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Introduction
 CPU performance factors

 Instruction count
 Determined by ISA and compiler

 CPI and Cycle time
 Determined by CPU hardware

 We will examine two MIPS implementations
 A simplified version
 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw
 Arithmetic/logical: add, sub, and, or, slt
 Control transfer: beq, j

§4.1 Int roductio n
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Instruction Execution
 PC  instruction memory, fetch instruction
 Register numbers  register file, read registers
 Depending on instruction class

 Use ALU to calculate
 Arithmetic result
 Memory address for load/store
 Branch target address

 Access data memory for load/store
 PC  target address or PC + 4
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CPU Overview
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Multiplexers
 Can’t just join 

wires together
 Use multiplexers
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Control
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Logic Design Basics
§4.2 Lo gic D

es ign C
on ventio ns

 Information encoded in binary
 Low voltage = 0, High voltage = 1
 One wire per bit
 Multi-bit data encoded on multi-wire buses

 Combinational element
 Operate on data
 Output is a function of input

 State (sequential) elements
 Store information
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Combinational Elements

 AND-gate
 Y = A & B

A
B

Y

I0
I1

Y
M
u
x

S

 Multiplexer
 Y = S ? I1 : I0

A

B

Y+

A

B

YALU

F

 Adder
 Y = A + B

 Arithmetic/Logic Unit
 Y = F(A, B)
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Sequential Elements
 Register: stores data in a circuit

 Uses a clock signal to determine when to 
update the stored value

 Edge-triggered: update when Clk changes 
from 0 to 1

D

Clk

Q
Clk

D

Q
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Sequential Elements
 Register with write control

 Only updates on clock edge when write 
control input is 1

 Used when stored value is required later

D

Clk

Q

Write

Write

D

Q

Clk
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Clocking Methodology
 Combinational logic transforms data 

during clock cycles
 Between clock edges
 Input from state elements, output to state 

element
 Longest delay determines clock period
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Building a Datapath
 Datapath

 Elements that process data and addresses
in the CPU

 Registers, ALUs, mux’s, memories, …

 We will build a MIPS datapath 
incrementally
 Refining the overview design

§4.3 B
u ilding a  D

atapa th
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Instruction Fetch

32-bit 
register

Increment by 
4 for next 
instruction
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R-Format Instructions
 Read two register operands
 Perform arithmetic/logical operation
 Write register result
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Load/Store Instructions
 Read register operands
 Calculate address using 16-bit offset

 Use ALU, but sign-extend offset
 Load: Read memory and update register
 Store: Write register value to memory
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Branch Instructions
 Read register operands
 Compare operands

 Use ALU, subtract and check Zero output
 Calculate target address

 Sign-extend displacement
 Shift left 2 places (word displacement)
 Add to PC + 4

 Already calculated by instruction fetch
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Branch Instructions

Just
re-routes 

wires

Sign-bit wire 
replicated
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Composing the Elements
 First-cut data path does an instruction in 

one clock cycle
 Each datapath element can only do one 

function at a time
 Hence, we need separate instruction and data 

memories
 Use multiplexers where alternate data 

sources are used for different instructions



Chapter 4 — The Processor — 19

R-Type/Load/Store Datapath
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Full Datapath
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ALU Control
 ALU used for

 Load/Store: F = add
 Branch: F = subtract
 R-type: F depends on funct field

§4.4 A
 S

im
ple Im

plem
entation  S

chem
e

ALU control Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR
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ALU Control
 Assume 2-bit ALUOp derived from opcode

 Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control

lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010

beq 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

subtract 100010 subtract 0110

AND 100100 AND 0000

OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111
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The Main Control Unit
 Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always 
read

read, 
except 
for load

write for 
R-type 

and load

sign-extend 
and add
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Datapath With Control



Chapter 4 — The Processor — 25

R-Type Instruction
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Load Instruction
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Branch-on-Equal Instruction
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Implementing Jumps

 Jump uses word address
 Update PC with concatenation of

 Top 4 bits of old PC
 26-bit jump address
 00

 Need an extra control signal decoded from 
opcode

2 address

31:26 25:0

Jump
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Datapath With Jumps Added
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Performance Issues
 Longest delay determines clock period

 Critical path: load instruction
 Instruction memory  register file  ALU  

data memory  register file
 Not feasible to vary period for different 

instructions
 Violates design principle

 Making the common case fast
 We will improve performance by pipelining
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Pipelining Analogy
 Pipelined laundry: overlapping execution

 Parallelism improves performance

§4.5 A
n  O

vervi ew
 of P

ipelinin g Four loads:
 Speedup

= 8/3.5 = 2.3

 Non-stop:
 Speedup

= 2n/0.5n + 1.5 ≈ 4
= number of stages
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MIPS Pipeline
 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register
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Pipeline Performance
 Assume time for stages is

