
SEC. 2.1 PROCESSES 97

For the sake of accuracy, it should be pointed out that the probabilistic model
just described is only an approximation. It implicitly assumes that all n processes
are independent, meaning that it is quite acceptable for a system with fiv e proc-
esses in memory to have three running and two waiting. But with a single CPU, we
cannot have three processes running at once, so a process becoming ready while
the CPU is busy will have to wait. Thus the processes are not independent. A more
accurate model can be constructed using queueing theory, but the point we are
making—multiprogramming lets processes use the CPU when it would otherwise
become idle—is, of course, still valid, even if the true curves of Fig. 2-6 are slight-
ly different from those shown in the figure.

Even though the model of Fig. 2-6 is simple-minded, it can nevertheless be
used to make specific, although approximate, predictions about CPU performance.
Suppose, for example, that a computer has 8 GB of memory, with the operating
system and its tables taking up 2 GB and each user program also taking up 2 GB.
These sizes allow three user programs to be in memory at once. With an 80% aver-
age I/O wait, we have a CPU utilization (ignoring operating system overhead) of
1 − 0. 83 or about 49%. Adding another 8 GB of memory allows the system to go
from three-way multiprogramming to seven-way multiprogramming, thus raising
the CPU utilization to 79%. In other words, the additional 8 GB will raise the
throughput by 30%.

Adding yet another 8 GB would increase CPU utilization only from 79% to
91%, thus raising the throughput by only another 12%. Using this model, the com-
puter’s owner might decide that the first addition was a good investment but that
the second was not.

2.2 THREADS

In traditional operating systems, each process has an address space and a single
thread of control. In fact, that is almost the definition of a process. Nevertheless,
in many situations, it is desirable to have multiple threads of control in the same
address space running in quasi-parallel, as though they were (almost) separate
processes (except for the shared address space). In the following sections we will
discuss these situations and their implications.

2.2.1 Thread Usage

Why would anyone want to have a kind of process within a process? It turns
out there are several reasons for having these miniprocesses, called threads. Let
us now examine some of them. The main reason for having threads is that in many
applications, multiple activities are going on at once. Some of these may block
from time to time. By decomposing such an application into multiple sequential
threads that run in quasi-parallel, the programming model becomes simpler.

98 PROCESSES AND THREADS CHAP. 2

We hav e seen this argument once before. It is precisely the argument for hav-
ing processes. Instead, of thinking about interrupts, timers, and context switches,
we can think about parallel processes. Only now with threads we add a new ele-
ment: the ability for the parallel entities to share an address space and all of its data
among themselves. This ability is essential for certain applications, which is why
having multiple processes (with their separate address spaces) will not work.

A second argument for having threads is that since they are lighter weight than
processes, they are easier (i.e., faster) to create and destroy than processes. In
many systems, creating a thread goes 10–100 times faster than creating a process.
When the number of threads needed changes dynamically and rapidly, this proper-
ty is useful to have.

A third reason for having threads is also a performance argument. Threads
yield no performance gain when all of them are CPU bound, but when there is sub-
stantial computing and also substantial I/O, having threads allows these activities
to overlap, thus speeding up the application.

Finally, threads are useful on systems with multiple CPUs, where real paral-
lelism is possible. We will come back to this issue in Chap. 8.

It is easiest to see why threads are useful by looking at some concrete ex-
amples. As a first example, consider a word processor. Word processors usually
display the document being created on the screen formatted exactly as it will ap-
pear on the printed page. In particular, all the line breaks and page breaks are in
their correct and final positions, so that the user can inspect them and change the
document if need be (e.g., to eliminate widows and orphans—incomplete top and
bottom lines on a page, which are considered esthetically unpleasing).

Suppose that the user is writing a book. From the author’s point of view, it is
easiest to keep the entire book as a single file to make it easier to search for topics,
perform global substitutions, and so on. Alternatively, each chapter might be a sep-
arate file. However, having every section and subsection as a separate file is a real
nuisance when global changes have to be made to the entire book, since then hun-
dreds of files have to be individually edited, one at a time. For example, if propo-
sed standard xxxx is approved just before the book goes to press, all occurrences of
‘‘Draft Standard xxxx’’ hav e to be changed to ‘‘Standard xxxx’’ at the last minute.
If the entire book is one file, typically a single command can do all the substitu-
tions. In contrast, if the book is spread over 300 files, each one must be edited sep-
arately.

Now consider what happens when the user suddenly deletes one sentence from
page 1 of an 800-page book. After checking the changed page for correctness, he
now wants to make another change on page 600 and types in a command telling
the word processor to go to that page (possibly by searching for a phrase occurring
only there). The word processor is now forced to reformat the entire book up to
page 600 on the spot because it does not know what the first line of page 600 will
be until it has processed all the previous pages. There may be a substantial delay
before page 600 can be displayed, leading to an unhappy user.

SEC. 2.2 THREADS 99

Threads can help here. Suppose that the word processor is written as a two-
threaded program. One thread interacts with the user and the other handles refor-
matting in the background. As soon as the sentence is deleted from page 1, the
interactive thread tells the reformatting thread to reformat the whole book. Mean-
while, the interactive thread continues to listen to the keyboard and mouse and re-
sponds to simple commands like scrolling page 1 while the other thread is comput-
ing madly in the background. With a little luck, the reformatting will be completed
before the user asks to see page 600, so it can be displayed instantly.

While we are at it, why not add a third thread? Many word processors have a
feature of automatically saving the entire file to disk every few minutes to protect
the user against losing a day’s work in the event of a program crash, system crash,
or power failure. The third thread can handle the disk backups without interfering
with the other two. The situation with three threads is shown in Fig. 2-7.

