Processor: Multi-
Cycle Datapath &
Control

(Based on text: David A. Patterson & John L. Hennessy, Computer Organization and Design:
The Hardware/Software Interface, 3™ Ed., Morgan Kaufmann, 2007)

* COURSE CONTENTS

® Introduction

" |Instructions

= Computer Arithmetic

®= Performance

~ Processor: Datapath
~ Processor: Control

= Pipelining Techniques
= Memory

= [nput/Output Devices

PROCESSOR:
DATAPATH & CONTROL

r

= Multi-Cycle Datapath
= Multi-Cycle Control

= Additional Registers and
Multiplexers

i Multicycle Approach

= Break up an instruction into steps, each step takes a
cycle:
= balance the amount of work to be done
= restrict each cycle to use only one major functional unit
= Different instructions take different number of cycles to
complete
= At the end of a cycle:
= store values for use in later cycles (easiest thing to do)

= introduce additional “internal” registers for such
temporal storage

= Reusing functional units (reduces hardware cost):
= Use ALU to compute address/result and to increment PC
= Use memory for both instructions and data

4

Multi-Cycle Datapath:

i Additional Registers

Additional “internal registers”:

»

2

-»

2

Instruction register (IR) -- to hold current instruction

Memory data register (MDR) -- to hold data read from memory

A register (A) & B register (B) -- to hold register operand values from register files
ALUOut register (ALUOut) -- to hold output of ALU, also serves as memory address
register (MAR)

= All registers except IR hold data only between a pair of adjacent cycles and thus do
not need write control signals; IR holds instructions till end of instruction, hence

needs a write control signal

L PC 0 -
M Instruction »| Read
u Address [25-21] register 1
X
>

Read

Instructiol »| Re
Memory [20— 1& L, reg?gter 2 datal
Datal . 0 Registers
Inst / Instruction M Write Read
- [15=0Jf | |nstruction| u register data2
| \/rite Instruction lh.‘L.IJﬂ.. X :
dat

data register

Instruction 0

[15-0] M
u
X

ALUOuU

Memory >
data
register

D

Note: we ignore jump inst here

Multicycle Datapath:
i Additional Multiplexors

= Additional multiplexors:
= Mux for first ALU input -- to select A or PC (since we use ALU for both
address/result computation & PC increment)

= Bigger mux for second ALU input -- due to two additional inputs: 4 (for normal PC
increment) and the sign-extended & shifted offset field (in branch address
computation)

0 I—>
M Instruction »| Read ,\OA
u Address [25-21] register 1 _l u
> X Instruction Read Read ==/ A X
d Memory [20-16] | 7| register 2 datal _l U
st/ D24 . 0 _ Registers ALUOU
INSEruCtion fe M Write Read _
) [15-0]| | instruction| u register data 2 i El_‘_' 0
— \é\gt';e Instruction =11, lx Write 4=>|1 '\L/Jl
register data >(> |
Instruction >0 3
— M
u
X
—>| Memory >1
data
register
v 0

Note: we ignore jump inst here

Multi-Cycle
Datapath & Cont

ro

PC

e CF

PCWriteCond/\ PCSource

b

IRWrite \ [SOPO] ,CRegDSt
N

PCWiite /
ALUCp
lorD I Outputs\
MemRead ALUSrcB
v | Contral ALUSrcA
Wigeimvurie
MemtoReg RegWrite

S xec= @

Address

Memory

Wite
data

MemData

Instruction

Instruction [25 0]

[31-26]

Instruction
[25 21]

Instruction
[20 18]

register

Instruction
[15 0]

=

(o
Instruction M
s 0 Instruction| u
Instruction | 15 11] 1X

Y

Memory
data
register

Read

| register 1

_ | Read Read
register 2 data 1

. Registers

Wiite Read
register 4otg o
Write
data

> &

xc=Z

Instruction [5 0]

W N = O

ALU
control

Jump
address [31-0]

ALU OU g

Note the reason for each control signal; also note that w'?have included the jump

instruction

= o

o=

Control Signals for

i Multi-Cycle Datapath

= Note:

»

three possible sources for value to be written into PC (controlled
by PCSource): (1) regular increment of PC, (2) conditional
branch target from ALUOut, (3) unconditional jump (lower 26
bits of instruction in IR shifted left by 2 and concatenated with
upper 4 bits of the incremented PC)

two PC write control signals: (1) PCWrite (for unconditional
jump), & (2) PCWriteCond (for “zero” signal to cause a PC write
if asserted during beq inst.)

since memory is used for both inst. & data, need lorD to select
appropriate addresses

IRWrite needed for IR so that instruction is written to IR (IRWrite
= 1) during the first cycle of the instruction and to ensure that
IR not be overwritten by another instruction during the later
cycles of the current instruction execution (by keeping IRWrite =
0)

other control signals

Brealking the Instruction
into 3 - 5 Execution Steps

1. Instruction Fetch (All instructions)

2. Instruction Decode (All instructions), Register Fetch & Branch
Address Computation (in advance, just in case)

3. ALU (R-type) execution, Memory Address Computation, or
Branch Completion (Instruction dependent)

4. Memory Access or R-type Instruction Completion (Instruction
dependent)

5. Memory Read Completion (only for |w)

At end of every clock cycle, needed data must be stored into register(s)
or memory location(s).

