
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 3: Processes

 Process Concept
 Process Scheduling
 Operations on Processes
 Interprocess Communication
 Examples of IPC Systems
 Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the notion of a process -- a program in execution, which forms the basis of all
computation

 To describe the various features of processes, including scheduling, creation and termination,
and communication

 To describe communication in client-server systems

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

 An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must progress in sequential fashion

 A process includes:
 program counter
 stack
 data section

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Process

 Multiple parts
 The program code, also called text section
 Current activity including program counter, processor registers
 Stack containing temporary data

 Function parameters, return addresses, local variables
 Data section containing global variables
 Heap containing memory dynamically allocated during run time

 Program is passive entity, process is active
 Program becomes process when executable file loaded into memory

 Execution of program started via GUI mouse clicks, command line entry of its name, etc
 One program can be several processes

 Consider multiple users executing the same program

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process in Memory

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process State

 As a process executes, it changes state
 new: The process is being created
 running: Instructions are being executed
 waiting: The process is waiting for some event to occur
 ready: The process is waiting to be assigned to a processor
 terminated: The process has finished execution

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Diagram of Process State

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

Information associated with each process
 Process state
 Program counter
 CPU registers
 CPU scheduling information
 Memory-management information
 Accounting information
 I/O status information

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Switch From Process to Process

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for time sharing
 Process scheduler selects among available processes for next execution on CPU
 Maintains scheduling queues of processes

 Job queue – set of all processes in the system
 Ready queue – set of all processes residing in main memory, ready and waiting to

execute
 Device queues – set of processes waiting for an I/O device
 Processes migrate among the various queues

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Representation in Linux

 Represented by the C structure task_struct
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */ struct task struct *parent; /*
this process’s parent */ struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */ struct mm struct *mm; /*
address space of this pro */

3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ready Queue And Various
I/O Device Queues

3.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Representation of Process Scheduling

3.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers

 Long-term scheduler (or job scheduler) – selects which processes should be brought into the
ready queue

 Short-term scheduler (or CPU scheduler) – selects which process should be executed next and
allocates CPU

 Sometimes the only scheduler in a system

3.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers (Cont.)

 Short-term scheduler is invoked very frequently (milliseconds)  (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes)  (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than computations, many short CPU bursts
 CPU-bound process – spends more time doing computations; few very long CPU bursts

3.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Addition of Medium Term Scheduling

3.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Context Switch

 When CPU switches to another process, the system must save the state of the old process and load the
saved state for the new process via a context switch.

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work while switching
 The more complex the OS and the PCB -> longer the context switch

 Time dependent on hardware support
 Some hardware provides multiple sets of registers per CPU -> multiple contexts loaded at once

3.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

 Parent process create children processes, which, in turn create other processes, forming a tree of
processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

 Execution
 Parent and children execute concurrently
 Parent waits until children terminate

3.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation (Cont.)

 Address space
 Child duplicate of parent
 Child has a program loaded into it

 UNIX examples
 fork system call creates new process
 exec system call used after a fork to replace the process’ memory space with a new program

3.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

3.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

C Program Forking Separate Process
include < sys/types.h>
include < studio.h>
include < unistd.h>
int m ain()
{
pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid = = 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent w ill w ait for the child */
w ait (NULL);
printf ("Child Com plete");

}
return 0;

}

3.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A Tree of Processes on Solaris

3.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Termination

 Process executes last statement and asks the operating system to delete it (exit)
 Output data from child to parent (via wait)
 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)
 Child has exceeded allocated resources
 Task assigned to child is no longer required
 If parent is exiting

 Some operating systems do not allow child to continue if its parent terminates
– All children terminated - cascading termination

3.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating
 Cooperating process can affect or be affected by other processes, including sharing data
 Reasons for cooperating processes:

 Information sharing
 Computation speedup
 Modularity
 Convenience

 Cooperating processes need interprocess communication (IPC)
 Two models of IPC

 Shared memory
 Message passing

3.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications Models

3.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Cooperating Processes

 Independent process cannot affect or be affected by the execution of another process

 Cooperating process can affect or be affected by the execution of another process

 Advantages of process cooperation
 Information sharing
 Computation speed-up
 Modularity
 Convenience

3.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces information that is
consumed by a consumer process

 unbounded-buffer places no practical limit on the size of the buffer
 bounded-buffer assumes that there is a fixed buffer size

