Statistical Pattern Recognition

Books

- □ Pattern Classification
- □ Preprocessing & Feature Extraction
- □Curse of Dimensionality
- □Classification & Regression
- Estimation of Mapping Function
- Generalization
- □ Model Complexity (Bias & Variance)
- □Baye's Theorem (Baye's Rule)
- □Inference & Decision
- Decision Boundaries
- Probability Density Estimation

Pattern Classification

Pattern Classification (Cont..)

Preprocessing

- \checkmark Raw data \rightarrow Features
- ✓ Pixel values → Height/width (x1)
- ✓ Scale & Translation invariance
- □Overlapping of features → Misclassification
- □Point of intersection of two histograms → Minimum error in misclassification

Pattern Classification (Cont..)

□ Preprocessing
 ✓ Raw data → Features
 ✓ Pixel values → Height/width (x1)

 $\Box Overlapping of features \rightarrow Misclassification$

□Point of intersection of two histograms → Minimum error in misclassification

□Increase in number of features →Reduce misclassification

Curse of Dimensionality

Curse of Dimensionality (Cont..)

 x_3

- Concept of intrinsic Dimensionality
 - ✓ Input data points are correlated and restricted to subspace of lower dimensionality
- Interpolation
 - \checkmark Output varies smoothly as a function of input variables
- Dimensionality Reduction
 - ✓ Limited & fixed size datasets

Classification & Regression

□Function Approximation

Classification (Probabilities of memberships of different classes)
 Regression (Function defined in terms of average over random quantity)

Classification : Discrete Classes
 Speech Recognition : 40 Classes (Phoneme as a class)
 Character Recognition : 26 Classes (Each alphabet as a class)

Regression : Continuous Output
 Stock price prediction
 Weather prediction

Estimation of Mapping Function

□ Function : The underlying function is modeled using polynomial curve fitting $y(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_m x^m$ y = f(x ; w)

□Input : x_1, x_2, \dots, x_n

Output (Target) : t_1 , t_2 , t_n

 \Box h(x) = 0.5 + 0.4*sin(2 π x)

 $\Box Xn \rightarrow h(x) + Random noise$

$$\Box E^{rms} = \sqrt{\sum_{n=1}^{N} (y(x_n; w^*) - t_n)^2}$$

Estimation of Mapping Function

Estimation of Mapping Function (Cont..)

0.3

RMS error

0.0

Generalization

□Degrees of freedom \rightarrow # free variables (w0, w1, w2,)

- □Lower degrees of freedom → Higher Bias (under fitting)
- □Higher degrees of freedom → Higher variance (over fitting, noisy)
- □Generalization : Trade-off between Bias & Variance
- □Good generalization : Low Bias & Low Variance

Model Complexity : Generalization & Regularization

Best Generalization

- ✓ Complexity of model is neither too small not too large
- ✓ Optimal complexity

 \Box Optimum Generalization \rightarrow Controlling the effective complexity

- Polynomial fit with M = 1 (simple model with poor fit to data)
- ✓ M = 3 → Cubic polynomial (Optimal model with best generalization)
- ✓ M =10 \rightarrow Complex model over-fits the data

 \Box Effective complexity \rightarrow Adding penalty term to error function

Effective complexity =) Adding Perulty to Ervit function

$$\widetilde{E} = E + v \Omega; \quad \Omega \rightarrow \text{Regulation Term}$$

 $-\Sigma = \pm \left(\left(\frac{\partial^2 y}{\partial x} \right)^2 dx \right)$
Large variance (Noice) =) $\Omega = 1$

Baye's Theorem (Baye's Rule)

Baye's Theorem (Baye's Rule) Cont..

$$P(c_{1c}|x_{\ell}) - p_{s}t_{e}ris | j_{w}huln lity$$

$$E(c_{1c}|x_{\ell}) = 1$$

$$E(c_{1c}|x_{\ell}) = 1$$

$$E(x_{1}) = 1$$

$$E(x_{1}) = 1$$

$$E(x_{1}) = P(x_{1}) = 1$$

$$E(x_{1}) = P(x_{1}) = P(x_{1})$$

$$E(x_{1}) = P(x_{1}) = P(x_{1})$$

$$E(x_{1}) = P(x_{1}) + P(x_{1}) = 1$$

$$P(x_{\ell}) = P(x_{\ell}|x_{\ell}) + P(x_{\ell}|x_{\ell}) P(x_{\ell})$$

Inference & Decision

Inference -> Estimation of posteriod probabilities $P(c_{ic}|_{X}) = P(x(c_{ic}) P(c_{ic}))$ P(x) P(X(ck) =) Prob ansity estimation of a specific class P(cc) => Pris probability estimated from general P(K) => Normalitation fuch Decision Rule => Minimum Probability of Mindonification Baye's Rule =) classel angute May postered finds Label = Cii = P(Cii | x) > P(Ci | x) + J = IiPosterial Prob = Licelybool × Paril prily Normalited Juch

Decision Boundaries

