Chapter 3: Processes

Operating System Concepts — 8" Edition Silberschatz, Galvin and Gagne ©2009

Chapter 3: Processes

Process Concept

Process Scheduling

Operations on Processes

Interprocess Communication

Examples of IPC Systems
Communication in Client-Server Systems

Operating System Concepts — 8t Edition 3.2 Silberschatz, Galvin and Gagne ©2009

Objectives

B To introduce the notion of a process -- a program in execution, which forms the basis of all
computation

B To describe the various features of processes, including scheduling, creation and termination,
and communication

B To describe communication in client-server systems

ek \'i<"’
L B

Operating System Concepts — 8t Edition 3.3 Silberschatz, Galvin and Gagne ©2009

Process Concept

B An operating system executes a variety of programs:
® Batch system — jobs
® Time-shared systems — user programs or tasks

B Textbook uses the terms job and process almost interchangeably
B Process — a program in execution; process execution must progress in sequential fashion

B A process includes:
® program counter
® stack
® data section

Operating System Concepts — 8t Edition 3.4 Silberschatz, Galvin and Gagne ©2009

The Process

B Multiple parts

® The program code, also called text section

® Current activity including program counter, processor registers

® Stack containing temporary data

» Function parameters, return addresses, local variables

® Data section containing global variables

® Heap containing memory dynamically allocated during run time
B Program is passive entity, process is active

® Program becomes process when executable file loaded into memory
B Execution of program started via GUI mouse clicks, command line entry of its name, etc
B One program can be several processes

® Consider multiple users executing the same program

3 i - ‘JPV/)
4 UM

Operating System Concepts — 8t Edition 3.5 Silberschatz, Galvin and Gagne ©2009

Process in Memory

max
stack

heap

data

text

78D %
Operating System Concepts — 8t Edition 3.6 Silberschatz, Galvin and Gagne ©2009

Process State

B As aprocess executes, it changes state

new: The process is being created

running: Instructions are being executed

waiting: The process is waiting for some event to occur
ready: The process is waiting to be assigned to a processor
terminated: The process has finished execution

Operating System Concepts — 8" Edition 3.7

4 B>

Silberschatz, Galvin and Gagne ©2009

Diagram of Process State

o admitted interrupt exit

scheduler dispatch

I/O or event completion /O or event walit

‘41[;,:ﬁ‘
Operating System Concepts — 8t Edition 3.8 Silberschatz, Galvin and Gagne ©2009

Process Control Block (PCB)

Information associated with each process
B Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

I/O status information

‘4/1[n:‘.x\u‘
Operating System Concepts — 8t Edition 3.9 Silberschatz, Galvin and Gagne ©2009

Process Control Block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

? A
SO
s

S S
> S s ‘\“/)
V.. G
A ﬁ\”
Operating System Concepts — 8t Edition 3.10 Silberschatz, Galvin and Gagne ©2009

“»>7 CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing / l

B save state into PCB,

>~ idle

reload state from PCB, y

- idle interrupt or system call executing

| T

save state into PCB,

. > idle

) reload state from PCB, y

Operating System Concepts — 8t Edition 3.11 Silberschatz, Galvin and Gagne ©2009

Process Scheduling

B Maximize CPU use, quickly switch processes onto CPU for time sharing

B Process scheduler selects among available processes for next execution on CPU
B Maintains scheduling queues of processes

® Job queue — set of all processes in the system

® Ready queue — set of all processes residing in main memory, ready and waiting to
execute

® Device queues — set of processes waiting for an 1/0O device
® Processes migrate among the various queues

Operating System Concepts — 8t Edition 3.12 Silberschatz, Galvin and Gagne ©2009

|) - 7 i
“»”7 Process Representation in Linux

B Represented by the C structure task_struct
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */ struct task struct *parent; /*
this process’s parent */ struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */ struct mm struct *mm; /*
address space of this pro */

o Pl
=lnuct task =lruct Siruct tesk_shruct gtnuct tagk_ siruct
PrisCeEs imharmaticn prisCeEs inhormation & & & pProcass irdommEisn
™ ™ ™
- - ™
- - ™
ciirrent

[currantly axaculing proccess)