3.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer –
Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

3.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer – Producer

w hile (true) {
 /* Produce an item */

 w hile (((in = (in + 1) % BUFFER SIZE count) = = out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item ;

 in = (in + 1) % BUFFER SIZE;

 }

3.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded Buffer – Consumer

w hile (true) {

 w hile (in = = out)

 ; // do nothing -- nothing to consum e

 // rem ove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

return item ;

 }

3.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication –
Message Passing

 Mechanism for processes to communicate and to synchronize their actions
 Message system – processes communicate with each other without resorting to shared variables
 IPC facility provides two operations:

 send(message) – message size fixed or variable
 receive(message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them
 exchange messages via send/receive

 Implementation of communication link
 physical (e.g., shared memory, hardware bus)
 logical (e.g., logical properties)

3.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Implementation Questions

 How are links established?
 Can a link be associated with more than two processes?
 How many links can there be between every pair of communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can accommodate fixed or variable?
 Is a link unidirectional or bi-directional?

3.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Direct Communication

 Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of communicating processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

3.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indirect Communication

 Messages are directed and received from mailboxes (also referred to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

3.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indirect Communication

 Operations
 create a new mailbox
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

3.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indirect Communication

 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Solutions
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive operation
 Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

3.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Synchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous
 Blocking send has the sender block until the message is received
 Blocking receive has the receiver block until a message is available

 Non-blocking is considered asynchronous
 Non-blocking send has the sender send the message and continue
 Non-blocking receive has the receiver receive a valid message or null

3.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Buffering

 Queue of messages attached to the link; implemented in one of three ways
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n messages

Sender must wait if link full
3. Unbounded capacity – infinite length

Sender never waits

3.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems - POSIX

 POSIX Shared Memory
 Process first creates shared memory segment
segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);

 Process wanting access to that shared memory must attach to it
shared memory = (char *) shmat(id, NULL, 0);

 Now the process could write to the shared memory
sprintf(shared memory, "Writing to shared memory");

 When done a process can detach the shared memory from its address space
shmdt(shared memory);

3.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems - Mach

 Mach communication is message based
 Even system calls are messages
 Each task gets two mailboxes at creation- Kernel and Notify
 Only three system calls needed for message transfer
msg_send(), msg_receive(), msg_rpc()

 Mailboxes needed for commuication, created via
port_allocate()

3.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems – Windows XP

 Message-passing centric via local procedure call (LPC) facility
 Only works between processes on the same system
 Uses ports (like mailboxes) to establish and maintain communication channels
 Communication works as follows:

 The client opens a handle to the subsystem’s connection port object.
 The client sends a connection request.
 The server creates two private communication ports and returns the handle to one of them to

the client.
 The client and server use the corresponding port handle to send messages or callbacks and to

listen for replies.

3.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Local Procedure Calls in Windows XP

3.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications in Client-Server Systems

 Sockets

 Remote Procedure Calls

 Pipes

 Remote Method Invocation (Java)

3.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

3.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Socket Communication

3.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls between processes on networked systems

 Stubs – client-side proxy for the actual procedure on the server

 The client-side stub locates the server and marshalls the parameters

 The server-side stub receives this message, unpacks the marshalled parameters, and performs the
procedure on the server

3.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Execution of RPC

3.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pipes

 Acts as a conduit allowing two processes to communicate

 Issues
 Is communication unidirectional or bidirectional?
 In the case of two-way communication, is it half or full-duplex?
 Must there exist a relationship (i.e. parent-child) between the communicating processes?
 Can the pipes be used over a network?

3.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ordinary Pipes

 Ordinary Pipes allow communication in standard producer-consumer style

 Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the pipe)

 Ordinary pipes are therefore unidirectional

 Require parent-child relationship between communicating processes

3.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ordinary Pipes

3.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Named Pipes

 Named Pipes are more powerful than ordinary pipes

 Communication is bidirectional

 No parent-child relationship is necessary between the communicating processes

 Several processes can use the named pipe for communication

 Provided on both UNIX and Windows systems

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

End of Chapter 3

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 4: Threads

4.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 4: Threads

 Overview
 Multithreading Models
 Thread Libraries
 Threading Issues
 Operating System Examples
 Windows XP Threads
 Linux Threads

4.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of
multithreaded computer systems

