
1

(Based on text: David A. Patterson & John L. Hennessy, Computer Organization and Design:
The Hardware/Software Interface, 3rd Ed., Morgan Kaufmann, 2007)

Processor: Multi-Processor: Multi-
Cycle Datapath & Cycle Datapath &

ControlControl

2

COURSE CONTENTSCOURSE CONTENTS

 Introduction
 Instructions
 Computer Arithmetic
 Performance
 Processor: DatapathProcessor: Datapath
 Processor: ControlProcessor: Control
 Pipelining Techniques
 Memory
 Input/Output Devices

3

PROCESSOR: PROCESSOR:
DATAPATH & CONTROLDATAPATH & CONTROL

 Multi-Cycle Datapath
 Multi-Cycle Control
 Additional Registers and
Multiplexers

4

 Break up an instruction into steps, each step takes a
cycle:

 balance the amount of work to be done
 restrict each cycle to use only one major functional unit
 Different instructions take different number of cycles to

complete
 At the end of a cycle:

 store values for use in later cycles (easiest thing to do)
 introduce additional “internal” registers for such

temporal storage

 Reusing functional units (reduces hardware cost):
 Use ALU to compute address/result and to increment PC
 Use memory for both instructions and data

Multicycle ApproachMulticycle Approach

5

 Additional “internal registers”:
 Instruction register (IR) -- to hold current instruction
 Memory data register (MDR) -- to hold data read from memory
 A register (A) & B register (B) -- to hold register operand values from register files
 ALUOut register (ALUOut) -- to hold output of ALU, also serves as memory address

register (MAR)
 All registers except IR hold data only between a pair of adjacent cycles and thus do

not need write control signals; IR holds instructions till end of instruction, hence
needs a write control signal

Multi-Cycle Datapath:Multi-Cycle Datapath:
Additional RegistersAdditional Registers

Shift
left 2

PC

Memory
Data

Write
data

M
u
x

0

1
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3
2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

Inst /

Note: we ignore jump inst here

6

 Additional multiplexors:
 Mux for first ALU input -- to select A or PC (since we use ALU for both

address/result computation & PC increment)
 Bigger mux for second ALU input -- due to two additional inputs: 4 (for normal PC

increment) and the sign-extended & shifted offset field (in branch address
computation)

 Mux for memory address input -- to select instruction address or data address

Multicycle Datapath:Multicycle Datapath:
Additional MultiplexorsAdditional Multiplexors

Shift
left 2

PC

Memory

Data

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3
2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

Inst /

Note: we ignore jump inst here

7

Multi-CycleMulti-Cycle
Datapath & ControlDatapath & Control

Note the reason for each control signal; also note that we have included the jump

instruction

2

2

2

8

 Note:
 three possible sources for value to be written into PC (controlled

by PCSource): (1) regular increment of PC, (2) conditional
branch target from ALUOut, (3) unconditional jump (lower 26
bits of instruction in IR shifted left by 2 and concatenated with
upper 4 bits of the incremented PC)

 two PC write control signals: (1) PCWrite (for unconditional
jump), & (2) PCWriteCond (for “zero” signal to cause a PC write
if asserted during beq inst.)

 since memory is used for both inst. & data, need IorD to select
appropriate addresses

 IRWrite needed for IR so that instruction is written to IR (IRWrite
= 1) during the first cycle of the instruction and to ensure that
IR not be overwritten by another instruction during the later
cycles of the current instruction execution (by keeping IRWrite =
0)

 other control signals

Control Signals forControl Signals for
Multi-Cycle DatapathMulti-Cycle Datapath

9

1. Instruction Fetch (All instructions)
2. Instruction Decode (All instructions), Register Fetch & Branch

Address Computation (in advance, just in case)
3. ALU (R-type) execution, Memory Address Computation, or

Branch Completion (Instruction dependent)
4. Memory Access or R-type Instruction Completion (Instruction

dependent)
5. Memory Read Completion (only for lw)

At end of every clock cycle, needed data must be stored into register(s)
or memory location(s).

 Each step (can be several parallel operations) is 1 clock cycle -->
Instructions take 3 to 5 cycles!