Operating System Concepts — 8t Edition 3.13 Silberschatz, Galvin and Gagne ©2009

Ready Queue And Various
/O Device Queues

queue header PCB, PCB,
ready head at >
gqueue tail N registers registers
mag head '—_._\ /
tape : -
unit 0 tail i =
{‘rlag head ———=
ape
uni!cj1 @il]) PCB, PCB,, PCBg
/ —_— —
disk head 7
unit o Ll "\
PCB;
terminal head T—> B =
unit O tail 1
3.14

Operating System Concepts — 8t Edition

Silberschatz, Galvin and Gagne ©2009

*/ Representation of Process Scheduling

: ready queue @) >

/0O /O gqueue «— |/O request —
time slice E
expired

Interrupt walit for an
OCCUrS Interrupt

child fork a
@ child

Operating System Concepts — 8t Edition 3.15 Silberschatz, Galvin and Gagne ©2009

Schedulers

B Long-term scheduler (or job scheduler) — selects which processes should be brought into the
ready queue

B Short-term scheduler (or CPU scheduler) — selects which process should be executed next and
allocates CPU

® Sometimes the only scheduler in a system

Operating System Concepts — 8" Edition 3.16

Schedulers (Cont.)

B Short-term scheduler is invoked very frequently (milliseconds) = (must be fast)
B Long-term scheduler is invoked very infrequently (seconds, minutes) = (may be slow)
B The long-term scheduler controls the degree of multiprogramming

B Processes can be described as either:
® |/O-bound process — spends more time doing I/O than computations, many short CPU bursts
® CPU-bound process — spends more time doing computations; few very long CPU bursts

Operating System Concepts — 8t Edition 3.17 Silberschatz, Galvin and Gagne ©2009

> Addition of Medium Term Scheduling

swap in partially executed

swapped-out processes

swap out

ready queue

YYyY

-@}_ » end

e

I/O waiting
queues

Operating System Concepts — 8" Edition 3.18

%/1[; n:‘.x\u‘
Silberschatz, Galvin and Gagne ©2009

Context Switch

B When CPU switches to another process, the system must save the state of the old process and load the
saved state for the new process via a context switch.

B Context of a process represented in the PCB

B Context-switch time is overhead; the system does no useful work while switching
® The more complex the OS and the PCB -> longer the context switch

B Time dependent on hardware support
® Some hardware provides multiple sets of registers per CPU -> multiple contexts loaded at once

Operating System Concepts — 8t Edition 3.19 Silberschatz, Galvin and Gagne ©2009

Process Creation

B Parent process create children processes, which, in turn create other processes, forming a tree of
processes

B Generally, process identified and managed via a process identifier (pid)

B Resource sharing
® Parent and children share all resources
® Children share subset of parent’s resources
® Parent and child share no resources

B Execution
® Parent and children execute concurrently
® Parent waits until children terminate

Operating System Concepts — 8t Edition 3.20 Silberschatz, Galvin and Gagne ©2009

Process Creation (Cont.)

B Address space
® Child duplicate of parent
® Child has a program loaded into it

B UNIX examples
® fork system call creates new process
® exec system call used after a fork to replace the process’ memory space with a new program

‘4/1[;;5\\5,\
Operating System Concepts — 8t Edition 3.21 Silberschatz, Galvin and Gagne ©2009

r 4 Process Creation

parent ; resumes
walt =S

child - exec() »

‘41[;,:ﬁ‘
Operating System Concepts — 8t Edition 3.22 Silberschatz, Galvin and Gagne ©2009

s
=

~$%7 C Program Forking Separate Process

nclude < sys/types.h>
include < studio .h>
nclude <unistd .h>
ntmamn()
{
pd_t pd;
/* fork anotherprocess */
pd = fork();
if (pd < 0){ Aernoroccurred */
forintf(stderr, "Fork Faied");
retum 1;
}
else if (pd == 0){ /4 chid process */
exech ("pin/s","ls",NULL);
}
else { /¥ parentprocess */
/f parentw illw ait forthe chid */
wal NULL);
printf ("Chid Com plete");
}
retum 0;

}

Operating System Concepts — 8t Edition 3.23 Silberschatz, Galvin and Gagne ©2009

A Tree of Processes on Solaris

Sched
pid =0

pageout
pid =2

Inetd dtlogin
pid = 140 pid = 251

telnetdaemon X_session
pid =7776 pid = 294

Csh sdt_shel
pid =7778 pid = 340
Csh
pid = 1400
Netscape emacs
pid = 7785 pid = 8105