Kernel
Keyboard Disk

Four score and seven
years ago, our fathers
brought forth upon this
continent a new nation:
conceived in liberty,
and dedicated to the
proposition that all
men are created equal.
 Now we are engaged
in a great civil war
testing whether that

nation, or any nation
so conceived and so
dedicated, can long
endure. We are met on
a great battlefield of
that war.
 We have come to
dedicate a portion of
that field as a final
resting place for those
who here gave their

lives that this nation
might live. It is
altogether fitting and
proper that we should
do this.
 But, in a larger sense,
we cannot dedicate, we
cannot consecrate we
cannot hallow this
ground. The brave
men, living and dead,

who struggled here
have consecrated it, far
above our poor power
to add or detract. The
world will little note,
nor long remember,
what we say here, but
it can never forget
what they did here.
 It is for us the living,
rather, to be dedicated

here to the unfinished
work which they who
fought here have thus
far so nobly advanced.
It is rather for us to be
here dedicated to the
great task remaining
before us, that from
these honored dead we
take increased devotion
to that cause for which

they gave the last full
measure of devotion,
that we here highly
resolve that these dead
shall not have died in
vain that this nation,
under God, shall have
a new birth of freedom
and that government of
the people by the
people, for the people

Figure 2-7. A word processor with three threads.

If the program were single-threaded, then whenever a disk backup started,
commands from the keyboard and mouse would be ignored until the backup was
finished. The user would surely perceive this as sluggish performance. Alterna-
tively, keyboard and mouse events could interrupt the disk backup, allowing good
performance but leading to a complex interrupt-driven programming model. With
three threads, the programming model is much simpler. The first thread just inter-
acts with the user. The second thread reformats the document when told to. The
third thread writes the contents of RAM to disk periodically.

It should be clear that having three separate processes would not work here be-
cause all three threads need to operate on the document. By having three threads
instead of three processes, they share a common memory and thus all have access
to the document being edited. With three processes this would be impossible.

100 PROCESSES AND THREADS CHAP. 2

An analogous situation exists with many other interactive programs. For exam-
ple, an electronic spreadsheet is a program that allows a user to maintain a matrix,
some of whose elements are data provided by the user. Other elements are com-
puted based on the input data using potentially complex formulas. When a user
changes one element, many other elements may have to be recomputed. By having
a background thread do the recomputation, the interactive thread can allow the user
to make additional changes while the computation is going on. Similarly, a third
thread can handle periodic backups to disk on its own.

Now consider yet another example of where threads are useful: a server for a
Website. Requests for pages come in and the requested page is sent back to the cli-
ent. At most Websites, some pages are more commonly accessed than other pages.
For example, Sony’s home page is accessed far more than a page deep in the tree
containing the technical specifications of any particular camera. Web servers use
this fact to improve performance by maintaining a collection of heavily used pages
in main memory to eliminate the need to go to disk to get them. Such a collection
is called a cache and is used in many other contexts as well. We saw CPU caches
in Chap. 1, for example.

One way to organize the Web server is shown in Fig. 2-8(a). Here one thread,
the dispatcher, reads incoming requests for work from the network. After examin-
ing the request, it chooses an idle (i.e., blocked) worker thread and hands it the
request, possibly by writing a pointer to the message into a special word associated
with each thread. The dispatcher then wakes up the sleeping worker, moving it
from blocked state to ready state.

Dispatcher thread

Worker thread

Web page cache

Kernel

Network
connection

Web server process

User
space

Kernel
space

Figure 2-8. A multithreaded Web server.

When the worker wakes up, it checks to see if the request can be satisfied from
the Web page cache, to which all threads have access. If not, it starts a read opera-
tion to get the page from the disk and blocks until the disk operation completes.

SEC. 2.2 THREADS 101

When the thread blocks on the disk operation, another thread is chosen to run, pos-
sibly the dispatcher, in order to acquire more work, or possibly another worker that
is now ready to run.

This model allows the server to be written as a collection of sequential threads.
The dispatcher’s program consists of an infinite loop for getting a work request and
handing it off to a worker. Each worker’s code consists of an infinite loop consist-
ing of accepting a request from the dispatcher and checking the Web cache to see if
the page is present. If so, it is returned to the client, and the worker blocks waiting
for a new request. If not, it gets the page from the disk, returns it to the client, and
blocks waiting for a new request.

A rough outline of the code is given in Fig. 2-9. Here, as in the rest of this
book, TRUE is assumed to be the constant 1. Also, buf and page are structures ap-
propriate for holding a work request and a Web page, respectively.

while (TRUE) { while (TRUE) {
get next request(&buf); wait for work(&buf)
handoff work(&buf); look for page in cache(&buf, &page);

} if (page not in cache(&page))
read page from disk(&buf, &page);

retur n page(&page);
}

(a) (b)

Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher thread.
(b) Worker thread.

Consider how the Web server could be written in the absence of threads. One
possibility is to have it operate as a single thread. The main loop of the Web server
gets a request, examines it, and carries it out to completion before getting the next
one. While waiting for the disk, the server is idle and does not process any other
incoming requests. If the Web server is running on a dedicated machine, as is
commonly the case, the CPU is simply idle while the Web server is waiting for the
disk. The net result is that many fewer requests/sec can be processed. Thus,
threads gain considerable performance, but each thread is programmed sequential-
ly, in the usual way.

So far we have seen two possible designs: a multithreaded Web server and a
single-threaded Web server. Suppose that threads are not available but the system
designers find the performance loss due to single threading unacceptable. If a
nonblocking version of the read system call is available, a third approach is pos-
sible. When a request comes in, the one and only thread examines it. If it can be
satisfied from the cache, fine, but if not, a nonblocking disk operation is started.

The server records the state of the current request in a table and then goes and
gets the next event. The next event may either be a request for new work or a reply
from the disk about a previous operation. If it is new work, that work is started. If
it is a reply from the disk, the relevant information is fetched from the table and the

102 PROCESSES AND THREADS CHAP. 2

reply processed. With nonblocking disk I/O, a reply probably will have to take the
form of a signal or interrupt.

In this design, the ‘‘sequential process’’ model that we had in the first two
cases is lost. The state of the computation must be explicitly saved and restored in
the table every time the server switches from working on one request to another. In
effect, we are simulating the threads and their stacks the hard way. A design like
this, in which each computation has a saved state, and there exists some set of
ev ents that can occur to change the state, is called a finite-state machine. This
concept is widely used throughout computer science.

