
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

5th

Edition

Chapter 2

Instructions: Language of
the Computer

Chapter 2 — Instructions: Language of the Computer — 2

Instruction Set
 The repertoire of instructions of a

computer
 Different computers have different

instruction sets
 But with many aspects in common

 Early computers had very simple
instruction sets
 Simplified implementation

 Many modern computers also have simple
instruction sets

§2.1 Int roductio n

Chapter 2 — Instructions: Language of the Computer — 3

The MIPS Instruction Set
 Used as the example throughout the book
 MIPS: Microprocessor without interlocked

pipeline stages
 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)
 Large share of embedded core market

 Applications in consumer electronics, network/storage
equipment, cameras, printers, …

 Typical of many modern ISAs
 See MIPS Reference Data tear-out card, and

Appendixes B and E

http://www.mips.com/

Chapter 2 — Instructions: Language of the Computer — 4

Arithmetic Operations
 Add and subtract, three operands

 Two sources and one destination

add a, b, c # a gets b + c
 All arithmetic operations have this form
 Design Principle 1: Simplicity favours

regularity
 Regularity makes implementation simpler
 Simplicity enables higher performance at

lower cost

§2.2 O
p eration s of the C

om
p uter H

a rdw
are

Chapter 2 — Instructions: Language of the Computer — 5

Arithmetic Example
 C code:

f = (g + h) - (i + j);

 Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 6

Register Operands
 Arithmetic instructions use register

operands
 MIPS has a 32 × 32-bit register file

 Use for frequently accessed data
 Numbered 0 to 31
 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§2.3 O
p erands of the C

om
pu ter H

ar dw
are

Chapter 2 — Instructions: Language of the Computer — 7

Register Operand Example
 C code:
f = (g + h) - (i + j);
 f, …, j in $s0, …, $s4

 Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 8

Memory Operands
 Main memory used for composite data

 Arrays, structures, dynamic data
 To apply arithmetic operations

 Load values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-significant byte at least address of a word
 c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 9

Memory Operand Example 1
 C code:
g = h + A[8];
 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 10

Memory Operand Example 2
 C code:
A[12] = h + A[8];
 h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 11

Registers vs. Memory
 Registers are faster to access than

memory
 Operating on memory data requires loads

and stores
 More instructions to be executed

 Compiler must use registers for variables
as much as possible
 Only spill to memory for less frequently used

variables
 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 12

Immediate Operands
 Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction
 Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common
case fast
 Small constants are common
 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 13

The Constant Zero
 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten
 Useful for common operations

 E.g., move between registers

add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 14

Unsigned Binary Integers
 Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx  




 

 Range: 0 to +2n – 1
 Example

 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

§2.4 S
ig ned an d U

nsig ned N
um

bers

Chapter 2 — Instructions: Language of the Computer — 15

2s-Complement Signed Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx  



 

 Range: –2n – 1 to +2n – 1 – 1
 Example

 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 16

2s-Complement Signed Integers
 Bit 31 is sign bit

 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same unsigned

and 2s-complement representation
 Some specific numbers

 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 17

Signed Negation
 Complement and add 1

 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2





 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
 = 1111 1111 … 11102

Chapter 2 — Instructions: Language of the Computer — 18

Sign Extension
 Representing a number using more bits

 Preserve the numeric value
 In MIPS instruction set

 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 19

Representing Instructions
 Instructions are encoded in binary

 Called machine code

 MIPS instructions
 Encoded as 32-bit instruction words
 Small number of formats encoding operation code

(opcode), register numbers, …
 Regularity!

 Register numbers
 $t0 – $t7 are reg’s 8 – 15
 $t8 – $t9 are reg’s 24 – 25
 $s0 – $s7 are reg’s 16 – 23

§2.5 R
e presen ting Ins truction s in the C

om
p uter

Chapter 2 — Instructions: Language of the Computer — 20

MIPS R-format Instructions

 Instruction fields
 op: operation code (opcode)
 rs: first source register number
 rt: second source register number
 rd: destination register number
 shamt: shift amount (00000 for now)
 funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 21

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 22

Hexadecimal
 Base 16

 Compact representation of bit strings
 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420
 1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 23

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
 rt: destination or source register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly
 Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 24

Stored Program Computers
 Instructions represented in

binary, just like data
 Instructions and data stored

in memory
 Programs can operate on

programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 25

Logical Operations
 Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting
groups of bits in a word

§2.6 Lo gical O
peration s

Chapter 2 — Instructions: Language of the Computer — 26

Shift Operations

 shamt: how many positions to shift
 Shift left logical

 Shift left and fill with 0 bits
 sll by i bits multiplies by 2i

 Shift right logical
 Shift right and fill with 0 bits
 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 27

AND Operations
 Useful to mask bits in a word

 Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Chapter 2 — Instructions: Language of the Computer — 28

OR Operations
 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

Chapter 2 — Instructions: Language of the Computer — 29

NOT Operations
 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0
 MIPS has NOR 3-operand instruction

 a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always
read as zero

Chapter 2 — Instructions: Language of the Computer — 30

Conditional Operations
 Branch to a labeled instruction if a

condition is true
 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1
 unconditional jump to instruction labeled L1