Operating System Concepts — 8t Edition 3.24 Silberschatz, Galvin and Gagne ©2009

557 Process Termination

B Process executes last statement and asks the operating system to delete it (exit)
® Output data from child to parent (via wait)
® Process’ resources are deallocated by operating system

B Parent may terminate execution of children processes (abort)
® Child has exceeded allocated resources
® Task assigned to child is no longer required
® |If parent is exiting
» Some operating systems do not allow child to continue if its parent terminates
All children terminated - cascading termination

Operating System Concepts — 8t Edition 3.25 Silberschatz, Galvin and Gagne ©2009

- ot Interprocess Communication

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes, including sharing data
B Reasons for cooperating processes:
® Information sharing
® Computation speedup
® Modularity
® Convenience
Cooperating processes need interprocess communication (IPC)
B Two models of IPC
® Shared memory

® Message passing

Operating System Concepts — 8" Edition 3.26

Communications Models

process A

process B

kernel

(a)

Operating System Concepts — 8t Edition

3.27

process A

shared

process B

it

kernel

(b)

‘41[A’ \
Silberschatz, Galvin and Gagne ©2009

Cooperating Processes

B Independent process cannot affect or be affected by the execution of another process
B Cooperating process can affect or be affected by the execution of another process

B Advantages of process cooperation
® Information sharing
® Computation speed-up
® Modularity
® (Convenience

Operating System Concepts — 8" Edition 3.28

Producer-Consumer Problem

B Paradigm for cooperating processes, producer process produces information that is
consumed by a consumer process

® unbounded-buffer places no practical limit on the size of the buffer
® bounded-buffer assumes that there is a fixed buffer size

Operating System Concepts — 8t Edition 3.29 Silberschatz, Galvin and Gagne ©2009

Bounded-Buffer -
Shared-Memory Solution

M Shared data

#define BUFFER_SIZE 10
typedef struct {

} item;

item buffer[BUFFER_SIZE];
intin = 0;

int out = 0;

B Solution is correct, but can only use BUFFER_SIZE-1 elements

> S NERY
A k,)‘v'
y G
4 B
Operating System Concepts — 8t Edition 3.30 Silberschatz, Galvin and Gagne ©2009

Bounded-Buffer — Producer

w hie (true) {
/* Produce an 1tem */

whie ((mn= (n+ 1)% BUFFER SIZE count) == out)
» /A do nothing --no free bufé&rs */
bufé&r[in] = dem ;
h= (n+ 1)% BUFFER SIZE;
}

4 r/ - T‘_ .,s]

> s W
A ﬁ\gn

Operating System Concepts — 8t Edition 3.31 Silberschatz, Galvin and Gagne ©2009

Bounded Buffer —- Consumer

w hie (true) {
whie (n == out)
» //do nothing --nothing to consum e

// rem ove an item from the bufé&r
mem = bufé&rfout];

out= (out+ 1)% BUFFER SIZE;
retum 1iem ;

}

4 r/ - T‘_ .,s]

> s W
AU ﬁ\gb

Operating System Concepts — 8t Edition 3.32 Silberschatz, Galvin and Gagne ©2009

Interprocess Communication -
Message Passing

B Mechanism for processes to communicate and to synchronize their actions
B Message system — processes communicate with each other without resorting to shared variables
B |PC facility provides two operations:

® send(message) — message size fixed or variable
® receive(message)
B If Pand Q wish to communicate, they need to:
® establish a communication link between them
® exchange messages via send/receive
B Implementation of communication link
® physical (e.g., shared memory, hardware bus)
® |Jogical (e.g., logical properties)

Operating System Concepts — 8t Edition 3.33 Silberschatz, Galvin and Gagne ©2009

Implementation Questions

How are links established?

Can a link be associated with more than two processes?

How many links can there be between every pair of communicating processes?
What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or variable?

Is a link unidirectional or bi-directional?

