
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 3: Processes

 Process Concept
 Process Scheduling
 Operations on Processes
 Interprocess Communication
 Examples of IPC Systems
 Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the notion of a process -- a program in execution, which forms the basis of all
computation

 To describe the various features of processes, including scheduling, creation and termination,
and communication

 To describe communication in client-server systems

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

 An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must progress in sequential fashion

 A process includes:
 program counter
 stack
 data section

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Process

 Multiple parts
 The program code, also called text section
 Current activity including program counter, processor registers
 Stack containing temporary data

 Function parameters, return addresses, local variables
 Data section containing global variables
 Heap containing memory dynamically allocated during run time

 Program is passive entity, process is active
 Program becomes process when executable file loaded into memory

 Execution of program started via GUI mouse clicks, command line entry of its name, etc
 One program can be several processes

 Consider multiple users executing the same program

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process in Memory

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process State

 As a process executes, it changes state
 new: The process is being created
 running: Instructions are being executed
 waiting: The process is waiting for some event to occur
 ready: The process is waiting to be assigned to a processor
 terminated: The process has finished execution

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Diagram of Process State

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

Information associated with each process
 Process state
 Program counter
 CPU registers
 CPU scheduling information
 Memory-management information
 Accounting information
 I/O status information

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Switch From Process to Process

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for time sharing
 Process scheduler selects among available processes for next execution on CPU
 Maintains scheduling queues of processes

 Job queue – set of all processes in the system
 Ready queue – set of all processes residing in main memory, ready and waiting to

execute
 Device queues – set of processes waiting for an I/O device
 Processes migrate among the various queues

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Representation in Linux

 Represented by the C structure task_struct
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */ struct task struct *parent; /*
this process’s parent */ struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */ struct mm struct *mm; /*
address space of this pro */

3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ready Queue And Various
I/O Device Queues

3.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Representation of Process Scheduling

3.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers

 Long-term scheduler (or job scheduler) – selects which processes should be brought into the
ready queue

 Short-term scheduler (or CPU scheduler) – selects which process should be executed next and
allocates CPU

 Sometimes the only scheduler in a system

3.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers (Cont.)

 Short-term scheduler is invoked very frequently (milliseconds) (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes) (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than computations, many short CPU bursts
 CPU-bound process – spends more time doing computations; few very long CPU bursts

3.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Addition of Medium Term Scheduling

3.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Context Switch

 When CPU switches to another process, the system must save the state of the old process and load the
saved state for the new process via a context switch.

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work while switching
 The more complex the OS and the PCB -> longer the context switch

 Time dependent on hardware support
 Some hardware provides multiple sets of registers per CPU -> multiple contexts loaded at once

3.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

 Parent process create children processes, which, in turn create other processes, forming a tree of
processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

 Execution
 Parent and children execute concurrently
 Parent waits until children terminate

3.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation (Cont.)

 Address space
 Child duplicate of parent
 Child has a program loaded into it

 UNIX examples
 fork system call creates new process
 exec system call used after a fork to replace the process’ memory space with a new program

3.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

3.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

C Program Forking Separate Process
include < sys/types.h>
include < studio.h>
include < unistd.h>
int m ain()
{
pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid = = 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent w ill w ait for the child */
w ait (NULL);
printf ("Child Com plete");

}
return 0;

}

3.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A Tree of Processes on Solaris

3.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Termination

 Process executes last statement and asks the operating system to delete it (exit)
 Output data from child to parent (via wait)
 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)
 Child has exceeded allocated resources
 Task assigned to child is no longer required
 If parent is exiting

 Some operating systems do not allow child to continue if its parent terminates
– All children terminated - cascading termination

3.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating
 Cooperating process can affect or be affected by other processes, including sharing data
 Reasons for cooperating processes:

 Information sharing
 Computation speedup
 Modularity
 Convenience

 Cooperating processes need interprocess communication (IPC)
 Two models of IPC

 Shared memory
 Message passing

3.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications Models

3.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Cooperating Processes

 Independent process cannot affect or be affected by the execution of another process

 Cooperating process can affect or be affected by the execution of another process

 Advantages of process cooperation
 Information sharing
 Computation speed-up
 Modularity
 Convenience

3.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces information that is
consumed by a consumer process

 unbounded-buffer places no practical limit on the size of the buffer
 bounded-buffer assumes that there is a fixed buffer size

