 Violates design principle

 Making the common case fast
 We will improve performance by pipelining

Chapter 4 — The Processor — 31

Pipelining Analogy
 Pipelined laundry: overlapping execution

 Parallelism improves performance

§4.5 A
n O

vervi ew
 of P

ipelinin g Four loads:
 Speedup

= 8/3.5 = 2.3

 Non-stop:
 Speedup

= 2n/0.5n + 1.5 ≈ 4
= number of stages

Chapter 4 — The Processor — 32

MIPS Pipeline
 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Chapter 4 — The Processor — 33

Pipeline Performance
 Assume time for stages is

 100ps for register read or write
 200ps for other stages

 Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 34

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 35

Pipeline Speedup
 If all stages are balanced

 i.e., all take the same time
 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages
 If not balanced, speedup is less
 Speedup due to increased throughput

 Latency (time for each instruction) does not
decrease

Chapter 4 — The Processor — 36

Pipelining and ISA Design
 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage
 Alignment of memory operands

 Memory access takes only one cycle

Chapter 4 — The Processor — 37

Hazards
 Situations that prevent starting the next

instruction in the next cycle
 Structure hazards

 A required resource is busy
 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control hazard
 Deciding on control action depends on

previous instruction

Chapter 4 — The Processor — 38

Structure Hazards
 Conflict for use of a resource
 In MIPS pipeline with a single memory

 Load/store requires data access
 Instruction fetch would have to stall for that

cycle
 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require
separate instruction/data memories
 Or separate instruction/data caches

Chapter 4 — The Processor — 39

Data Hazards
 An instruction depends on completion of

data access by a previous instruction
 add $s0, $t0, $t1
sub $t2, $s0, $t3

Chapter 4 — The Processor — 40

Forwarding (aka Bypassing)
 Use result when it is computed

 Don’t wait for it to be stored in a register
 Requires extra connections in the datapath

Chapter 4 — The Processor — 41

Load-Use Data Hazard
 Can’t always avoid stalls by forwarding

 If value not computed when needed
 Can’t forward backward in time!

Chapter 4 — The Processor — 42

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in
the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

11 cycles13 cycles

Chapter 4 — The Processor — 43

Control Hazards
 Branch determines flow of control

 Fetching next instruction depends on branch
outcome

 Pipeline can’t always fetch correct instruction
 Still working on ID stage of branch

 In MIPS pipeline
 Need to compare registers and compute

target early in the pipeline
 Add hardware to do it in ID stage

Chapter 4 — The Processor — 44

Stall on Branch
 Wait until branch outcome determined

before fetching next instruction

Chapter 4 — The Processor — 45

Branch Prediction
 Longer pipelines can’t readily determine

branch outcome early
 Stall penalty becomes unacceptable

 Predict outcome of branch
 Only stall if prediction is wrong

 In MIPS pipeline
 Can predict branches not taken
 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 46

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

Chapter 4 — The Processor — 47

More-Realistic Branch Prediction
 Static branch prediction

 Based on typical branch behavior
 Example: loop and if-statement branches

 Predict backward branches taken
 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend
 When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 48

Pipeline Summary

 Pipelining improves performance by
increasing instruction throughput
 Executes multiple instructions in parallel
 Each instruction has the same latency

 Subject to hazards
 Structure, data, control

 Instruction set design affects complexity of
pipeline implementation

The BIG Picture

Chapter 4 — The Processor — 49

MIPS Pipelined Datapath
§4.6 P

ip elined D
atapa th and C

ontrol

WB

MEM

Right-to-left
flow leads to
hazards

Chapter 4 — The Processor — 50

Pipeline registers
 Need registers between stages

 To hold information produced in previous cycle

Chapter 4 — The Processor — 51

Pipeline Operation
 Cycle-by-cycle flow of instructions through

the pipelined datapath
 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle
 Highlight resources used

 c.f. “multi-clock-cycle” diagram
 Graph of operation over time

 We’ll look at “single-clock-cycle” diagrams
for load & store

Chapter 4 — The Processor — 52

IF for Load, Store, …

Chapter 4 — The Processor — 53

ID for Load, Store, …

Chapter 4 — The Processor — 54

EX for Load

Chapter 4 — The Processor — 55

MEM for Load

Chapter 4 — The Processor — 56

WB for Load

Wrong
register
number

Chapter 4 — The Processor — 57

Corrected Datapath for Load

Chapter 4 — The Processor — 58

EX for Store

Chapter 4 — The Processor — 59

MEM for Store

Chapter 4 — The Processor — 60

WB for Store

Chapter 4 — The Processor — 61

Multi-Cycle Pipeline Diagram
 Form showing resource usage

Chapter 4 — The Processor — 62

Multi-Cycle Pipeline Diagram
 Traditional form

Chapter 4 — The Processor — 63

Single-Cycle Pipeline Diagram
 State of pipeline in a given cycle

Chapter 4 — The Processor — 64

Pipelined Control (Simplified)

