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| Redczlt attemp:: tof address the drawbacks of a fixed window size include more
advanced frequency transforms (e.g., wavelets—see below), as well as simpler modifications

to the basic DFT approach (e.g., the ‘mo dulation spectr ’ _ )
3 ] ogram 1 ,
varying speech changes around 4 Hz, corres p g [1], which emphasizes slowly

; ponding to approximate syllabl th
expense of showing less rapid detail). g pproximate syllable rates, at the

6.3 TIME-DOMAIN PARAMETERS

Analyzing speech in the time domain has the advantage of simplicity in calculation and
physical interpretation. Several speech features relevant for coding and recognition occur in
temporal analysis, e.g., energy (or amplitude), voicing, and FO. Energy can be used to
segment speech in automatic recognition systems, and must be replicated in synthesizing
speech; accurate voicing and FO estimation are crucial for many speech coders. Other time

features, e.g., zero-crossing rate and autocorrelation, provide inexpensive spectral detail
without formal spectral techniques.

6.3.1 Signal Ana-lysis in the Time Domain

Time-domain analysis transforms a speech signal into a set of parameter signals, which
usually vary much more slowly in time than the original signal. This all(?\x{s more efficient
storage or manipulation of relevant speech parameters than with the qngmal signal; e.g.,
speech is usually sampled at 6000-10,000 samples/s (to preserve bandwidth up to 3.—5 kHz),
and thus a typical 100 ms vowel needs up to 1000 samples for accurate representation. The
information in a vowel relevant to most speech applications can l_ae represented much more
efficiently: energy, FO, and formants usually change slowly during a vowel. A paramzte;
signal at 40-100 samples/s suffices in most cases (although 200 samples/ S couklil be ne? e
1o accurately track rapid changes such as stop bursts). Thus, converting a spee(ci: \():vavfu O-I:ln
into a set of parameters can decrease sampling rates by two orders of mlagdmttuthe.1 fv;;r rr;lt eg
the relevant aspects of speech, however, requires several parameters sampled at the lo g



180

Chapter 6 W Speech Ana}
iy

t applications, a comh:
While time-domain parameters alone are rarely adequate for most app ons, a COmbigey

i ters often suffice.
total of 5-15 time- and frequency-domain Paf_af"c )
’ 0Most short-time processing techniques (in both time and frequency) pr oduce Parame,.

signals of the form
oc
Q(n) = z T[S(M)]W(ﬂ - m) (6,4)
m=—0<
nonlinear) transformation T, is weighted by .
window w(n), and is summed to yield Q(n) at the original sampling rate, which Tepresen;,
i T) averaged OVeT the window duration. ..
some speech property (corresponding to ) he extent that w(r) Ofn)
corresponds to a convolution of T[s(n)] with w(n). To the ex n) represents ,
lowpass filter, O(n) is a smoothed version of Tls(n). _ _

Since O(n) is the output of a lowpass filter (the window) 1n most cases, 1t§ bandwigy,
matches that of w(n). For efficient manipulation and storage, Q(ﬂ) may be}dec:mated by 2
factor equal to the ratio of the original sampled speech bandwidth and that of the windo,,
e.g., a 20 ms window with an approximate bandwidth of 50 Hz allows sampling of‘Q(n) at
100 samples/s (100:1 decimation if the original rate was _I0,000_sa-mples/s). As in mog
decimation operations, it is unnecessary to calculate the entire O(n) s;gna?; for the example
above, O(n) need be calculated only every 10ms, shifting the anz%lysm mpdo\'y 10 ms each
time. For any signal Q(n), this eliminates much (mostly redundant) information in the origina|
signal. The remaining information is in an efficient form for many speech applications.