Each step (can be several parallel operations) is 1 clock cycle -->

Instructions take 3 to 5 cycles! Clock |

Events during a cycle, e.qg.:
r‘9:Iock in result

Data ready operatio

Step 1: Instruction
Fetch

Use PC to get instruction (from memory) and put it in the
Instruction Register

Increment of the PC by 4 and put the result back in the PC

Can be described succinctly using RTL "Register-Transfer
Language"

IR <= Memory[PC];
PC <= PC + 4;

Which control signals need to be asserted?
= lorD = 0, MemRead = 1, IRWrite = 1
= ALUSrcA = 0, ALUSrcB = 01, ALUOp = 00, PCWrite = 1, PCSource = 00

Why can instruction read & PC update be in the same step? Look at state element
timing

10

What is the advantage of updating the PC now?

Step 2: Instruction Decode,
Reg. Fetch, & Branch Addr.
Comp.

= |n this step, we decode the instruction in IR (the opcode enters
control unit in order to generate control signals). In parallel,
we can

= Read registers rs and rt, just in case we need them

= Compute the branch address, just in case the instruction is a
branch beqg

= RTL:

A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

= Control signals:
= ALUSrcA = 0, ALUSrcB = 11, ALUOp = 00 (add)

= Note: no explicit control signals needed to write A, B,1& ALUOut.
Theyv are written by clock transitions automatically at end of step

Step 3: Instruction
i Dependent Operation

One of four functions, based on instruction type:

= Memory address computation (for Iw, sw):
ALUOut <= A + sign-extend(IR[15:0]);
= Control signals: ALUSrcA = 1, ALUSrcB = 10, ALUOp = 00
= ALU (R-type):
ALUOuUt <= A op B;
= Control signals: ALUSrcA = 1, ALUSrcB = 00, ALUOp = 10
= Conditional branch:
if (A==B) PC <= ALUOut;
= Control signals: ALUSrcA = 1, ALUSrcB = 00, ALUOp = 01 (Sub),
PCSource = 01, PCWriteCond = 1 (to enable zero to write PC if 1)
What is the content of ALUOut during this step? Immediately after this step?
= Jump:
PC <= PC[31:28] || (IR[25:0]<<2);
= Control signals: PCSource = 10, PCWrite =1

v Note: Conditional branch & jump instructions completed at this step!

D LG Sre IYIGHIIDE §J AGCSES229 UI

ALU
(R-type) Instruction

For Iw or sw instructions (access memory):

MDR <= Memory[ALUOut];
or
Memory[ALUOut] <= B;

Control signals (for Iw): lorD = 1 (to select ALUOut as address),

MemRead = 1, note that no write signal needed for writing to MDR, it is written
by clock transition automatically at end of step

Control signals (for sw): lorD = 1 (to select ALUOut as address),
MemWrite = 1

For ALU (R-type) instructions (write result to register):

Reg[IR[15:11]] <= ALUOut;

Control signals: RegDst = 1 (to select register address), MemtoReg = 0,
RegWrite = 1 13

T Is A snarsctdl ~omdr o=, £l A~ Al ~ A At il A momod AL Ll A ~v s~ A An o A ~I~ ~]

Step 5: Memory Read
i Completion

For Iw instruction only (write data from MDR to register):

Reg[IR[20:16]]<= MDR;

= Control signals: RegDst = 0 (to select register address),
MemtoReg = 1, RegWrite = 1

v Note: |Iw instruction completed at this step!

14

Summary of Execution
Steps

Action for R-type | Action for memory-reference Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR <= Memory|PC]
PC<=PC+4
Instruction A <= Reg [IR[25:21]]
decode/register fetch B <= Reg [IR[20:16]]
/branch addr comp ALUOuUt <=PC + (Sign—eXtend (lR[lSO]) << 2)
Execution, address ALUOUut<=AopB ALUOUt <= A + sign-extend if (A ==B) then | PC <=PC [31:28]
computation, branch/ (IR[15:0)) PC <=ALUOU | 1I(IR[25:0]<<2)

jump completion

Memory access or Rtype | Reg [IR[15:11]]<= |Load: MDR <= Memory][ALUOuI]

completion ALUOuUt or
Store: Memory [ALUOLUL] <=B
Memory read completion Load: Reg[IR[20:16]] <= MDR

Some instructions take shorter number of cycles, therefore next instructions can start earlier.

Hence, compare to single-cycle implementation where all instructions take same amount of time, multi-cycle

implementation is_faster!

Multi-cycle implementation also reduces hardware cost (reduces adders & memory, /ncrea%Swmber of

P L M o S |

i Simple Questions

How many cycles will it take to execute this code?

1w $t2, 0($t3)
1w $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)
Label: :

= What is going on during the 8th cycle of execution?

= |n what cycle does the actual addition of $t2 and $t3 takes
place?

uuyuyutrryuuyuurydyy

16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