It should now be clear what threads have to offer. They make it possible to
retain the idea of sequential processes that make blocking calls (e.g., for disk I/O)
and still achieve parallelism. Blocking system calls make programming easier, and
parallelism improves performance. The single-threaded server retains the simpli-
city of blocking system calls but gives up performance. The third approach
achieves high performance through parallelism but uses nonblocking calls and in-
terrupts and thus is hard to program. These models are summarized in Fig. 2-10.

Model Characteristics

Threads Parallelism, blocking system calls

Single-threaded process No parallelism, blocking system calls

Finite-state machine Parallelism, nonblocking system calls, interr upts

Figure 2-10. Three ways to construct a server.

A third example where threads are useful is in applications that must process
very large amounts of data. The normal approach is to read in a block of data,
process it, and then write it out again. The problem here is that if only blocking
system calls are available, the process blocks while data are coming in and data are
going out. Having the CPU go idle when there is lots of computing to do is clearly
wasteful and should be avoided if possible.

Threads offer a solution. The process could be structured with an input thread,
a processing thread, and an output thread. The input thread reads data into an input
buffer. The processing thread takes data out of the input buffer, processes them,
and puts the results in an output buffer. The output buffer writes these results back
to disk. In this way, input, output, and processing can all be going on at the same
time. Of course, this model works only if a system call blocks only the calling
thread, not the entire process.

2.2.2 The Classical Thread Model

Now that we have seen why threads might be useful and how they can be used,
let us investigate the idea a bit more closely. The process model is based on two in-
dependent concepts: resource grouping and execution. Sometimes it is useful to

SEC. 2.2 THREADS 103

separate them; this is where threads come in. First we will look at the classical
thread model; after that we will examine the Linux thread model, which blurs the
line between processes and threads.

One way of looking at a process is that it is a way to group related resources
together. A process has an address space containing program text and data, as well
as other resources. These resources may include open files, child processes, pend-
ing alarms, signal handlers, accounting information, and more. By putting them
together in the form of a process, they can be managed more easily.

The other concept a process has is a thread of execution, usually shortened to
just thread. The thread has a program counter that keeps track of which instruc-
tion to execute next. It has registers, which hold its current working variables. It
has a stack, which contains the execution history, with one frame for each proce-
dure called but not yet returned from. Although a thread must execute in some
process, the thread and its process are different concepts and can be treated sepa-
rately. Processes are used to group resources together; threads are the entities
scheduled for execution on the CPU.

What threads add to the process model is to allow multiple executions to take
place in the same process environment, to a large degree independent of one anoth-
er. Having multiple threads running in parallel in one process is analogous to hav-
ing multiple processes running in parallel in one computer. In the former case, the
threads share an address space and other resources. In the latter case, processes
share physical memory, disks, printers, and other resources. Because threads have
some of the properties of processes, they are sometimes called lightweight pro-
cesses. The term multithreading is also used to describe the situation of allowing
multiple threads in the same process. As we saw in Chap. 1, some CPUs have
direct hardware support for multithreading and allow thread switches to happen on
a nanosecond time scale.

In Fig. 2-11(a) we see three traditional processes. Each process has its own ad-
dress space and a single thread of control. In contrast, in Fig. 2-11(b) we see a sin-
gle process with three threads of control. Although in both cases we have three
threads, in Fig. 2-11(a) each of them operates in a different address space, whereas
in Fig. 2-11(b) all three of them share the same address space.

When a multithreaded process is run on a single-CPU system, the threads take
turns running. In Fig. 2-1, we saw how multiprogramming of processes works. By
switching back and forth among multiple processes, the system gives the illusion
of separate sequential processes running in parallel. Multithreading works the same
way. The CPU switches rapidly back and forth among the threads, providing the
illusion that the threads are running in parallel, albeit on a slower CPU than the
real one. With three compute-bound threads in a process, the threads would appear
to be running in parallel, each one on a CPU with one-third the speed of the real
CPU.

Different threads in a process are not as independent as different processes. All
threads have exactly the same address space, which means that they also share the

104 PROCESSES AND THREADS CHAP. 2

Thread Thread

Kernel Kernel

Process 1 Process 2 Process 3 Process

User
space

Kernel
space

(a) (b)

Figure 2-11. (a) Three processes each with one thread. (b) One process with
three threads.

same global variables. Since every thread can access every memory address within
the process’ address space, one thread can read, write, or even wipe out another
thread’s stack. There is no protection between threads because (1) it is impossible,
and (2) it should not be necessary. Unlike different processes, which may be from
different users and which may be hostile to one another, a process is always owned
by a single user, who has presumably created multiple threads so that they can
cooperate, not fight. In addition to sharing an address space, all the threads can
share the same set of open files, child processes, alarms, and signals, an so on, as
shown in Fig. 2-12. Thus, the organization of Fig. 2-11(a) would be used when the
three processes are essentially unrelated, whereas Fig. 2-11(b) would be ap-
propriate when the three threads are actually part of the same job and are actively
and closely cooperating with each other.

Per-process items Per-thread items
Address space Program counter
Global var iables Registers
Open files Stack
Child processes State
Pending alarms
Signals and signal handlers
Accounting infor mation

Figure 2-12. The first column lists some items shared by all threads in a process.
The second one lists some items private to each thread.

The items in the first column are process properties, not thread properties. For
example, if one thread opens a file, that file is visible to the other threads in the
process and they can read and write it. This is logical, since the process is the unit

SEC. 2.2 THREADS 105

of resource management, not the thread. If each thread had its own address space,
open files, pending alarms, and so on, it would be a separate process. What we are
trying to achieve with the thread concept is the ability for multiple threads of ex-
ecution to share a set of resources so that they can work together closely to per-
form some task.