Operating System Concepts — 8t Edition 3.34

"

<57 Direct Communication

B Processes must name each other explicitly:
® send (P, message) — send a message to process P
® receive(Q, message) — receive a message from process Q

B Properties of communication link
® Links are established automatically
® Alink is associated with exactly one pair of communicating processes
® Between each pair there exists exactly one link
® The link may be unidirectional, but is usually bi-directional

Operating System Concepts — 8t Edition 3.35 Silberschatz, Galvin and Gagne ©2009

o Indirect Communication

B Messages are directed and received from mailboxes (also referred to as ports)
® Each mailbox has a unique id
® Processes can communicate only if they share a mailbox

B Properties of communication link
® Link established only if processes share a common mailbox
® Alink may be associated with many processes
® Each pair of processes may share several communication links
® Link may be unidirectional or bi-directional

Operating System Concepts — 8t Edition 3.36 Silberschatz, Galvin and Gagne ©2009

Indirect Communication

B Operations
® create a new mailbox
® send and receive messages through mailbox
® destroy a mailbox

B Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

Operating System Concepts — 8t Edition 3.37 Silberschatz, Galvin and Gagne ©2009

Indirect Communication

B Mailbox sharing
e P, P, and P, share mailbox A
® P, sends; P,and P, receive

® Who gets the message?

B Solutions
® Allow a link to be associated with at most two processes
® Allow only one process at a time to execute a receive operation
® Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Operating System Concepts — 8" Edition 3.38

Synchronization

B Message passing may be either blocking or non-blocking

B Blocking is considered synchronous
® Blocking send has the sender block until the message is received
® Blocking receive has the receiver block until a message is available

B Non-blocking is considered asynchronous
® Non-blocking send has the sender send the message and continue
® Non-blocking receive has the receiver receive a valid message or null

Operating System Concepts — 8" Edition 3.39

Silberschatz, Galvin and Gagne ©2009

Buffering

B Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

Operating System Concepts — 8t Edition 3.40

<$%7 Examples of IPC Systems - POSIX

e\

B POSIX Shared Memory
® Process first creates shared memory segment
segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);
® Process wanting access to that shared memory must attach to it
shared memory = (char *) shmat(id, NULL, 0);
® Now the process could write to the shared memory
sprintf(shared memory, "Writing to shared memory");
® When done a process can detach the shared memory from its address space
shmdt (shared memory);

Operating System Concepts — 8t Edition 3.41

\u 7 Examples of IPC Systems - Mach

B Mach communication is message based
® Even system calls are messages
® Each task gets two mailboxes at creation- Kernel and Notify
® Only three system calls needed for message transfer
msg_send(), msg_receive(), msg_rpc()
® Mailboxes needed for commuication, created via
port_allocate()

Operating System Concepts — 8t Edition 3.42

Examples of IPC Systems - Windows XP

B Message-passing centric via local procedure call (LPC) facility
® Only works between processes on the same system
® Uses ports (like mailboxes) to establish and maintain communication channels
® Communication works as follows:
» The client opens a handle to the subsystem’s connection port object.
> The client sends a connection request.

> The server creates two private communication ports and returns the handle to one of them to
the client.

» The client and server use the corresponding port handle to send messages or callbacks and to
listen for replies.

Operating System Concepts — 8t Edition 3.43 Silberschatz, Galvin and Gagne ©2009

S

“4%7 Local Procedure Calls in Windows XP

Client Server
Connection
request Connection Handle
e
Port
Handle Client

Communication Port

1 s

Server Handle
Communication Fort

Shared
<o » Section Object |« =
(< = 256 bytes)

Operating System Concepts — 8t Edition 3.44 Silberschatz, Galvin and Gagne ©2009

»”7 Communications in Client-Server Systems

N\

B Sockets

B Remote Procedure Calls

B Pipes

B Remote Method Invocation (Java)

Operating System Concepts — 8t Edition 3.45

Sockets

B A socket is defined as an endpoint for communication

B Concatenation of IP address and port

B The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

B Communication consists between a pair of sockets

Operating System Concepts — 8t Edition 3.46 Silberschatz, Galvin and Gagne ©2009

Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
G255 98-8 @)

‘4/1[n:‘.x\u‘
Operating System Concepts — 8t Edition 3.47 Silberschatz, Galvin and Gagne ©2009

Remote Procedure Calls

B Remote procedure call (RPC) abstracts procedure calls between processes on networked systems
B Stubs — client-side proxy for the actual procedure on the server
B The client-side stub locates the server and marshalls the parameters