Chapter 4 — The Processor — 65

Pipelined Control
 Control signals derived from instruction

 As in single-cycle implementation

Chapter 4 — The Processor — 66

Pipelined Control

Chapter 4 — The Processor — 67

Data Hazards in ALU Instructions

 Consider this sequence:
sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

 We can resolve hazards with forwarding
 How do we detect when to forward?

§4.7 D
a ta H

az ards: F
o rw

ardi ng vs. S
talling

Chapter 4 — The Processor — 68

Dependencies & Forwarding

Chapter 4 — The Processor — 69

Detecting the Need to Forward

 Pass register numbers along pipeline
 e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register
 ALU operand register numbers in EX stage

are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

Chapter 4 — The Processor — 70

Detecting the Need to Forward

 But only if forwarding instruction will write
to a register!
 EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not
$zero
 EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

Chapter 4 — The Processor — 71

Forwarding Paths

Chapter 4 — The Processor — 72

Forwarding Conditions
 EX hazard

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

 MEM hazard
 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

Chapter 4 — The Processor — 73

Double Data Hazard
 Consider the sequence:

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

 Both hazards occur
 Want to use the most recent

 Revise MEM hazard condition
 Only fwd if EX hazard condition isn’t true

Chapter 4 — The Processor — 74

Revised Forwarding Condition
 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

 ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

 ForwardB = 01

Chapter 4 — The Processor — 75

Datapath with Forwarding

Chapter 4 — The Processor — 76

Load-Use Data Hazard

Need to stall
for one cycle

Chapter 4 — The Processor — 77

Load-Use Hazard Detection
 Check when using instruction is decoded

in ID stage
 ALU operand register numbers in ID stage

are given by
 IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when
 ID/EX.MemRead and

 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble

Chapter 4 — The Processor — 78

How to Stall the Pipeline
 Force control values in ID/EX register

to 0
 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register
 Using instruction is decoded again
 Following instruction is fetched again
 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage

Chapter 4 — The Processor — 79

Stall/Bubble in the Pipeline

Stall inserted
here

Chapter 4 — The Processor — 80

Stall/Bubble in the Pipeline

Or, more
accurately…

Chapter 4 — The Processor — 81

Datapath with Hazard Detection

Chapter 4 — The Processor — 82

Stalls and Performance

 Stalls reduce performance
 But are required to get correct results

 Compiler can arrange code to avoid
hazards and stalls
 Requires knowledge of the pipeline structure

The BIG Picture

Chapter 4 — The Processor — 83

Branch Hazards
 If branch outcome determined in MEM

§4.8 C
o ntrol H

azards

PC

Flush these
instructions
(Set control
values to 0)

Chapter 4 — The Processor — 84

Reducing Branch Delay
 Move hardware to determine outcome to ID

stage
 Target address adder
 Register comparator

 Example: branch taken
36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7
 ...
72: lw $4, 50($7)

Chapter 4 — The Processor — 85

Example: Branch Taken

Chapter 4 — The Processor — 86

Example: Branch Taken

Chapter 4 — The Processor — 87

Data Hazards for Branches
 If a comparison register is a destination of

2nd or 3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

 Can resolve using forwarding

Chapter 4 — The Processor — 88

Data Hazards for Branches
 If a comparison register is a destination of

preceding ALU instruction or 2nd preceding
load instruction
 Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

Chapter 4 — The Processor — 89

Data Hazards for Branches
 If a comparison register is a destination of

immediately preceding load instruction
 Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

Chapter 4 — The Processor — 90

Dynamic Branch Prediction
 In deeper and superscalar pipelines, branch

penalty is more significant
 Use dynamic prediction

 Branch prediction buffer (aka branch history table)
 Indexed by recent branch instruction addresses
 Stores outcome (taken/not taken)
 To execute a branch

 Check table, expect the same outcome
 Start fetching from fall-through or target
 If wrong, flush pipeline and flip prediction

Chapter 4 — The Processor — 91

1-Bit Predictor: Shortcoming
 Inner loop branches mispredicted twice!