3.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer –
Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

3.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer – Producer

w hile (true) {
 /* Produce an item */

 w hile (((in = (in + 1) % BUFFER SIZE count) = = out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item ;

 in = (in + 1) % BUFFER SIZE;

 }

3.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded Buffer – Consumer

w hile (true) {

 w hile (in = = out)

 ; // do nothing -- nothing to consum e

 // rem ove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

return item ;

 }

3.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication –
Message Passing

 Mechanism for processes to communicate and to synchronize their actions
 Message system – processes communicate with each other without resorting to shared variables
 IPC facility provides two operations:

 send(message) – message size fixed or variable
 receive(message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them
 exchange messages via send/receive

 Implementation of communication link
 physical (e.g., shared memory, hardware bus)
 logical (e.g., logical properties)

3.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Implementation Questions

 How are links established?
 Can a link be associated with more than two processes?
 How many links can there be between every pair of communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can accommodate fixed or variable?
 Is a link unidirectional or bi-directional?

3.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Direct Communication

 Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of communicating processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

3.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indirect Communication

 Messages are directed and received from mailboxes (also referred to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

3.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indirect Communication

 Operations
 create a new mailbox
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

3.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indirect Communication

 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Solutions
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive operation
 Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

3.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Synchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous
 Blocking send has the sender block until the message is received
 Blocking receive has the receiver block until a message is available

 Non-blocking is considered asynchronous
 Non-blocking send has the sender send the message and continue
 Non-blocking receive has the receiver receive a valid message or null

3.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Buffering

 Queue of messages attached to the link; implemented in one of three ways
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n messages

Sender must wait if link full
3. Unbounded capacity – infinite length

Sender never waits

3.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems - POSIX

 POSIX Shared Memory
 Process first creates shared memory segment
segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);

 Process wanting access to that shared memory must attach to it
shared memory = (char *) shmat(id, NULL, 0);

 Now the process could write to the shared memory
sprintf(shared memory, "Writing to shared memory");

 When done a process can detach the shared memory from its address space
shmdt(shared memory);

3.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems - Mach

 Mach communication is message based
 Even system calls are messages
 Each task gets two mailboxes at creation- Kernel and Notify
 Only three system calls needed for message transfer
msg_send(), msg_receive(), msg_rpc()

 Mailboxes needed for commuication, created via
port_allocate()

3.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems – Windows XP

 Message-passing centric via local procedure call (LPC) facility
 Only works between processes on the same system
 Uses ports (like mailboxes) to establish and maintain communication channels
 Communication works as follows:

 The client opens a handle to the subsystem’s connection port object.
 The client sends a connection request.
 The server creates two private communication ports and returns the handle to one of them to

the client.
 The client and server use the corresponding port handle to send messages or callbacks and to

listen for replies.

3.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Local Procedure Calls in Windows XP

3.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications in Client-Server Systems

 Sockets

 Remote Procedure Calls

 Pipes

 Remote Method Invocation (Java)

3.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

3.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Socket Communication

3.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls between processes on networked systems

 Stubs – client-side proxy for the actual procedure on the server

 The client-side stub locates the server and marshalls the parameters

 The server-side stub receives this message, unpacks the marshalled parameters, and performs the
procedure on the server

3.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Execution of RPC

3.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pipes

 Acts as a conduit allowing two processes to communicate

 Issues
 Is communication unidirectional or bidirectional?
 In the case of two-way communication, is it half or full-duplex?
 Must there exist a relationship (i.e. parent-child) between the communicating processes?
 Can the pipes be used over a network?

3.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ordinary Pipes

 Ordinary Pipes allow communication in standard producer-consumer style

 Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the pipe)

 Ordinary pipes are therefore unidirectional

 Require parent-child relationship between communicating processes

3.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ordinary Pipes

3.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Named Pipes

 Named Pipes are more powerful than ordinary pipes

 Communication is bidirectional

 No parent-child relationship is necessary between the communicating processes

 Several processes can use the named pipe for communication

 Provided on both UNIX and Windows systems

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

End of Chapter 3

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 4: Threads

4.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 4: Threads

 Overview
 Multithreading Models
 Thread Libraries
 Threading Issues
 Operating System Examples
 Windows XP Threads
 Linux Threads

4.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of
multithreaded computer systems