In addition to the common rectangular and Hamming windows, the Bartlett, Blackman,
Hann, Parzen, or Kaiser windows [2, 3] are used to smooth aspects of speech signals, offering
good approximations to lowpass filters while limiting window duration (see Figure 6.2). Most
windows have finite-duration impulse responses (FIR) to strictly limit the analysis time range,
to allow a discrete Fourier transform (DFT) of the windowed speech and to preserve phase.
An infinite-duration impulse response (IIR) filter is also practical if its z transform is a rational
function; e.g., a simple IIR filter with one pole at z = a yields a recursion:

O(n) = aQ(n — 1) + T[s(n)]. (6.5)

IIR windows typically need less computation than FIR windows, but O(n) must be calculated
at the original (high) sampling rate before decimating. (In real-time applications, 2 speech
measure may be required at every sample instant anyway). FIR filters, having no recursive
feedback, permit calculation of Q(n) only for the desired samples at the low decimated rate.
Most FIR windows of N samples are symmetric in time; thus w(n) hag linear phase with 2
fixed delay of (N — 1)/2 samples. IIR filters do r_. . ..t simple delay compensation.

The speech signal s(n) undergoes a (possibly

6.3.2 Short-Time A\'lerage Energy and Magnitude

Q(n) corresponds to short-time energy or amplitude if T in Equation (6.4) is 2 squaring
or absol}lte magnitude operation, respectively (Figure 6.5). Energy emphasizes high amp -
tudes (since .the signal is squared in calculating Q(n)), while the amplitude or magﬂimd‘3
measure avoids sth emphasis and is simpler to ca]cul:;te (e.g., with f?xed-point arithmetic
where the dynamlc range must be limited to avoid overﬂ.ow;) Such measures ¢an help
segment s‘pecch into sma!le'r phonetic units, e.g., approximately C(.)rresponding to syllableS o
;:rl:;r;]ir:li;ﬁz?c largc.: variation in amplitude between voiced and unvoiced speech, s well 8
smaller vana lonﬁ .Ltwccn phoncmes w.ith different manners of articulation, pefmit seg?n.eﬂ‘

ased on encrgy Q(n) in automatic recognition systems. For isolated word recogni®”
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Figure 6.5 lustration of the computation of short-time
the squared version of (a), with a superimposed window of length N samples

delayed n samples, (c-f) energy function for a 1 s utterance, using rectangular
windows of different lengths.

energy: (a) S0ms of a vowel, (b)

such Q(n) can aid in accurate determination of the endpoints of a word surrounded by pauses.

that multiplex several conversations, this QO(n) can help detect
the boundaries of speech, so that pauses need not be sent.

6.3.3 Short-Time Average Zero-crossing Rate (ZCR)

Normally, spectral measures of spcech require a-F(?urier or other frequ.enc.y transfc_;rma_
tion or a complex spectral estimation (e.g., linear prediction). For some applncatlon§, a simple
measure called the zero-crossing rate (ZCR) provides adequate spectral 1rfformat10n at low
cost. In a signal s(n) such as speech, a zero-crossing occurs when.s(n) =0, Le., the Wavefom
crosses the time axis or changes algebraic sign. For narrowban_d s1gqals (e.g., sinusoids), ZCR
(in zero-crossings/s) is an accurate spectral measure; a sinusoidal has two zero-cross-
ings/period, and thus its FO = ZCR/2. _

For discrete-time signals with ZCR in zero-crossings/sample,

FO = (ZCR x F})/2, (6.6)
for F, sample/s.
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The ZCR can be defined as Q(n) in Equation (6.4), V

T[s(n)] = 0.5|sgn(s(n)) — sgn(s(n — )] 6

where the algebraic sign of s(n) is

1 for s(n) > 0
sgn(s(n)) = [ -1 otherwise, (6.8)

and w(n) is a rectangular window scaled by I/N (Wher? N is t};jsdlil'ritilsoré((;f)tzzn“b .
yield zero-crossings/sample, or by F,/N to yield Z€ro-Crossing ] ract € heavl[y
decimated since the ZCR changes relatively slowly with the voc.a a.c g’lovement?.