outer: …
 …
inner: …
 …
 beq …, …, inner
 …
 beq …, …, outer

 Mispredict as taken on last iteration of
inner loop

 Then mispredict as not taken on first
iteration of inner loop next time around

Chapter 4 — The Processor — 92

2-Bit Predictor
 Only change prediction on two successive

mispredictions

Chapter 4 — The Processor — 93

Calculating the Branch Target
 Even with predictor, still need to calculate

the target address
 1-cycle penalty for a taken branch

 Branch target buffer
 Cache of target addresses
 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken, can
fetch target immediately

Chapter 4 — The Processor — 94

Exceptions and Interrupts
 “Unexpected” events requiring change

in flow of control
 Different ISAs use the terms differently

 Exception
 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt
 From an external I/O controller

 Dealing with them without sacrificing
performance is hard

§4.9 E
x ception s

Chapter 4 — The Processor — 95

Handling Exceptions
 In MIPS, exceptions managed by a System

Control Coprocessor (CP0)
 Save PC of offending (or interrupted) instruction

 In MIPS: Exception Program Counter (EPC)
 Save indication of the problem

 In MIPS: Cause register
 We’ll assume 1-bit

 0 for undefined opcode, 1 for overflow

 Jump to handler at 8000 00180

Chapter 4 — The Processor — 96

An Alternate Mechanism
 Vectored Interrupts

 Handler address determined by the cause
 Example:

 Undefined opcode: C000 0000
 Overflow: C000 0020
 …: C000 0040

 Instructions either
 Deal with the interrupt, or
 Jump to real handler

Chapter 4 — The Processor — 97

Handler Actions
 Read cause, and transfer to relevant

handler
 Determine action required
 If restartable

 Take corrective action
 use EPC to return to program

 Otherwise
 Terminate program
 Report error using EPC, cause, …

Chapter 4 — The Processor — 98

Concluding Remarks
 ISA influences design of datapath and control
 Datapath and control influence design of ISA
 Pipelining improves instruction throughput

using parallelism
 More instructions completed per second
 Latency for each instruction not reduced

 Hazards: structural, data, control

§4.14 C
onclud ing R

em
arks

	Chapter 4
	Introduction
	Instruction Execution
	CPU Overview
	Multiplexers
	Control
	Logic Design Basics
	Combinational Elements
	Sequential Elements
	Slide 10
	Clocking Methodology
	Building a Datapath
	Instruction Fetch
	R-Format Instructions
	Load/Store Instructions
	Branch Instructions
	Slide 17
	Composing the Elements
	R-Type/Load/Store Datapath
	Full Datapath
	ALU Control
	Slide 22
	The Main Control Unit
	Datapath With Control
	R-Type Instruction
	Load Instruction
	Branch-on-Equal Instruction
	Implementing Jumps
	Datapath With Jumps Added
	Performance Issues
	Pipelining Analogy
	MIPS Pipeline
	Pipeline Performance
	Slide 34
	Pipeline Speedup
	Pipelining and ISA Design
	Hazards
	Structure Hazards
	Data Hazards
	Forwarding (aka Bypassing)
	Load-Use Data Hazard
	Code Scheduling to Avoid Stalls
	Control Hazards
	Stall on Branch
	Branch Prediction
	MIPS with Predict Not Taken
	More-Realistic Branch Prediction
	Pipeline Summary
	MIPS Pipelined Datapath
	Pipeline registers
	Pipeline Operation
	IF for Load, Store, …
	ID for Load, Store, …
	EX for Load
	MEM for Load
	WB for Load
	Corrected Datapath for Load
	EX for Store
	MEM for Store
	WB for Store
	Multi-Cycle Pipeline Diagram
	Slide 62
	Single-Cycle Pipeline Diagram
	Pipelined Control (Simplified)
	Pipelined Control
	Slide 66
	Data Hazards in ALU Instructions
	Dependencies & Forwarding
	Detecting the Need to Forward
	Slide 70
	Forwarding Paths
	Forwarding Conditions
	Double Data Hazard
	Revised Forwarding Condition
	Datapath with Forwarding
	Slide 76
	Load-Use Hazard Detection
	How to Stall the Pipeline
	Stall/Bubble in the Pipeline
	Slide 80
	Datapath with Hazard Detection
	Stalls and Performance
	Branch Hazards
	Reducing Branch Delay
	Example: Branch Taken
	Slide 86
	Data Hazards for Branches
	Slide 88
	Slide 89
	Dynamic Branch Prediction
	1-Bit Predictor: Shortcoming
	2-Bit Predictor
	Calculating the Branch Target
	Exceptions and Interrupts
	Handling Exceptions
	An Alternate Mechanism
	Handler Actions
	Concluding Remarks