B The server-side stub receives this message, unpacks the marshalled parameters, and performs the
procedure on the server

Operating System Concepts — 8t Edition 3.48

Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to

messages

From: client
To: server
Port: matchmaker

server

matchmaker
receives

Y

matchmaker to
find port number

kernel places

Re: address
for RPC X

From: server
To: client

message, looks
up answer

h 4

matchmaker

port Pin user |
RPC message

kernel sends

FPort: kernel
Re: RPC X
Port: P

From: client
To: server

replies to client
with port P

daemon
listening to

RPC

kernel receives

Port: port P
<contents>

From: RPC
Port: P

Y

port P receives
message

h 4

daemon
processes

reply, passes =
it to user

Operating System Concepts — 8t Edition

To: client
Port: kernel
<output=>

3.49

request and
processes send
output

Silberschatz, Galvin and Gagne ©2009

Pipes

B Acts as a conduit allowing two processes to communicate

B Issues
® |s communication unidirectional or bidirectional?
® In the case of two-way communication, is it half or full-duplex?
® Must there exist a relationship (i.e. parent-child) between the communicating processes?
® Can the pipes be used over a network?

Operating System Concepts — 8t Edition 3.50 Silberschatz, Galvin and Gagne ©2009

Ordinary Pipes

B Ordinary Pipes allow communication in standard producer-consumer style
B Producer writes to one end (the write-end of the pipe)

B Consumer reads from the other end (the read-end of the pipe)

B Ordinary pipes are therefore unidirectional

B Require parent-child relationship between communicating processes

Operating System Concepts — 8" Edition 3.51

Silberschatz, Galvin and Gagne ©2009

Ordinary Pipes

parent child
fd{0) fd{1) fd{O) fd{1)

S =

‘4/1[;,‘.x G
Operating System Concepts — 8t Edition 3.52 Silberschatz, Galvin and Gagne ©2009

Named Pipes

B Named Pipes are more powerful than ordinary pipes

B Communication is bidirectional

B No parent-child relationship is necessary between the communicating processes
B Several processes can use the named pipe for communication

B Provided on both UNIX and Windows systems

L B

Operating System Concepts — 8t Edition 3.53 Silberschatz, Galvin and Gagne ©2009

End of Chapter 3

Operating System Concepts — 8" Edition Silberschatz, Galvin and Gagne ©2009

Chapter 4: Threads

Operating System Concepts — 8™ Edition Silberschatz, Galvin and Gagne ©2009

Chapter 4: Threads

Overview

Multithreading Models
Thread Libraries

Threading Issues

Operating System Examples
Windows XP Threads

Linux Threads

78D %
Operating System Concepts — 8t Edition 4.2 Silberschatz, Galvin and Gagne ©2009

Objectives

B To introduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of
multithreaded computer systems

B To discuss the APIs for the Pthreads, Win32, and Java thread libraries

B To examine issues related to multithreaded programming

Operating System Concepts — 8t Edition 4.3 Silberschatz, Galvin and Gagne ©2009

Motivation

B Threads run within application
B Multiple tasks with the application can be implemented by separate threads
® Update display
® Fetch data
® Spell checking
® Answer a network request
B Process creation is heavy-weight while thread creation is light-weight

Can simplify code, increase efficiency
B Kernels are generally multithreaded

Operating System Concepts — 8t Edition 4.4 Silberschatz, Galvin and Gagne ©2009

/1%
> . {

|4

Single and Multithreaded Processes

code

data

files

registers

stack

thread —» ;

single-threaded process

Operating System Concepts — 8 Edition

4.5

code data files
registers ||| registers ||| registers
stack stack stack
.‘_

— thread

multithreaded process

Silberschatz, Galvin and Gagne ©2009

Benefits

B Responsiveness
B Resource Sharing
B Economy

B Scalability

Operating System Concepts — 8t Edition 4.6 Silberschatz, Galvin and Gagne ©2009

Multicore Programming

B Multicore systems putting pressure on programmers, challenges include:
® Dividing activities

Balance

Data splitting

Data dependency

o
o
o
® Testing and debugging

E/:[[&;ﬁ
Operating System Concepts — 8t Edition 4.7 Silberschatz, Galvin and Gagne ©2009

Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

client > server » thread

U

(3) resume listening
for additional
client requests

P

Operating System Concepts — 8t Edition 4.8 Silberschatz, Galvin and Gagne ©2009

Concurrent Execution on a
Single-core System

single core T4 Ts Ta Ty T+ To Ta T4 T4

time

78D %
Operating System Concepts — 8t Edition 4.9 Silberschatz, Galvin and Gagne ©2009

Parallel Execution on a
Multicore System

core 1

core 2

Operating System Concepts — 8t Edition

4.10

Silberschatz, Galvin and Gagne ©2009

User Threads

B Thread management done by user-level threads library

B Three primary thread libraries:
® POSIX Pthreads
® Win32 threads
® Javathreads

\\
»‘f\ 1

Operating System Concepts — 8t Edition 4.11 Silberschatz, Galvin and Gagne ©2009

Kernel Threads

B Supported by the Kernel

B Examples
® Windows XP/2000
Solaris
Linux
Tru64 UNIX

o
o
@)
® Mac OS X

Operating System Concepts — 8t Edition 4.12 Silberschatz, Galvin and Gagne ©2009

Multithreading Models

B Many-to-One
B One-to-One

B Many-to-Many

o

Operating System Concepts — 8t Edition 4.13 Silberschatz, Galvin and Gagne ©2009

Many-to-One

B Many user-level threads mapped to single kernel thread

B Examples:
® Solaris Green Threads
® GNU Portable Threads

o

Operating System Concepts — 8t Edition 4.14 Silberschatz, Galvin and Gagne ©2009

Many-to-One Model

«+— lser thread

+«— Kernel thread

78D %
Operating System Concepts — 8t Edition 4.15 Silberschatz, Galvin and Gagne ©2009

One-t0-One

B Each user-level thread maps to kernel thread

B Examples
® Windows NT/XP/2000
® Linux
® Solaris 9 and later

Operating System Concepts — 8t Edition 4.16 Silberschatz, Galvin and Gagne ©2009

One-to-one Model

«— ser thread

é é é «+— KkKernel thread

Operating System Concepts — 8t Edition 4.17 Silberschatz, Galvin and Gagne ©2009

Many-to-Many Model

B Allows many user level threads to be mapped to many kernel threads

B Allows the operating system to create a sufficient number of kernel threads

B Solaris prior to version 9

B Windows NT/2000 with the ThreadFiber package

E/:[[&;ﬁ
Operating System Concepts — 8t Edition 4.18 Silberschatz, Galvin and Gagne ©2009

Many-to-Many Model

«—— user thread

o o o <«—— kernel thread

7 1S
Operating System Concepts — 8t Edition 4.19 Silberschatz, Galvin and Gagne ©2009

Two-level Model

B Similar to M:M, except that it allows a user thread to be bound to kernel thread

B Examples
® |RIX
® HP-UX
® Tru64 UNIX
® Solaris 8 and earlier

a
A

Operating System Concepts — 8t Edition 4.20 Silberschatz, Galvin and Gagne ©2009

Two-level Model

<«—— yser thread

o o o @ <«—— kernel thread

Operating System Concepts — 8t Edition 4.21 Silberschatz, Galvin and Gagne ©2009

Thread Libraries

B Thread library provides programmer with API for creating and managing threads

B Two primary ways of implementing
® Library entirely in user space
® Kernel-level library supported by the OS

‘41[;,:\u‘

Pthreads

B May be provided either as user-level or kernel-level
B A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization
B APl specifies behavior of the thread library, implementation is up to development of the library

B Common in UNIX operating systems (Solaris, Linux, Mac OS X)

=

= - 7<’
4 B>

Operating System Concepts — 8" Edition 4.23 Silberschatz, Galvin and Gagne ©2009

Pthreads Example

#finclude <=pthread.h>
#finclode =stdioc.h:=

int sum; /#* this data is shared by the thread{s) =*/
void *runmer(void =param); /* the thread =*/

int main(int argec, char =argv[])

{

pthread t tid; /* the thread identifier =*/
pthread attr t attr; /* set of thread attributes =/

if (arge I= 20 |

fprintf (stderr,"usage: a.out <integer walue>\n");
return -1;

if (atoifargv(il]) < 0) {

fprintf (stderr,"}d must be >= 0\n" ,atoifargwii]));
raturn —1;

Operating System Concepts — 8t Edition 4.24 Silberschatz, Galvin and Gagne ©2009

Pthreads Example (Cont.)