Like a traditional process (i.e., a process with only one thread), a thread can be
in any one of several states: running, blocked, ready, or terminated. A running
thread currently has the CPU and is active. In contrast, a blocked thread is waiting
for some event to unblock it. For example, when a thread performs a system call to
read from the keyboard, it is blocked until input is typed. A thread can block wait-
ing for some external event to happen or for some other thread to unblock it. A
ready thread is scheduled to run and will as soon as its turn comes up. The tran-
sitions between thread states are the same as those between process states and are
illustrated in Fig. 2-2.

It is important to realize that each thread has its own stack, as illustrated in
Fig. 2-13. Each thread’s stack contains one frame for each procedure called but
not yet returned from. This frame contains the procedure’s local variables and the
return address to use when the procedure call has finished. For example, if proce-
dure X calls procedure Y and Y calls procedure Z, then while Z is executing, the
frames for X, Y, and Z will all be on the stack. Each thread will generally call dif-
ferent procedures and thus have a different execution history. This is why each
thread needs its own stack.

 Kernel

Thread 3's stack

Process

Thread 3Thread 1

Thread 2

Thread 1's
stack

Figure 2-13. Each thread has its own stack.

When multithreading is present, processes usually start with a single thread
present. This thread has the ability to create new threads by calling a library proce-
dure such as thread create. A parameter to thread create specifies the name of a
procedure for the new thread to run. It is not necessary (or even possible) to speci-
fy anything about the new thread’s address space, since it automatically runs in the

106 PROCESSES AND THREADS CHAP. 2

address space of the creating thread. Sometimes threads are hierarchical, with a
parent-child relationship, but often no such relationship exists, with all threads
being equal. With or without a hierarchical relationship, the creating thread is
usually returned a thread identifier that names the new thread.

When a thread has finished its work, it can exit by calling a library procedure,
say, thread exit. It then vanishes and is no longer schedulable. In some thread
systems, one thread can wait for a (specific) thread to exit by calling a procedure,
for example, thread join. This procedure blocks the calling thread until a (specif-
ic) thread has exited. In this regard, thread creation and termination is very much
like process creation and termination, with approximately the same options as well.

Another common thread call is thread yield, which allows a thread to volun-
tarily give up the CPU to let another thread run. Such a call is important because
there is no clock interrupt to actually enforce multiprogramming as there is with
processes. Thus it is important for threads to be polite and voluntarily surrender the
CPU from time to time to give other threads a chance to run. Other calls allow one
thread to wait for another thread to finish some work, for a thread to announce that
it has finished some work, and so on.

While threads are often useful, they also introduce a number of complications
into the programming model. To start with, consider the effects of the UNIX fork
system call. If the parent process has multiple threads, should the child also have
them? If not, the process may not function properly, since all of them may be es-
sential.

However, if the child process gets as many threads as the parent, what happens
if a thread in the parent was blocked on a read call, say, from the keyboard? Are
two threads now blocked on the keyboard, one in the parent and one in the child?
When a line is typed, do both threads get a copy of it? Only the parent? Only the
child? The same problem exists with open network connections.

Another class of problems is related to the fact that threads share many data
structures. What happens if one thread closes a file while another one is still read-
ing from it? Suppose one thread notices that there is too little memory and starts
allocating more memory. Partway through, a thread switch occurs, and the new
thread also notices that there is too little memory and also starts allocating more
memory. Memory will probably be allocated twice. These problems can be solved
with some effort, but careful thought and design are needed to make multithreaded
programs work correctly.

2.2.3 POSIX Threads

To make it possible to write portable threaded programs, IEEE has defined a
standard for threads in IEEE standard 1003.1c. The threads package it defines is
called Pthreads. Most UNIX systems support it. The standard defines over 60
function calls, which is far too many to go over here. Instead, we will just describe

SEC. 2.2 THREADS 107

a few of the major ones to give an idea of how it works. The calls we will describe
below are listed in Fig. 2-14.

Thread call Description

Pthread create Create a new thread

Pthread exit Ter minate the calling thread

Pthread join Wait for a specific thread to exit

Pthread yield Release the CPU to let another thread run

Pthread attr init Create and initialize a thread’s attr ibute structure

Pthread attr destroy Remove a thread’s attr ibute structure

Figure 2-14. Some of the Pthreads function calls.

All Pthreads threads have certain properties. Each one has an identifier, a set of
registers (including the program counter), and a set of attributes, which are stored
in a structure. The attributes include the stack size, scheduling parameters, and
other items needed to use the thread.

A new thread is created using the pthread create call. The thread identifier of
the newly created thread is returned as the function value. This call is intentionally
very much like the fork system call (except with parameters), with the thread iden-
tifier playing the role of the PID, mostly for identifying threads referenced in other
calls.

When a thread has finished the work it has been assigned, it can terminate by
calling pthread exit. This call stops the thread and releases its stack.

Often a thread needs to wait for another thread to finish its work and exit be-
fore continuing. The thread that is waiting calls pthread join to wait for a specific
other thread to terminate. The thread identifier of the thread to wait for is given as
a parameter.

Sometimes it happens that a thread is not logically blocked, but feels that it has
run long enough and wants to give another thread a chance to run. It can accom-
plish this goal by calling pthread yield. There is no such call for processes be-
cause the assumption there is that processes are fiercely competitive and each
wants all the CPU time it can get. However, since the threads of a process are
working together and their code is invariably written by the same programmer,
sometimes the programmer wants them to give each other another chance.

The next two thread calls deal with attributes. Pthread attr init creates the
attribute structure associated with a thread and initializes it to the default values.
These values (such as the priority) can be changed by manipulating fields in the
attribute structure.

Finally, pthread attr destroy removes a thread’s attribute structure, freeing up
its memory. It does not affect threads using it; they continue to exist.