The ZCR can help in voicing decisions. Most energy in VO‘CE :’peiih 1S at loy,
frequency, since the spectrum of voiced glottal exgltatlon dccays. at a fc:)ru - ~.dB/oct, In
unvoiced sounds, broadband noise excitation excites mostly higher rrequencies, dyg 4
effectively shorter vocal tracts. While: speech is not a narrowjoand signal (and thus the
sinusoid example above does not hold), the ZCR correlates well with Ehe averz_lge freqlxency of
major energy concentration. Thus high and low ZCR CQHeSponq 10 unvoiced and Vo}ced
speech, respectively, A suggested boundary is 2500 crossings/s, since voiced and unvojceq

speech average about 1400 and 4900 crossings/s, respectively, with a larger Standarq
deviation for the latter (Figure 6.6).
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Figure 6.6 Tg'/plc'al distribution of ZCro-crossings for voiced sonorants, for unvoiced
frication, ang for voiced frication, ’
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por vowels and sonorants, the ZCR corresponds

wher formants. Interpreting ZCR s hm:dcr ;(: mf\s,ﬂy to Fl, w
wriadic eneray n the voice bar at very low frequenc ': SOICCd' o
.. of course, 18 A problem for gl \'oiccd/11|1\’z)i;2(1 ‘:j‘l"mt‘t‘

This, : y
1aciston using a simple threshold test on the ZCR g in

' hich has more energy
atives, which have both
_d energy at high frequency.
tlermination methods: a binary

. e : adequate, De -

N R % f ~ 3 S OONEeTOVY 'O A . 8 , Lcnd J
erodic and apenc dic energy in voiced fricatives, some are aboxrz th mionlihledbalance of
h '€ the thresho (e,g,, the

arident /2 ) and others (c.g..‘/\'/) are below. This problem is also |

nclish appears o llfl\'ﬂ' relatively weak vojce bars, while Flrencslol anguage-dependent; e.g.,
Unlike short-time energy, the ZCR is highly sensitive lt 135 sirong ones. .

L G 00 Hz hum from a power supply) or in analog-t Od'n('nse o e record_mg

Qinee energy below 100 Hz is largely irrelevant for speech ;;rogcscs,; e desirable to

highpass filter the speech in addition to the normal lowpass ﬁlterin; Eli’elftolr:a/{/b Ig (ci(e):\itr);?o;o

The ZCR can be applied to speech recognition. If speech is first d tl
of bandpass filters, each filter’s output better resembles a narrowBand siprizslew;l]mu?h o
of major energy concentration the ZCR easily estimates. Such a frequ:nc ,cou‘ljseb o nciy
narmonic (for filter bandwidths less than F0) or a formant frequency (for bz;ndwidth: c?f 51;8 (:
300-300 H2). A bank or eight filters covering the 0—4 kHz range provides a simple set ofaeiOEt
measures. which could replace a more complex spectral representation (e.g., a DFT) in SO‘i‘lC
applications. :

than ¢
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6.3.4 Short-Time Aurocorrelation Function

The Fourier transform S(e/®) of speech s(n) provides both spectral magnitude and
phase. The time signal r(k) for the inverse Fourier transform of the energy spectrum
(IS(e7)]7) is called the autocorrelation of s(n). r(k) preserves information about harmonic
and formant amplitudes in s(x1) as well as its periodicity, while ignoring phase (as do many
applications), since phase is less important perceptually and carries much less communication
information than spectral magnitude. /(k) has applications in FO estimation, voiced/unvoiced

determination, and linear prediction.
The autocorrelation function is a special case of the cross-correlation function,

Py, (k) = 2% s(m)y(m — k), (6.9)

m=—00

als s(n) and y(n) as a function of the time delay
al sample and a delayed sample from
elay the two signals have similar

Which measures the similarity of two sign
between them. By summing the products of a sign
another signal, the cross-correlation is large if at some d _ e >
waveforms. The range of summation is usually limited (1.¢., windowed), and the function can
be no i T ; >
malized by dividing by the number of summe _ o
When the same signal is used for s(n) and y(n), Equation (6.9) yiclds uz :111:;m?1|;:il:|:wll‘t
Itis an even function (r(k) = r(—k)), it has maximum value at k :]() .m) ‘/( ) gt];i“ ‘in p
energy ; . ; - periodic signals). 16 s(n) 15 penodic
“MCTeY in s(n) (or average power, for random O .pg,ll()d“- eur l‘)' k=0, £P, £2P, etc.,
>amples, then r(k) also has period /. Maxima in ) o ow i. - m‘)t have to be
'“dependemly of the absolute timing of the pitch periods: i.c.. the window docs '