Breaking the InstructionBreaking the Instruction
into 3 - 5 Execution Stepsinto 3 - 5 Execution Steps

Data ready operation Clock in result

Clock

Events during a cycle, e.g.:

10

 Use PC to get instruction (from memory) and put it in the
Instruction Register

 Increment of the PC by 4 and put the result back in the PC
 Can be described succinctly using RTL "Register-Transfer

Language"

IR <= Memory[PC];
PC <= PC + 4;

 Which control signals need to be asserted?
 IorD = 0, MemRead = 1, IRWrite = 1
 ALUSrcA = 0, ALUSrcB = 01, ALUOp = 00, PCWrite = 1, PCSource = 00

 Why can instruction read & PC update be in the same step? Look at state element
timing

 What is the advantage of updating the PC now?

Step 1: Instruction Step 1: Instruction
FetchFetch

11

 In this step, we decode the instruction in IR (the opcode enters
control unit in order to generate control signals). In parallel,
we can

 Read registers rs and rt, just in case we need them
 Compute the branch address, just in case the instruction is a

branch beq
 RTL:

A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

 Control signals:
 ALUSrcA = 0, ALUSrcB = 11, ALUOp = 00 (add)
 Note: no explicit control signals needed to write A, B, & ALUOut.

They are written by clock transitions automatically at end of step

Step 2: Instruction Decode, Step 2: Instruction Decode,
Reg. Fetch, & Branch Addr. Reg. Fetch, & Branch Addr.
Comp.Comp.

12

 One of four functions, based on instruction type:

 Memory address computation (for lw, sw):
 ALUOut <= A + sign-extend(IR[15:0]);

 Control signals: ALUSrcA = 1, ALUSrcB = 10, ALUOp = 00
 ALU (R-type):

ALUOut <= A op B;
 Control signals: ALUSrcA = 1, ALUSrcB = 00, ALUOp = 10
 Conditional branch:

if (A==B) PC <= ALUOut;
 Control signals: ALUSrcA = 1, ALUSrcB = 00, ALUOp = 01 (Sub),

PCSource = 01, PCWriteCond = 1 (to enable zero to write PC if 1)
 What is the content of ALUOut during this step? Immediately after this step?
 Jump:

PC <= PC[31:28] || (IR[25:0]<<2);
 Control signals: PCSource = 10, PCWrite = 1

 Note: Conditional branch & jump instructions completed at this step!

Step 3: InstructionStep 3: Instruction
Dependent OperationDependent Operation

13

 For lw or sw instructions (access memory):

MDR <= Memory[ALUOut];
or

Memory[ALUOut] <= B;

 Control signals (for lw): IorD = 1 (to select ALUOut as address),
MemRead = 1, note that no write signal needed for writing to MDR, it is written
by clock transition automatically at end of step

 Control signals (for sw): IorD = 1 (to select ALUOut as address),
MemWrite = 1

 For ALU (R-type) instructions (write result to register):

Reg[IR[15:11]] <= ALUOut;

 Control signals: RegDst = 1 (to select register address), MemtoReg = 0,
RegWrite = 1

 The write actually takes place at the end of the cycle on the clock
edge!

 Note: sw and ALU (R-type) instructions completed at this step!

Step 4: Memory Access or Step 4: Memory Access or
ALUALU
(R-type) Instruction (R-type) Instruction
CompletionCompletion

14

 For lw instruction only (write data from MDR to register):

 Reg[IR[20:16]]<= MDR;

 Control signals: RegDst = 0 (to select register address),
MemtoReg = 1, RegWrite = 1

 Note: lw instruction completed at this step!

Step 5: Memory Read Step 5: Memory Read
CompletionCompletion

15

Summary of Execution Summary of Execution
StepsSteps

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR <= Memory[PC]
PC <= PC + 4

Instruction A <= Reg [IR[25:21]]
decode/register fetch B <= Reg [IR[20:16]]

/branch addr comp ALUOut <= PC + (sign-extend (IR[15:0]) << 2)

Execution, address ALUOut <= A op B ALUOut <= A + sign-extend if (A ==B) then PC <= PC [31:28]
computation, branch/ (IR[15:0]) PC <= ALUOut II (IR[25:0]<<2)
jump completion

Memory access or R-type Reg [IR[15:11]] <= Load: MDR <= Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] <= B

Memory read completion Load: Reg[IR[20:16]] <= MDR

Some instructions take shorter number of cycles, therefore next instructions can start earlier.

Hence, compare to single-cycle implementation where all instructions take same amount of time, multi-cycle

implementation is faster!

Multi-cycle implementation also reduces hardware cost (reduces adders & memory, increases number of

registers & muxes).

16

 How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

 What is going on during the 8th cycle of execution?
 In what cycle does the actual addition of $t2 and $t3 takes

place?

Simple QuestionsSimple Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