To get a better feel for how Pthreads works, consider the simple example of
Fig. 2-15. Here the main program loops NUMBER OF THREADS times, creating

108 PROCESSES AND THREADS CHAP. 2

a new thread on each iteration, after announcing its intention. If the thread creation
fails, it prints an error message and then exits. After creating all the threads, the
main program exits.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

#define NUMBER OF THREADS 10

void *pr int hello world(void *tid)
{

/* This function prints the thread’s identifier and then exits. */
pr intf("Hello World. Greetings from thread %d\n", tid);
pthread exit(NULL);

}

int main(int argc, char *argv[])
{

/* The main program creates 10 threads and then exits. */
pthread t threads[NUMBER OF THREADS];
int status, i;

for(i=0; i < NUMBER OF THREADS; i++) {
pr intf("Main here. Creating thread %d\n", i);
status = pthread create(&threads[i], NULL, print hello world, (void *)i);

if (status != 0) {
pr intf("Oops. pthread create returned error code %d\n", status);
exit(-1);

}
}
exit(NULL);

}

Figure 2-15. An example program using threads.

When a thread is created, it prints a one-line message announcing itself, then it
exits. The order in which the various messages are interleaved is nondeterminate
and may vary on consecutive runs of the program.

The Pthreads calls described above are not the only ones. We will examine
some of the others after we have discussed process and thread synchronization.

2.2.4 Implementing Threads in User Space

There are two main places to implement threads: user space and the kernel.
The choice is a bit controversial, and a hybrid implementation is also possible. We
will now describe these methods, along with their advantages and disadvantages.

SEC. 2.2 THREADS 109

The first method is to put the threads package entirely in user space. The ker-
nel knows nothing about them. As far as the kernel is concerned, it is managing
ordinary, single-threaded processes. The first, and most obvious, advantage is that
a user-level threads package can be implemented on an operating system that does
not support threads. All operating systems used to fall into this category, and even
now some still do. With this approach, threads are implemented by a library.

All of these implementations have the same general structure, illustrated in
Fig. 2-16(a). The threads run on top of a run-time system, which is a collection of
procedures that manage threads. We hav e seen four of these already: pthread cre-
ate, pthread exit, pthread join, and pthread yield, but usually there are more.

Process ProcessThread Thread

Process
table

Process
table

Thread
table

Thread
table

Run-time
system

Kernel
space

User
space

KernelKernel

Figure 2-16. (a) A user-level threads package. (b) A threads package managed
by the kernel.

When threads are managed in user space, each process needs its own private
thread table to keep track of the threads in that process. This table is analogous to
the kernel’s process table, except that it keeps track only of the per-thread proper-
ties, such as each thread’s program counter, stack pointer, registers, state, and so
forth. The thread table is managed by the run-time system. When a thread is
moved to ready state or blocked state, the information needed to restart it is stored
in the thread table, exactly the same way as the kernel stores information about
processes in the process table.

When a thread does something that may cause it to become blocked locally, for
example, waiting for another thread in its process to complete some work, it calls a
run-time system procedure. This procedure checks to see if the thread must be put
into blocked state. If so, it stores the thread’s registers (i.e., its own) in the thread
table, looks in the table for a ready thread to run, and reloads the machine registers
with the new thread’s sav ed values. As soon as the stack pointer and program
counter have been switched, the new thread comes to life again automatically. If

110 PROCESSES AND THREADS CHAP. 2

the machine happens to have an instruction to store all the registers and another
one to load them all, the entire thread switch can be done in just a handful of in-
structions. Doing thread switching like this is at least an order of magnitude—
maybe more—faster than trapping to the kernel and is a strong argument in favor
of user-level threads packages.

However, there is one key difference with processes. When a thread is finished
running for the moment, for example, when it calls thread yield, the code of
thread yield can save the thread’s information in the thread table itself. Fur-
thermore, it can then call the thread scheduler to pick another thread to run. The
procedure that saves the thread’s state and the scheduler are just local procedures,
so invoking them is much more efficient than making a kernel call. Among other
issues, no trap is needed, no context switch is needed, the memory cache need not
be flushed, and so on. This makes thread scheduling very fast.

User-level threads also have other advantages. They allow each process to have
its own customized scheduling algorithm. For some applications, for example,
those with a garbage-collector thread, not having to worry about a thread being
stopped at an inconvenient moment is a plus. They also scale better, since kernel
threads invariably require some table space and stack space in the kernel, which
can be a problem if there are a very large number of threads.

Despite their better performance, user-level threads packages have some major
problems. First among these is the problem of how blocking system calls are im-
plemented. Suppose that a thread reads from the keyboard before any keys hav e
been hit. Letting the thread actually make the system call is unacceptable, since
this will stop all the threads. One of the main goals of having threads in the first
place was to allow each one to use blocking calls, but to prevent one blocked
thread from affecting the others. With blocking system calls, it is hard to see how
this goal can be achieved readily.

The system calls could all be changed to be nonblocking (e.g., a read on the
keyboard would just return 0 bytes if no characters were already buffered), but re-
quiring changes to the operating system is unattractive. Besides, one argument for
user-level threads was precisely that they could run with existing operating sys-
tems. In addition, changing the semantics of read will require changes to many
user programs.

Another alternative is available in the event that it is possible to tell in advance
if a call will block. In most versions of UNIX, a system call, select, exists, which
allows the caller to tell whether a prospective read will block. When this call is
present, the library procedure read can be replaced with a new one that first does a
select call and then does the read call only if it is safe (i.e., will not block). If the
read call will block, the call is not made. Instead, another thread is run. The next
time the run-time system gets control, it can check again to see if the read is now
safe. This approach requires rewriting parts of the system call library, and is inef-
ficient and inelegant, but there is little choice. The code placed around the system
call to do the checking is called a jacket or wrapper.

SEC. 2.2 THREADS 111

Somewhat analogous to the problem of blocking system calls is the problem of
page faults. We will study these in Chap. 3. For the moment, suffice it to say that
computers can be set up in such a way that not all of the program is in main memo-
ry at once. If the program calls or jumps to an instruction that is not in memory, a
page fault occurs and the operating system will go and get the missing instruction
(and its neighbors) from disk. This is called a page fault. The process is blocked
while the necessary instruction is being located and read in. If a thread causes a
page fault, the kernel, unaware of even the existence of threads, naturally blocks
the entire process until the disk I/O is complete, even though other threads might
be runnable.01

Another problem with user-level thread packages is that if a thread starts run-
ning, no other thread in that process will ever run unless the first thread voluntarily
gives up the CPU. Within a single process, there are no clock interrupts, making it
impossible to schedule processes round-robin fashion (taking turns). Unless a
thread enters the run-time system of its own free will, the scheduler will never get a
chance.