 To discuss the APIs for the Pthreads, Win32, and Java thread libraries

 To examine issues related to multithreaded programming

4.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Motivation

 Threads run within application
 Multiple tasks with the application can be implemented by separate threads

 Update display
 Fetch data
 Spell checking
 Answer a network request

 Process creation is heavy-weight while thread creation is light-weight
 Can simplify code, increase efficiency
 Kernels are generally multithreaded

4.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Single and Multithreaded Processes

4.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Benefits

 Responsiveness

 Resource Sharing

 Economy

 Scalability

4.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multicore Programming

 Multicore systems putting pressure on programmers, challenges include:
 Dividing activities
 Balance
 Data splitting
 Data dependency
 Testing and debugging

4.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreaded Server Architecture

4.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Concurrent Execution on a
Single-core System

4.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Parallel Execution on a
Multicore System

4.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User Threads

 Thread management done by user-level threads library

 Three primary thread libraries:
 POSIX Pthreads
 Win32 threads
 Java threads

4.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Kernel Threads

 Supported by the Kernel

 Examples
 Windows XP/2000
 Solaris
 Linux
 Tru64 UNIX
 Mac OS X

4.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

4.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-One

 Many user-level threads mapped to single kernel thread

 Examples:
 Solaris Green Threads
 GNU Portable Threads

4.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-One Model

4.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

One-to-One

 Each user-level thread maps to kernel thread

 Examples
 Windows NT/XP/2000
 Linux
 Solaris 9 and later

4.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

One-to-one Model

4.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-Many Model

 Allows many user level threads to be mapped to many kernel threads

 Allows the operating system to create a sufficient number of kernel threads

 Solaris prior to version 9

 Windows NT/2000 with the ThreadFiber package

4.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-Many Model

4.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-level Model

 Similar to M:M, except that it allows a user thread to be bound to kernel thread

 Examples
 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier

4.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-level Model

4.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Libraries

 Thread library provides programmer with API for creating and managing threads

 Two primary ways of implementing
 Library entirely in user space
 Kernel-level library supported by the OS

4.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

 API specifies behavior of the thread library, implementation is up to development of the library

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

4.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Example

4.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Example (Cont.)

4.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Win32 API Multithreaded C Program

4.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Win32 API Multithreaded C Program (Cont.)

4.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Threads

 Java threads are managed by the JVM

 Typically implemented using the threads model provided by underlying OS

 Java threads may be created by:

 Extending Thread class
 Implementing the Runnable interface

4.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Multithreaded Program

4.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Multithreaded Program (Cont.)

4.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues

 Semantics of fork() and exec() system calls

 Thread cancellation of target thread
 Asynchronous or deferred

 Signal handling
 Synchronous and asynchronous

4.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues (Cont.)

 Thread pools
 Thread-specific data

 Create Facility needed for data private to thread
 Scheduler activations

4.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semantics of fork() and exec()

 Does fork() duplicate only the calling thread or all threads?

4.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Cancellation

 Terminating a thread before it has finished

 Two general approaches:
 Asynchronous cancellation terminates the target thread immediately.
 Deferred cancellation allows the target thread to periodically check if it should be cancelled.

4.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Signal Handling

 Signals are used in UNIX systems to notify a process that a particular event has occurred.

 A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

 Options:
 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals for the process

4.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:
 Usually slightly faster to service a request with an existing thread than create a new thread
 Allows the number of threads in the application(s) to be bound to the size of the pool

4.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Specific Data

 Allows each thread to have its own copy of data

 Useful when you do not have control over the thread creation process (i.e., when using a thread pool)

4.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduler Activations

 Both M:M and Two-level models require communication to maintain the appropriate number of kernel
threads allocated to the application

 Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread
library

 This communication allows an application to maintain the correct number kernel threads

4.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Lightweight Processes

4.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Examples

 Windows XP Threads

 Linux Thread

4.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Threads Data Structures

4.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Threads

 Implements the one-to-one mapping, kernel-level

 Each thread contains
 A thread id
 Register set
 Separate user and kernel stacks
 Private data storage area

 The register set, stacks, and private storage area are known as the context of the threads

 The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)

4.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the parent task (process)

 struct task_struct points to process data structures (shared or unique)

4.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Threads
 fork() and clone() system calls
 Doesn’t distinguish between process and thread

 Uses term task rather than thread
 clone() takes options to determine sharing on process create
 struct task_struct points to process data structures (shared or unique)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

End of Chapter 4

