Linear Prediction Analysis of Speech

Linear Prediction Analysis of Speech

• LPC provides good model of speech

 All pole model of LPC provides good approximation to vocal-tract spectral envelope for quasi-steady state voiced regions of speech.

✓ Less effective for unvoiced and transition regions of speech

• LPC analysis leads source & vocal tract separation

✓ LP synthesis model (Generative model)

✓ LP analysis model (inverse filter model)

• LPC is analytically tractable model

- ✓ Mathematically precise
- ✓ Straightforward to implement either S/W or H/W
- ✓ Computationally efficient over bank of filters

• LPC model works well in recognition applications

The LPC Model

Speech Synthesis Model Based on LPC Model

Speech Analysis Model Based on LPC Model

LP Analysis of Speech : Computation of LPCs

$$\frac{LP}{S(m)} = \frac{\beta}{P} \frac{\beta}{P$$

LP Analysis of Speech : Computation of LPCs

Error in LP Analysis of Speech

$$\overline{b} = \sum_{m} \widehat{c}^{*}(m) = \sum_{m} [\widehat{c}(m) - \widehat{c}(m)]^{*}$$

$$E = \sum_{m} [\widehat{c}^{*}(m) - \sum_{m} a_{1LS}(m-k)]^{*} - 2\sum_{m} a_{1LS}(m-k) \cdot s(m)]^{*}$$

$$= \sum_{m} [\widehat{c}^{*}(m) + (\sum_{k=1}^{k} a_{1LS}(m-k))]^{*} - 2\sum_{k=1}^{k} a_{1LS}(m-k) \cdot s(m)]^{*}$$

$$= \sum_{m} \widehat{c}^{*}(m) + \sum_{k=1}^{k} (a_{1LS}(m-k))]^{*} - 2\sum_{k=1}^{k} a_{kLS}(m-k) \cdot s(m-k)$$

$$= \sum_{m} \widehat{c}^{*}(m) + \sum_{k=1}^{k} (a_{1LS}(m-k))]^{*} - 2\sum_{k=1}^{k} a_{kLS}(m-k)$$

$$= \sum_{k=1}^{k} \sum_{m} (a_{1LS}(m-k)) \cdot s(m-k) = -\sum_{k=1}^{k} \sum_{m} (a_{1LS}(m-k))$$

$$= \sum_{k=1}^{k} \sum_{m} (a_{1LS}(m-k)) \cdot s(m-k)$$

LP Analysis of Vowel 'l'

LP Analysis of Vowel 'A'

LP Analysis of Vowels

LP Analysis of a Vowel for different P values

Cepstral Analysis of Speech

4. Auto correlation Analysis N-1-12 $R(k) = \sum_{n=1}^{\infty} S(n) S(n+k)$ $(c = 0, 1, \dots, p)$ NEU 5. LPC Analysis (Durbin's Recurrin) LPC coefficients Reflection Coefficients Loy area vato coefficient Cepatrul colficients LPC -> LPCCO 6. # LPCCO >> = (A)

8. Tempolul Cepstrul Derruhue Capstrul Representation - Local spectrul prop Cx = [c1 c2 c3 - - - ca]; cepotrul coll f it from $DC_{i}(m) = \frac{N}{k_{z}-N} \frac{lcc_{i}(m+lc)}{k_{z}-N} \frac{N}{k_{z}-N}$ $\{c_{\lambda}\}$ $- \alpha$ $\{c_{\lambda}, \Delta c_{\lambda}\}$ $- 2\alpha$ EC, DC, NDC, y - 30

Extraction of Mel-Frequency Cepstral Coefficients

Linear Prediction Analysis of Speech (Hands-on)