 100ps for register read or write
 200ps for other stages

 Compare pipelined datapath with single-cycle 
datapath

Instr Instr fetch Register 
read

ALU op Memory 
access

Register 
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps
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Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)
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Pipeline Speedup
 If all stages are balanced

 i.e., all take the same time
 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages
 If not balanced, speedup is less
 Speedup due to increased throughput

 Latency (time for each instruction) does not 
decrease
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Pipelining and ISA Design
 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory 

in 4th stage
 Alignment of memory operands

 Memory access takes only one cycle
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Hazards
 Situations that prevent starting the next 

instruction in the next cycle
 Structure hazards

 A required resource is busy
 Data hazard

 Need to wait for previous instruction to 
complete its data read/write

 Control hazard
 Deciding on control action depends on 

previous instruction
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Structure Hazards
 Conflict for use of a resource
 In MIPS pipeline with a single memory

 Load/store requires data access
 Instruction fetch would have to stall for that 

cycle
 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require 
separate instruction/data memories
 Or separate instruction/data caches
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Data Hazards
 An instruction depends on completion of 

data access by a previous instruction
 add $s0, $t0, $t1
sub $t2, $s0, $t3
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Forwarding (aka Bypassing)
 Use result when it is computed

 Don’t wait for it to be stored in a register
 Requires extra connections in the datapath
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Load-Use Data Hazard
 Can’t always avoid stalls by forwarding

 If value not computed when needed
 Can’t forward backward in time!
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Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in 
the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

11 cycles13 cycles
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Control Hazards
 Branch determines flow of control

 Fetching next instruction depends on branch 
outcome

 Pipeline can’t always fetch correct instruction
 Still working on ID stage of branch

 In MIPS pipeline
 Need to compare registers and compute 

target early in the pipeline
 Add hardware to do it in ID stage
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Stall on Branch
 Wait until branch outcome determined 

before fetching next instruction
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Branch Prediction
 Longer pipelines can’t readily determine 

branch outcome early
 Stall penalty becomes unacceptable

 Predict outcome of branch
 Only stall if prediction is wrong

 In MIPS pipeline
 Can predict branches not taken
 Fetch instruction after branch, with no delay
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MIPS with Predict Not Taken

Prediction 
correct

Prediction 
incorrect
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More-Realistic Branch Prediction
 Static branch prediction

 Based on typical branch behavior
 Example: loop and if-statement branches

 Predict backward branches taken
 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend
 When wrong, stall while re-fetching, and update history
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Pipeline Summary

 Pipelining improves performance by 
increasing instruction throughput
 Executes multiple instructions in parallel
 Each instruction has the same latency

 Subject to hazards
 Structure, data, control

 Instruction set design affects complexity of 
pipeline implementation

The BIG Picture
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MIPS Pipelined Datapath
§4.6 P

ip elined D
atapa th and C

ontrol

WB

MEM

Right-to-left 
flow leads to 
hazards
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Pipeline registers
 Need registers between stages

 To hold information produced in previous cycle
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Pipeline Operation
 Cycle-by-cycle flow of instructions through 

the pipelined datapath
 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle
 Highlight resources used

 c.f. “multi-clock-cycle” diagram
 Graph of operation over time

 We’ll look at “single-clock-cycle” diagrams 
for load & store
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IF for Load, Store, …
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ID for Load, Store, …
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EX for Load
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MEM for Load
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WB for Load

Wrong
register
number
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Corrected Datapath for Load
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EX for Store
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MEM for Store
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WB for Store
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Multi-Cycle Pipeline Diagram
 Form showing resource usage
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Multi-Cycle Pipeline Diagram
 Traditional form



Chapter 4 — The Processor — 63

Single-Cycle Pipeline Diagram
 State of pipeline in a given cycle
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Pipelined Control (Simplified)
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Pipelined Control
 Control signals derived from instruction

 As in single-cycle implementation
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Pipelined Control
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Data Hazards in ALU Instructions

 Consider this sequence:
sub $2, $1,$3
and $12,$2,$5
or  $13,$6,$2
add $14,$2,$2
sw  $15,100($2)

 We can resolve hazards with forwarding
 How do we detect when to forward?