One possible solution to the problem of threads running forever is to hav e the
run-time system request a clock signal (interrupt) once a second to give it control,
but this, too, is crude and messy to program. Periodic clock interrupts at a higher
frequency are not always possible, and even if they are, the total overhead may be
substantial. Furthermore, a thread might also need a clock interrupt, interfering
with the run-time system’s use of the clock.

Another, and really the most devastating, argument against user-level threads is
that programmers generally want threads precisely in applications where the
threads block often, as, for example, in a multithreaded Web server. These threads
are constantly making system calls. Once a trap has occurred to the kernel to carry
out the system call, it is hardly any more work for the kernel to switch threads if
the old one has blocked, and having the kernel do this eliminates the need for con-
stantly making select system calls that check to see if read system calls are safe.
For applications that are essentially entirely CPU bound and rarely block, what is
the point of having threads at all? No one would seriously propose computing the
first n prime numbers or playing chess using threads because there is nothing to be
gained by doing it that way.

2.2.5 Implementing Threads in the Kernel

Now let us consider having the kernel know about and manage the threads. No
run-time system is needed in each, as shown in Fig. 2-16(b). Also, there is no
thread table in each process. Instead, the kernel has a thread table that keeps track
of all the threads in the system. When a thread wants to create a new thread or
destroy an existing thread, it makes a kernel call, which then does the creation or
destruction by updating the kernel thread table.

112 PROCESSES AND THREADS CHAP. 2

The kernel’s thread table holds each thread’s registers, state, and other infor-
mation. The information is the same as with user-level threads, but now kept in the
kernel instead of in user space (inside the run-time system). This information is a
subset of the information that traditional kernels maintain about their single-
threaded processes, that is, the process state. In addition, the kernel also maintains
the traditional process table to keep track of processes.

All calls that might block a thread are implemented as system calls, at consid-
erably greater cost than a call to a run-time system procedure. When a thread
blocks, the kernel, at its option, can run either another thread from the same proc-
ess (if one is ready) or a thread from a different process. With user-level threads,
the run-time system keeps running threads from its own process until the kernel
takes the CPU away from it (or there are no ready threads left to run).

Due to the relatively greater cost of creating and destroying threads in the ker-
nel, some systems take an environmentally correct approach and recycle their
threads. When a thread is destroyed, it is marked as not runnable, but its kernel
data structures are not otherwise affected. Later, when a new thread must be creat-
ed, an old thread is reactivated, saving some overhead. Thread recycling is also
possible for user-level threads, but since the thread-management overhead is much
smaller, there is less incentive to do this.

Kernel threads do not require any new, nonblocking system calls. In addition,
if one thread in a process causes a page fault, the kernel can easily check to see if
the process has any other runnable threads, and if so, run one of them while wait-
ing for the required page to be brought in from the disk. Their main disadvantage is
that the cost of a system call is substantial, so if thread operations (creation, termi-
nation, etc.) a common, much more overhead will be incurred.

While kernel threads solve some problems, they do not solve all problems. For
example, what happens when a multithreaded process forks? Does the new proc-
ess have as many threads as the old one did, or does it have just one? In many
cases, the best choice depends on what the process is planning to do next. If it is
going to call exec to start a new program, probably one thread is the correct choice,
but if it continues to execute, reproducing all the threads is probably best.

Another issue is signals. Remember that signals are sent to processes, not to
threads, at least in the classical model. When a signal comes in, which thread
should handle it? Possibly threads could register their interest in certain signals, so
when a signal came in it would be given to the thread that said it wants it. But what
happens if two or more threads register for the same signal? These are only two of
the problems threads introduce, and there are more.

2.2.6 Hybrid Implementations

Various ways have been investigated to try to combine the advantages of user-
level threads with kernel-level threads. One way is use kernel-level threads and
then multiplex user-level threads onto some or all of them, as shown in Fig. 2-17.

SEC. 2.2 THREADS 113

When this approach is used, the programmer can determine how many kernel
threads to use and how many user-level threads to multiplex on each one. This
model gives the ultimate in flexibility.

Multiple user threads
on a kernel thread

User
space

Kernel
spaceKernel threadKernel

Figure 2-17. Multiplexing user-level threads onto kernel-level threads.

With this approach, the kernel is aware of only the kernel-level threads and
schedules those. Some of those threads may have multiple user-level threads multi-
plexed on top of them. These user-level threads are created, destroyed, and sched-
uled just like user-level threads in a process that runs on an operating system with-
out multithreading capability. In this model, each kernel-level thread has some set
of user-level threads that take turns using it.

2.2.7 Scheduler Activations

While kernel threads are better than user-level threads in some key ways, they
are also indisputably slower. As a consequence, researchers have looked for ways
to improve the situation without giving up their good properties. Below we will de-
scribe an approach devised by Anderson et al. (1992), called scheduler acti-
vations. Related work is discussed by Edler et al. (1988) and Scott et al. (1990).

The goals of the scheduler activation work are to mimic the functionality of
kernel threads, but with the better performance and greater flexibility usually asso-
ciated with threads packages implemented in user space. In particular, user threads
should not have to make special nonblocking system calls or check in advance if it
is safe to make certain system calls. Nevertheless, when a thread blocks on a sys-
tem call or on a page fault, it should be possible to run other threads within the
same process, if any are ready.

Efficiency is achieved by avoiding unnecessary transitions between user and
kernel space. If a thread blocks waiting for another thread to do something, for ex-
ample, there is no reason to involve the kernel, thus saving the overhead of the

114 PROCESSES AND THREADS CHAP. 2

kernel-user transition. The user-space run-time system can block the synchronizing
thread and schedule a new one by itself.

