Vector Quantization
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Representations of Speech

 Information rate of raw speech (Time Domain)

v' Sampling Frequency = 10 KHz = 10000 samples/sec
v’ # bits/sample = 16 bits
v’ # bits for 1-sec speech = 10000 x 16 = 1,60,000 samples/sec = 160 kbps

« Spectral Representation (LP analysis / Filter Bank Analysis)

v' Speech -> Frames of 20 ms with 10 ms frame-shift

v’ 1-sec of speech -> 100 frames/sec

v 1 speech frame -> 1 spectral vector with 10 coefficients

v’ 1-sec of speech -> 100 frames X 10 coeffs x 16 bits/coeff -> 16000 bits/sec -> 16 kbp

« Raw speech -> Spectral representation : 160 kbps to 16 kbps
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Representations of Speech : Vector Quantization

Information Rate in the context of speech

v Speech signal -> 40 basic sound units (approx...)

v' Based on inherent variability of speech -> 25 variations/sound unit

v' As spectral vector represents sound unit & by considering variability of sound units
» Total number of distinct spectral vectors required -> 40 X 25 = 1000 (approx..)
> Encoding 1000 distinct spectral vectors (SVs)requires -> 10 bits (21 = 1000)

1-sec of speech -> 100 frames -> 100 SVs -> 100 x 10 = 1000 bits/sec = 1kb

Raw speech -> 10000 samples X 16 bits/sample = 160000 bits/sec = 160 k

Spectral representation of speech = 100 frames X 10 coeffs X 16 bits/co
16000 bits/sec = 16 kbps

Vector quantization = 100 frames -> (1(?(0 SVs X 10 bits/sv = 10




VQ (Advantages vs Disadvantages)

« Advantages

v Reduced storage
v Reduced computation for determining similarity
v’ Discrete representation of speech sounds

« Disadvantages

v’ Inherent spectral distortion in representing the actual spectral vector
v’ Storage required for codebook vectors

 Trade-offs

v Quantization error
v Similarity computation cost for choosing the codebook vector
v’ Storage of codebook vectors
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Elements of VQ Implementation
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Elements of VQ Implementation

Training step : A large set of spectral vectors : v1, v2, v3, .... vL

v Codebook size = M (M = 258) -> B-bit codebook
v L >> M (at least L should be 10M)

Measure of similarity between a pair of SVs : d(vi, vj) = dij (spectral
distance)

Centroid computation

v' L training vectors -> M clusters
v M codebook vectors -> centroids of M clusters

Classification procedure

v" Arbitary spectral vector -> closest codebook vector
v Nearest neighbor labeling
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The VQ Training Set & Distance Measure
 Training data set
v Speakers : age, accent, gender, speaking rate, energy/emotion levels, etc...
v Speaking environments : quite room, automobile, crowded places, babble noise, etc..

v Transducers and Transmission systems : wideband microphones, telephone handsets,
direct transmission, telephone channel, wideband channels, and other devices etc..

v Speech units : Digits, conversational speech, isolated words, etc...

« Similarity/Distance measure

\/d(vi, U]) = dl] { dl] =0 (lf Vi = Uj); dl] > () (lf Vi == U])}
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Clustering the Training Vectors

K-Means Clustering (Generalized Lloyd Algorithm) : Training
Vectors = M Codebook Vectors

v’ Initialization : Arbitrarily choose M vectors as initial set of code words in the
codebook

v Nearest-Neighbor Search : Each SV -> One of the M code words in the current
codebook. Based on spectral distance associate each SV to the closest co
word.

v Centroid update : Update the code word in each cell using the centroid
of the training vectors assigned to that cell.

v Iteration : Repeat steps 2 and 3 until the average distance falls
below the preset threshold.

- @ W




Clustering the Training Vectors

PARTITIONED VECTOR SPACE
X = CENTROID OF REGION
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VQ : Binary-Split Algorithm

F Binary-Split Algorithm
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Codebook Vector Locations In F1 — F2 Plane
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Codebook Distortion vs Codebook Size
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Vector Classification Procedure

* ]
m* =arg min d(v
g min (v, Yim)

Vm = one of the codebook entry (code word); 1 <m < M.

v — spectral vector
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Comparison of Vector & Scalar Quantizers
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Comparison of Vector & Scalar Quantizers
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Extensions of Vector Quantization

Use of Multiple Codebooks : Codebooks developed from different spectral representations of
speech (Ex: LPCCs, MFCCs, PLPs, RASTA-PLPs, etc...)

Binary search trees with sub-optimal VQs (M vs log(M))
K-tuple quantizers

v' Adv: vowel-like sounds (exploiting the correlations)
v" Dis-adv: transcient sounds and unvoiced consonants

Matrix quantization : Codebook of sounds/words of variable sequence length is created.
v' Word Recognition Systems

Trellis codes : Time-sequential dependencies among codebook entries are explicitly det
(v, = y; then v, = subset of codebook entries related to y;)

Hidden Markov Model : Time and Spectral constraints are used to quantize the enti
utterance
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