 To discuss the APIs for the Pthreads, Win32, and Java thread libraries

 To examine issues related to multithreaded programming

4.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Motivation

 Threads run within application
 Multiple tasks with the application can be implemented by separate threads

 Update display
 Fetch data
 Spell checking
 Answer a network request

 Process creation is heavy-weight while thread creation is light-weight
 Can simplify code, increase efficiency
 Kernels are generally multithreaded

4.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Single and Multithreaded Processes

4.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Benefits

 Responsiveness

 Resource Sharing

 Economy

 Scalability

4.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multicore Programming

 Multicore systems putting pressure on programmers, challenges include:
 Dividing activities
 Balance
 Data splitting
 Data dependency
 Testing and debugging

4.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreaded Server Architecture

4.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Concurrent Execution on a
Single-core System

4.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Parallel Execution on a
Multicore System

4.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User Threads

 Thread management done by user-level threads library

 Three primary thread libraries:
 POSIX Pthreads
 Win32 threads
 Java threads

4.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Kernel Threads

 Supported by the Kernel

 Examples
 Windows XP/2000
 Solaris
 Linux
 Tru64 UNIX
 Mac OS X

4.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

4.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-One

 Many user-level threads mapped to single kernel thread

 Examples:
 Solaris Green Threads
 GNU Portable Threads

4.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-One Model

4.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

One-to-One

 Each user-level thread maps to kernel thread

 Examples
 Windows NT/XP/2000
 Linux
 Solaris 9 and later

4.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

One-to-one Model

4.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-Many Model

 Allows many user level threads to be mapped to many kernel threads

 Allows the operating system to create a sufficient number of kernel threads

 Solaris prior to version 9

 Windows NT/2000 with the ThreadFiber package

4.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-Many Model

4.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-level Model

 Similar to M:M, except that it allows a user thread to be bound to kernel thread

 Examples
 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier

4.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-level Model

4.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Libraries

 Thread library provides programmer with API for creating and managing threads

 Two primary ways of implementing
 Library entirely in user space
 Kernel-level library supported by the OS

4.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

 API specifies behavior of the thread library, implementation is up to development of the library

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

4.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Example

4.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Example (Cont.)

4.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Win32 API Multithreaded C Program

4.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Win32 API Multithreaded C Program (Cont.)

4.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Threads

 Java threads are managed by the JVM

 Typically implemented using the threads model provided by underlying OS

 Java threads may be created by:

 Extending Thread class
 Implementing the Runnable interface

4.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Multithreaded Program

4.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Multithreaded Program (Cont.)

4.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues

 Semantics of fork() and exec() system calls

 Thread cancellation of target thread
 Asynchronous or deferred

 Signal handling
 Synchronous and asynchronous

4.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues (Cont.)

 Thread pools
 Thread-specific data

 Create Facility needed for data private to thread
 Scheduler activations

4.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semantics of fork() and exec()

 Does fork() duplicate only the calling thread or all threads?

4.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Cancellation

 Terminating a thread before it has finished

 Two general approaches:
 Asynchronous cancellation terminates the target thread immediately.
 Deferred cancellation allows the target thread to periodically check if it should be cancelled.

4.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Signal Handling

 Signals are used in UNIX systems to notify a process that a particular event has occurred.

 A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

 Options:
 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals for the process

4.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:
 Usually slightly faster to service a request with an existing thread than create a new thread
 Allows the number of threads in the application(s) to be bound to the size of the pool

4.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Specific Data

 Allows each thread to have its own copy of data

 Useful when you do not have control over the thread creation process (i.e., when using a thread pool)

4.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduler Activations

 Both M:M and Two-level models require communication to maintain the appropriate number of kernel
threads allocated to the application

 Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread
library

 This communication allows an application to maintain the correct number kernel threads

4.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Lightweight Processes

4.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Examples

 Windows XP Threads

 Linux Thread

4.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Threads Data Structures

4.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Threads

 Implements the one-to-one mapping, kernel-level

 Each thread contains
 A thread id
 Register set
 Separate user and kernel stacks
 Private data storage area

 The register set, stacks, and private storage area are known as the context of the threads

 The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)

4.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the parent task (process)

 struct task_struct points to process data structures (shared or unique)

4.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Threads
 fork() and clone() system calls
 Doesn’t distinguish between process and thread

 Uses term task rather than thread
 clone() takes options to determine sharing on process create
 struct task_struct points to process data structures (shared or unique)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

End of Chapter 4