When scheduler activations are used, the kernel assigns a certain number of
virtual processors to each process and lets the (user-space) run-time system allo-
cate threads to processors. This mechanism can also be used on a multiprocessor
where the virtual processors may be real CPUs. The number of virtual processors
allocated to a process is initially one, but the process can ask for more and can also
return processors it no longer needs. The kernel can also take back virtual proc-
essors already allocated in order to assign them to more needy processes.

The basic idea that makes this scheme work is that when the kernel knows that
a thread has blocked (e.g., by its having executed a blocking system call or caused
a page fault), the kernel notifies the process’ run-time system, passing as parame-
ters on the stack the number of the thread in question and a description of the event
that occurred. The notification happens by having the kernel activate the run-time
system at a known starting address, roughly analogous to a signal in UNIX. This
mechanism is called an upcall.

Once activated, the run-time system can reschedule its threads, typically by
marking the current thread as blocked and taking another thread from the ready
list, setting up its registers, and restarting it. Later, when the kernel learns that the
original thread can run again (e.g., the pipe it was trying to read from now contains
data, or the page it faulted over has been brought in from disk), it makes another
upcall to the run-time system to inform it. The run-time system can either restart
the blocked thread immediately or put it on the ready list to be run later.

When a hardware interrupt occurs while a user thread is running, the inter-
rupted CPU switches into kernel mode. If the interrupt is caused by an event not of
interest to the interrupted process, such as completion of another process’ I/O,
when the interrupt handler has finished, it puts the interrupted thread back in the
state it was in before the interrupt. If, however, the process is interested in the in-
terrupt, such as the arrival of a page needed by one of the process’ threads, the in-
terrupted thread is not restarted. Instead, it is suspended, and the run-time system is
started on that virtual CPU, with the state of the interrupted thread on the stack. It
is then up to the run-time system to decide which thread to schedule on that CPU:
the interrupted one, the newly ready one, or some third choice.

An objection to scheduler activations is the fundamental reliance on upcalls, a
concept that violates the structure inherent in any layered system. Normally, layer
n offers certain services that layer n + 1 can call on, but layer n may not call proce-
dures in layer n + 1. Upcalls do not follow this fundamental principle.

2.2.8 Pop-Up Threads

Threads are frequently useful in distributed systems. An important example is
how incoming messages, for example requests for service, are handled. The tradi-
tional approach is to have a process or thread that is blocked on a receive system

SEC. 2.2 THREADS 115

call waiting for an incoming message. When a message arrives, it accepts the mes-
sage, unpacks it, examines the contents, and processes it.

However, a completely different approach is also possible, in which the arrival
of a message causes the system to create a new thread to handle the message. Such
a thread is called a pop-up thread and is illustrated in Fig. 2-18. A key advantage
of pop-up threads is that since they are brand new, they do not have any his-
tory—registers, stack, whatever—that must be restored. Each one starts out fresh
and each one is identical to all the others. This makes it possible to create such a
thread quickly. The new thread is given the incoming message to process. The re-
sult of using pop-up threads is that the latency between message arrival and the
start of processing can be made very short.

Network

Incoming message

Pop-up thread
created to handle

incoming message
Existing thread

Process

(a) (b)

Figure 2-18. Creation of a new thread when a message arrives. (a) Before the
message arrives. (b) After the message arrives.

Some advance planning is needed when pop-up threads are used. For example,
in which process does the thread run? If the system supports threads running in the
kernel’s context, the thread may run there (which is why we hav e not shown the
kernel in Fig. 2-18). Having the pop-up thread run in kernel space is usually easier
and faster than putting it in user space. Also, a pop-up thread in kernel space can
easily access all the kernel’s tables and the I/O devices, which may be needed for
interrupt processing. On the other hand, a buggy kernel thread can do more dam-
age than a buggy user thread. For example, if it runs too long and there is no way
to preempt it, incoming data may be permanently lost.

116 PROCESSES AND THREADS CHAP. 2

2.2.9 Making Single-Threaded Code Multithreaded

Many existing programs were written for single-threaded processes. Convert-
ing these to multithreading is much trickier than it may at first appear. Below we
will examine just a few of the pitfalls.

As a start, the code of a thread normally consists of multiple procedures, just
like a process. These may have local variables, global variables, and parameters.
Local variables and parameters do not cause any trouble, but variables that are glo-
bal to a thread but not global to the entire program are a problem. These are vari-
ables that are global in the sense that many procedures within the thread use them
(as they might use any global variable), but other threads should logically leave
them alone.

As an example, consider the errno variable maintained by UNIX. When a
process (or a thread) makes a system call that fails, the error code is put into errno.
In Fig. 2-19, thread 1 executes the system call access to find out if it has permis-
sion to access a certain file. The operating system returns the answer in the global
variable errno. After control has returned to thread 1, but before it has a chance to
read errno, the scheduler decides that thread 1 has had enough CPU time for the
moment and decides to switch to thread 2. Thread 2 executes an open call that
fails, which causes errno to be overwritten and thread 1’s access code to be lost
forever. When thread 1 starts up later, it will read the wrong value and behave
incorrectly.

Thread 1 Thread 2

Access (errno set)

Errno inspected

Open (errno overwritten)

Ti
m

e

Figure 2-19. Conflicts between threads over the use of a global variable.

Various solutions to this problem are possible. One is to prohibit global vari-
ables altogether. Howev er worthy this ideal may be, it conflicts with much existing
software. Another is to assign each thread its own private global variables, as
shown in Fig. 2-20. In this way, each thread has its own private copy of errno and
other global variables, so conflicts are avoided. In effect, this decision creates a

SEC. 2.2 THREADS 117

new scoping level, variables visible to all the procedures of a thread (but not to
other threads), in addition to the existing scoping levels of variables visible only to
one procedure and variables visible everywhere in the program.

Thread 1's
code

Thread 2's
code

Thread 1's
stack

Thread 2's
stack

Thread 1's
globals

Thread 2's
globals

Figure 2-20. Threads can have private global variables.

Accessing the private global variables is a bit tricky, howev er, since most pro-
gramming languages have a way of expressing local variables and global variables,
but not intermediate forms. It is possible to allocate a chunk of memory for the
globals and pass it to each procedure in the thread as an extra parameter. While
hardly an elegant solution, it works.