/= get the default attributes */
pthread-attr-init (kattr);

/*= create the thread =/

pthread create(&tid,kattr ,Tunner ,argv[1]);
/* wait for the thread to exit */

pthread join(tid, NULL);

priontf("sum = Yd\n",sum) ;
I

/* The thread will begin comtrol in this function */
void *runner(vocid *param)

{

int i, upper = atoi{param);

S1m o
for (i = 1; i <= upper; i++)
sum += 1i;

pthread exit (0] ;

Figure 4.9 Mutthreaded C program usng the Pthreads AP

8

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8 Edition 4.25

=

“»”"Win32 APl Multithreaded C Program

|4

#include <windows.h:>=
#include <stdic.h>

DWOAD Surm; f* data is shared by the thread(s) =/
/= the thread runs in this separate function =/

DWORD WINAPI Summaticm (LPVOID Param)

{
DWORD Upper = =(DWORD*)Param;
for (DWORD i = 0; i <= Upper; i++)
Sum += 1i;
return O;
}
int main(int argc, char #argv[])
{

DWORD ThreadId;

HANDLE ThreadHandle;

int Param;

/* perform some basic error checking */

if (argc != 2} {
fprintf{stderr,"An integer parameter is required\n”);
return -1;

%aram = atoilargv[1]);

if (Param < Q}
fprintf{stderr,"An integer >= 0 is requiredin");
return -1;

}

\\
»‘f\ 1

Operating System Concepts — 8t Edition 4.26 Silberschatz, Galvin and Gagne ©2009

“»"Win32 APl Multithreaded C Program (Cont.)

|4

L4 create the thread
ThreadHandle = CreateThread(
NULL, // default security attributes
0, // default stack size
Summation, // thread functiom
EParam, // parameter to thread functicn

@, /4 default creation flags
EThreadId); S/ returns the thread identifier

if (ThreadHandle != NULL) 4
S/ mow wait for the thread to fimish

WaitForB8inglelbject (ThreadHandle , INFINITE) ;

I close the thread handle
CloseHandle{ThreadHandlea) ;

printf("sum = ¥Yd\n",Sum) ;

}
}

Figure 4.10 Mutithreeded C program using the Win32 API.

78
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8 Edition 4.27

Java Threads

B Java threads are managed by the JVM

B Typically implemented using the threads model provided by underlying OS

B Java threads may be created by:

® Extending Thread class
® Implementing the Runnable interface

‘4/1[;;5\\5,\
Operating System Concepts — 8" Edition 4.28 Silberschatz, Galvin and Gagne ©2009

\

SN

Java Multithreaded Program

=lass Sum

private int sum:

public int geeSumi] |
rEturn Sum;

t

public void setSum{int sum] {
this_sum = Sum;

'

class Summation implements Runmable
;

private ink upper;

private Sum sumialue:

public Summationiint upper, Sum sumValue) {
this _upper = upper:
this_ sumValue = somifslize;

t

public void zun{} {
int sum = O;
Far {inmt i = d; i == upper; i++)
UM 4= 1
sumyfalyue . setSemisum] ¢

!

Operating System Concepts — 8t Edition 4.29 Silberschatz, Galvin and Gagne ©2009

e

Java Multithreaded Program (Cont.)

g =%
\ 7%

\
L
B\

public class Oriwver
{
public static woid main(Sering[] argsa)] {

if jargs.length = o] {
if {Integer parselnt {acges[d]]

« 0]
System.err.printlnfargs [0] =+ *]

* must bhe == O.%);

plme
ff create the cbhject to b= shared
Sum sumdbject = new Sumi) ;
int upper = Integer.parseint {args [O])
Thread thrd = meew Thread (new Summation {upper, sumdbBEject)]) :
thrd.startk{j]:
ery f
thrd. joini{l :
Eystem_out . printlin
1 *The sum of *supper+*
} cateh {InterruptedBException ie] |
l
1
=l e
System.earr println{"Usage: Summation <integer value=*)s }

is "sgsumibject _.getSumi)) ;
f

Figura 4.11 Java program for the summaton of a non-negative integer.