Placed synchronously with the pitch periods.

d samples.
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. ion is obtained by windowing s(n) anq then
The short-time autocorrrelation function 18 hey uSlng
Equation (6.9), yielding N

Ry = 3 smyw(n = m)s(m — oyl =m +K). (6.19,

Equivalently, the product of speeil; S((i_?) Wi'fh(;tesxd’ellai}r’gilc‘;zzli‘; s(; osiﬁl;s ggs;ig t:/‘;oggh .
' onse ~w(mw(n + x) (ime 1n €lites el ndoy

f};lc:irati\zghmrjf)r)) issevahgat)ed(for different .values of k depen1d6mg on tl;(c::azll]pphcagon. For “ne:r
prediction (Section 6.5), R, (k) for k ranging from 0to 10__ m: ;yl;, ky needed, dep‘?ndin,
on the signal bandwidth. In FO determinatloq, R, (k) 15 neeasa 0: - AT The CStimateq
number of samples in a pitch period; if no sm.table prior FO est1ma-e 1S avallablg, Ry (k) is
calculated for k from the shortest possible period (perhaps 3 ms for a female Voice) tg the
longest (e.g., 20 ms for men). With a sampling rate of 10,000 sample_s/.s, the la.tter approggy
can require up to 170 calculations of R, (k) for each speech frame, if a pitch period resolutioy
of 0.1 ms is desired.

Short windows minimize calculation: if w(z) has N samples, N — k products are needeq
for each value of R, (k). Proper choice of w(n) also helps; e.g., u§mg a rectapgular Windoy
reduces the number of multiplications; symmetries in autocorrelation calculation can also be

exploited (see LPC below). While the duration of w(n) is almost directly proportiona] 1o the

calculation (especially if N >> k), there is a conflict between minimizing N to gy
computation and having enough speech samples in the window to yield a valid autocorrela-
tion function: longer w(n) give better frequency resolution. For FO estimation, w(n) must
include more than one pitch period, so that R, (k) exhibits periodicity and the corresponding
energy spectrum |X,(e/)|* resolves individual harmonics of FQ (see Figure 6.4). Spectnl
estimation applications (e.g., LPC) permit short windows since harmonic resolution is
unimportant and the formant spectrum can be found from a portion of a pitch period.

For FO estimation, an alternative to using autocorrelation is the average magnitude
difference function (AMDF) [4]. Instead of multiplying speech s(m) by s(m — k), the

A .
/\/\/.\ l\J\
ARG AT . AARY
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Figure 6.7 Typical autocorrelation fungy

: ion for (a) voiced spee roiced speech,
using a 20 ms rectangular window (N = 201)5‘)“Ch HEOLRIECHES
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Figure 6.8 AMDF function (normalized to 1.0) for the same speech segments as in
Figure 6.7.

magnitude of their difference is taken:

AMDF(k) = f |s(m) — s(m — k)|. (6.11)

m=—0Q

Since subtraction and rectification are much simpler operations than multiplication, the
AMDEF is considerably faster. Where R, (k) peaks for values of k£ near multiples of the pitch
period (Figure 6.7), the AMDF has minima (Figure 6.8).

Some speech recognition applications have used a simplified version of the autocorre-

lation [5]:

oo

Wk) = 2. sgnls(m))s(m — k). (6.12)

m==00

Replacing s(m) by its sign in Equation (6.9) eliminates the need for multiplications and
reduces the emphasis that (k) normally places on the high-amplitude portions of s(n).

6.4 FREQUENCY-DOMAIN (SPECTRAL) PARAMETERS

The frequency domain provides most useful parameters for speech processing. Speech signals
are more consistently and easily analyzed spectrally than in the time domain. The basic model
of speech production with a noisy or periodic waveform that excites a vocal tract filter
corresponds well to separate spectral models for the excitation and for the vocal tract.
Repeated utterances of a sentence by a speaker often differ greatly temporally while being
very similar spectrally. Human hearing appears to pay much more attention to spectral aspects
of speech (e.g.. amplitude distribution in frequency) than to phase or timing aspects. Thus,
Spectral analysis is used to extract most parameters from speech.