Alternatively, new library procedures can be introduced to create, set, and read
these threadwide global variables. The first call might look like this:

create global("bufptr");

It allocates storage for a pointer called bufptr on the heap or in a special storage
area reserved for the calling thread. No matter where the storage is allocated, only
the calling thread has access to the global variable. If another thread creates a glo-
bal variable with the same name, it gets a different storage location that does not
conflict with the existing one.

Tw o calls are needed to access global variables: one for writing them and the
other for reading them. For writing, something like

set global("bufptr", &buf);

will do. It stores the value of a pointer in the storage location previously created
by the call to create global. To read a global variable, the call might look like

bufptr = read global("bufptr");

It returns the address stored in the global variable, so its data can be accessed.

118 PROCESSES AND THREADS CHAP. 2

The next problem in turning a single-threaded program into a multithreaded
one is that many library procedures are not reentrant. That is, they were not de-
signed to have a second call made to any giv en procedure while a previous call has
not yet finished. For example, sending a message over the network may well be
programmed to assemble the message in a fixed buffer within the library, then to
trap to the kernel to send it. What happens if one thread has assembled its message
in the buffer, then a clock interrupt forces a switch to a second thread that im-
mediately overwrites the buffer with its own message?

Similarly, memory-allocation procedures such as malloc in UNIX, maintain
crucial tables about memory usage, for example, a linked list of available chunks
of memory. While malloc is busy updating these lists, they may temporarily be in
an inconsistent state, with pointers that point nowhere. If a thread switch occurs
while the tables are inconsistent and a new call comes in from a different thread, an
invalid pointer may be used, leading to a program crash. Fixing all these problems
effectively means rewriting the entire library. Doing so is a nontrivial activity with
a real possibility of introducing subtle errors.

A different solution is to provide each procedure with a jacket that sets a bit to
mark the library as in use. Any attempt for another thread to use a library proce-
dure while a previous call has not yet completed is blocked. Although this ap-
proach can be made to work, it greatly eliminates potential parallelism.

Next, consider signals. Some signals are logically thread specific, whereas oth-
ers are not. For example, if a thread calls alar m, it makes sense for the resulting
signal to go to the thread that made the call. However, when threads are imple-
mented entirely in user space, the kernel does not even know about threads and can
hardly direct the signal to the right one. An additional complication occurs if a
process may only have one alarm pending at a time and several threads call alar m
independently.

Other signals, such as keyboard interrupt, are not thread specific. Who should
catch them? One designated thread? All the threads? A newly created pop-up
thread? Furthermore, what happens if one thread changes the signal handlers with-
out telling other threads? And what happens if one thread wants to catch a particu-
lar signal (say, the user hitting CTRL-C), and another thread wants this signal to
terminate the process? This situation can arise if one or more threads run standard
library procedures and others are user-written. Clearly, these wishes are incompati-
ble. In general, signals are difficult enough to manage in a single-threaded envi-
ronment. Going to a multithreaded environment does not make them any easier to
handle.

One last problem introduced by threads is stack management. In many sys-
tems, when a process’ stack overflows, the kernel just provides that process with
more stack automatically. When a process has multiple threads, it must also have
multiple stacks. If the kernel is not aware of all these stacks, it cannot grow them
automatically upon stack fault. In fact, it may not even realize that a memory fault
is related to the growth of some thread’s stack.

SEC. 2.2 THREADS 119

These problems are certainly not insurmountable, but they do show that just
introducing threads into an existing system without a fairly substantial system
redesign is not going to work at all. The semantics of system calls may have to be
redefined and libraries rewritten, at the very least. And all of these things must be
done in such a way as to remain backward compatible with existing programs for
the limiting case of a process with only one thread. For additional information
about threads, see Hauser et al. (1993), Marsh et al. (1991), and Rodrigues et al.
(2010).

2.3 INTERPROCESS COMMUNICATION

Processes frequently need to communicate with other processes. For example,
in a shell pipeline, the output of the first process must be passed to the second
process, and so on down the line. Thus there is a need for communication between
processes, preferably in a well-structured way not using interrupts. In the follow-
ing sections we will look at some of the issues related to this InterProcess Com-
munication, or IPC.

Very briefly, there are three issues here. The first was alluded to above: how
one process can pass information to another. The second has to do with making
sure two or more processes do not get in each other’s way, for example, two proc-
esses in an airline reservation system each trying to grab the last seat on a plane for
a different customer. The third concerns proper sequencing when dependencies are
present: if process A produces data and process B prints them, B has to wait until A
has produced some data before starting to print. We will examine all three of these
issues starting in the next section.

It is also important to mention that two of these issues apply equally well to
threads. The first one—passing information—is easy for threads since they share a
common address space (threads in different address spaces that need to communi-
cate fall under the heading of communicating processes). However, the other
two—keeping out of each other’s hair and proper sequencing—apply equally well
to threads. The same problems exist and the same solutions apply. Below we will
discuss the problem in the context of processes, but please keep in mind that the
same problems and solutions also apply to threads.

2.3.1 Race Conditions

In some operating systems, processes that are working together may share
some common storage that each one can read and write. The shared storage may be
in main memory (possibly in a kernel data structure) or it may be a shared file; the
location of the shared memory does not change the nature of the communication or
the problems that arise. To see how interprocess communication works in practice,
let us now consider a simple but common example: a print spooler. When a process

	2 PROCESSES AND THREADS
	2.2 THREADS
	2.2.1 Thread Usage
	2.2.2 The Classical Thread Model
	2.2.3 POSIX Threads
	2.2.4 Implementing Threads in User Space
	2.2.5 Implementing Threads in the Kernel
	2.2.6 Hybrid Implementations
	2.2.7 Scheduler Activations
	2.2.8 Pop-Up Threads
	2.2.9 Making Single-Threaded Code Multithreaded

	2.3 INTERPROCESS COMMUNICATION
	2.3.1 Race Conditions