4.30 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8 Edition

Threading Issues

B Semantics of fork() and exec() system calls

B Thread cancellation of target thread
® Asynchronous or deferred

B Signal handling
® Synchronous and asynchronous

\\
»‘f\ 1

Operating System Concepts — 8t Edition 4.31 Silberschatz, Galvin and Gagne ©2009

Threading Issues (Cont.)

B Thread pools
B Thread-specific data

B Create Facility needed for data private to thread
B Scheduler activations

o

Operating System Concepts — 8t Edition 4.32 Silberschatz, Galvin and Gagne ©2009

Semantics of fork() and exec()

B Does fork() duplicate only the calling thread or all threads?

Operating System Concepts — 8 Edition 4.33

Thread Cancellation

B Terminating a thread before it has finished

B Two general approaches:
® Asynchronous cancellation terminates the target thread immediately.
® Deferred cancellation allows the target thread to periodically check if it should be cancelled.

Operating System Concepts — 8t Edition 4.34 Silberschatz, Galvin and Gagne ©2009

<5 Signal Handling

B Signals are used in UNIX systems to notify a process that a particular event has occurred.

B Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

B Options:
® Deliver the signal to the thread to which the signal applies
® Deliver the signal to every thread in the process
® Deliver the signal to certain threads in the process
® Assign a specific thread to receive all signals for the process

Operating System Concepts — 8t Edition 4.35

Thread Pools

B Create a number of threads in a pool where they await work

B Advantages:
® Usually slightly faster to service a request with an existing thread than create a new thread
® Allows the number of threads in the application(s) to be bound to the size of the pool

Operating System Concepts — 8" Edition 4.36 Silberschatz, Galvin and Gagne ©2009

Thread Specific Data

B Allows each thread to have its own copy of data

B Useful when you do not have control over the thread creation process (i.e., when using a thread pool)

78D %
Operating System Concepts — 8 Edition 4.37 Silberschatz, Galvin and Gagne ©2009

Scheduler Activations

B Both M:M and Two-level models require communication to maintain the appropriate number of kernel
threads allocated to the application

B Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread
library

B This communication allows an application to maintain the correct number kernel threads

Operating System Concepts — 8" Edition 4.38 Silberschatz, Galvin and Gagne ©2009

Lightweight Processes

3 — user thread

LWPF | =— lightweight process

I-...:-k_:..'l +—— hermel thread

Operating System Examples

B Windows XP Threads

B Linux Thread

o

Operating System Concepts — 8t Edition 4.40 Silberschatz, Galvin and Gagne ©2009

46

<$%7 Windows XP Threads Data Structures

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
and
synchronization
information
kernel TER
stack
thread identifier
user
stack
thread-local
storage
kernel space user space
4.41

Operating System Concepts — 8t Edition

Silberschatz, Galvin and Gagne ©2009

Windows XP Threads

B Implements the one-to-one mapping, kernel-level

B Each thread contains
® Athreadid
® Register set
® Separate user and kernel stacks
® Private data storage area

B The register set, stacks, and private storage area are known as the context of the threads

B The primary data structures of a thread include:
® ETHREAD (executive thread block)
® KTHREAD (kernel thread block)
® TEB (thread environment block)

Operating System Concepts — 8t Edition 4.42

Linux Threads

B Linux refers to them as tasks rather than threads

B Thread creation is done through clone() system call

B clone() allows a child task to share the address space of the parent task (process)

B struct task_struct points to process data structures (shared or unique)

Operating System Concepts — 8t Edition 4.43 Silberschatz, Galvin and Gagne ©2009

Linux Threads

M fork() andclone() system calls
B Doesn't distinguish between process and thread
B Uses term task rather than thread
B clone() takes options to determine sharing on process create
M struct task_struct points to process data structures (shared or unique)

flag meaning
CLONE FS File-system information is shared.
CLONE VM The same memory space Is shared.
CLONE SIGHAND Sighal handlers are shared.
CLONE FILES The set of open files Is shared.

L7 =
y W
A DA 4

Operating System Concepts — 8t Edition 4.44 Silberschatz, Galvin and Gagne ©2009

End of Chapter 4

Operating System Concepts — 8™ Edition Silberschatz, Galvin and Gagne ©2009