§4.7 D
a ta H

az ards: F
o rw

ardi ng vs. S
talling



Chapter 4 — The Processor — 68

Dependencies & Forwarding
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Detecting the Need to Forward

 Pass register numbers along pipeline
 e.g., ID/EX.RegisterRs = register number for Rs 

sitting in ID/EX pipeline register
 ALU operand register numbers in EX stage 

are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg
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Detecting the Need to Forward

 But only if forwarding instruction will write 
to a register!
 EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not 
$zero
 EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0
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Forwarding Paths
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Forwarding Conditions
 EX hazard

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
    and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
  ForwardA = 10

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
    and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
  ForwardB = 10

 MEM hazard
 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

    and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
  ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
    and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
  ForwardB = 01
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Double Data Hazard
 Consider the sequence:

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

 Both hazards occur
 Want to use the most recent

 Revise MEM hazard condition
 Only fwd if EX hazard condition isn’t true
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Revised Forwarding Condition
 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

    and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

                 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

    and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

  ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

    and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

                 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

    and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

  ForwardB = 01
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Datapath with Forwarding
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Load-Use Data Hazard

Need to stall 
for one cycle
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Load-Use Hazard Detection
 Check when using instruction is decoded 

in ID stage
 ALU operand register numbers in ID stage 

are given by
 IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when
 ID/EX.MemRead and

  ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
   (ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble
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How to Stall the Pipeline
 Force control values in ID/EX register

to 0
 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register
 Using instruction is decoded again
 Following instruction is fetched again
 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage
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Stall/Bubble in the Pipeline

Stall inserted 
here
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Stall/Bubble in the Pipeline

Or, more 
accurately…
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Datapath with Hazard Detection
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Stalls and Performance

 Stalls reduce performance
 But are required to get correct results

 Compiler can arrange code to avoid 
hazards and stalls
 Requires knowledge of the pipeline structure

The BIG Picture
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Branch Hazards
 If branch outcome determined in MEM

§4.8 C
o ntrol H

azards

PC

Flush these
instructions
(Set control
values to 0)
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Reducing Branch Delay
 Move hardware to determine outcome to ID 

stage
 Target address adder
 Register comparator

 Example: branch taken
36:  sub  $10, $4, $8
40:  beq  $1,  $3, 7
44:  and  $12, $2, $5
48:  or   $13, $2, $6
52:  add  $14, $4, $2
56:  slt  $15, $6, $7
     ...
72:  lw   $4, 50($7)
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Example: Branch Taken
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Example: Branch Taken
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Data Hazards for Branches
 If a comparison register is a destination of 

2nd or 3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

 Can resolve using forwarding
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Data Hazards for Branches
 If a comparison register is a destination of 

preceding ALU instruction or 2nd preceding 
load instruction
 Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw  $1, addr

beq $1, $4, target
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Data Hazards for Branches
 If a comparison register is a destination of 

immediately preceding load instruction
 Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw  $1, addr

beq $1, $0, target
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Dynamic Branch Prediction
 In deeper and superscalar pipelines, branch 

penalty is more significant
 Use dynamic prediction

 Branch prediction buffer (aka branch history table)
 Indexed by recent branch instruction addresses
 Stores outcome (taken/not taken)
 To execute a branch

 Check table, expect the same outcome
 Start fetching from fall-through or target
 If wrong, flush pipeline and flip prediction
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1-Bit Predictor: Shortcoming
 Inner loop branches mispredicted twice!

outer: …
       …
inner: …
       …
       beq …, …, inner
       …
       beq …, …, outer

 Mispredict as taken on last iteration of 
inner loop

 Then mispredict as not taken on first 
iteration of inner loop next time around
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2-Bit Predictor
 Only change prediction on two successive 

mispredictions
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Calculating the Branch Target
 Even with predictor, still need to calculate 

the target address
 1-cycle penalty for a taken branch

 Branch target buffer
 Cache of target addresses
 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken, can 
fetch target immediately
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Exceptions and Interrupts
 “Unexpected” events requiring change

in flow of control
 Different ISAs use the terms differently

 Exception
 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt
 From an external I/O controller

 Dealing with them without sacrificing 
performance is hard

§4.9 E
x ception s
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Handling Exceptions
 In MIPS, exceptions managed by a System 

Control Coprocessor (CP0)
 Save PC of offending (or interrupted) instruction

 In MIPS: Exception Program Counter (EPC)
 Save indication of the problem

 In MIPS: Cause register
 We’ll assume 1-bit

 0 for undefined opcode, 1 for overflow

 Jump to handler at 8000 00180
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An Alternate Mechanism
 Vectored Interrupts

 Handler address determined by the cause
 Example:

 Undefined opcode: C000 0000
 Overflow: C000 0020
 …: C000 0040

 Instructions either
 Deal with the interrupt, or
 Jump to real handler
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Handler Actions
 Read cause, and transfer to relevant 

handler
 Determine action required
 If restartable

 Take corrective action
 use EPC to return to program

 Otherwise
 Terminate program
 Report error using EPC, cause, …
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Concluding Remarks
 ISA influences design of datapath and control
 Datapath and control influence design of ISA
 Pipelining improves instruction throughput

using parallelism
 More instructions completed per second
 Latency for each instruction not reduced

 Hazards: structural, data, control

§4.14 C
onclud ing R

em
arks
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