§2.7 Ins truction s for M
aking D

ecision s

Chapter 2 — Instructions: Language of the Computer — 31

Compiling If Statements
 C code:

if (i==j) f = g+h;
else f = g-h;

 f, g, … in $s0, $s1, …
 Compiled MIPS code:

 bne $s3, $s4, Else
 add $s0, $s1, $s2
 j Exit
Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 32

Compiling Loop Statements
 C code:

while (save[i] == k) i += 1;
 i in $s3, k in $s5, address of save in $s6

 Compiled MIPS code:

Loop: sll $t1, $s3, 2
 add $t1, $t1, $s6
 lw $t0, 0($t1)
 bne $t0, $s5, Exit
 addi $s3, $s3, 1
 j Loop
Exit: …

Chapter 2 — Instructions: Language of the Computer — 33

Basic Blocks
 A basic block is a sequence of instructions

with
 No embedded branches (except at end)
 No branch targets (except at beginning)

 A compiler identifies basic
blocks for optimization

 An advanced processor
can accelerate execution
of basic blocks

Chapter 2 — Instructions: Language of the Computer — 34

More Conditional Operations
 Set result to 1 if a condition is true

 Otherwise, set to 0
 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;
 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;
 Use in combination with beq, bne

slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 35

Branch Instruction Design
 Why not blt, bge, etc?
 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work
per instruction, requiring a slower clock

 All instructions penalized!
 beq and bne are the common case
 This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 36

Signed vs. Unsigned
 Signed comparison: slt, slti
 Unsigned comparison: sltu, sltui
 Example

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111
 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed
 –1 < +1  $t0 = 1

 sltu $t0, $s0, $s1 # unsigned
 +4,294,967,295 > +1  $t0 = 0

 sltu useful in arrays bound checking (see book)

Chapter 2 — Instructions: Language of the Computer — 37

Procedure Calling
 Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

§2.8 S
u pportin g P

roce dures i n C
om

p uter H
ardw

are

Chapter 2 — Instructions: Language of the Computer — 38

Register Usage Conventions
 $a0 – $a3: arguments (reg’s 4 – 7)
 $v0, $v1: result values (reg’s 2 and 3)
 $t0 – $t9: temporaries

 Can be overwritten by callee
 $s0 – $s7: saved

 Must be saved/restored by callee
 $gp: global pointer for static data (reg 28)
 $sp: stack pointer (reg 29)
 $fp: frame pointer (reg 30)
 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 39

Procedure Call Instructions
 Procedure call: jump and link
jal ProcedureLabel
 Address of following instruction put in $ra
 Jumps to target address

 Procedure return: jump register
jr $ra
 Copies $ra to program counter
 Can also be used for computed jumps

 e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 40

Leaf Procedure Example
 C code:
int leaf_example (int g, h, i, j)
{ int f;
 f = (g + h) - (i + j);
 return f;
}
 Arguments g, …, j in $a0, …, $a3
 f in $s0 (hence, need to save $s0 on stack)
 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 41

Leaf Procedure Example
 MIPS code:
leaf_example:
 addi $sp, $sp, -4
 sw $s0, 0($sp)
 add $t0, $a0, $a1
 add $t1, $a2, $a3
 sub $s0, $t0, $t1
 add $v0, $s0, $zero
 lw $s0, 0($sp)
 addi $sp, $sp, 4
 jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Chapter 2 — Instructions: Language of the Computer — 42

Non-Leaf Procedures
 Procedures that call other procedures
 For nested call, caller needs to save on

the stack:
 Its return address
 Any arguments and temporaries needed after

the call
 Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 43

Non-Leaf Procedure Example
 C code:
int fact (int n)
{
 if (n < 1) return f;
 else return n * fact(n - 1);
}
 Argument n in $a0
 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 44

Non-Leaf Procedure Example
 MIPS code:

fact:
 addi $sp, $sp, -8 # adjust stack for 2 items
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save argument
 slti $t0, $a0, 1 # test for n < 1
 beq $t0, $zero, L1
 addi $v0, $zero, 1 # if so, result is 1
 addi $sp, $sp, 8 # pop 2 items from stack
 jr $ra # and return
L1: addi $a0, $a0, -1 # else decrement n
 jal fact # recursive call
 lw $a0, 0($sp) # restore original n
 lw $ra, 4($sp) # and return address
 addi $sp, $sp, 8 # pop 2 items from stack
 mul $v0, $a0, $v0 # multiply to get result
 jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 45

Memory Layout Conventions
 Usually followed by

assemblers
 Text: program code
 Static data: global variables

 e.g., static variables in C,
constant arrays and strings

 $gp initialized to address
allowing ±offsets into this
segment

 Dynamic data: heap
 E.g., malloc in C, new in Java

 Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 46

Character Data
 Byte-encoded character sets

 ASCII: 128 characters
 95 graphic, 33 control

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in Java, C++ wide characters, …
 Most of the world’s alphabets, plus symbols
 UTF-8, UTF-16: variable-length encodings

§2.9 C
o m

m
uni cating w

ith P
eo ple

Chapter 2 — Instructions: Language of the Computer — 47

Byte/Halfword Operations
 Could use bitwise operations
 MIPS byte/halfword load/store

 String processing is a common case
lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 48

String Copy Example
 C code (naïve):

 Null-terminated string

void strcpy (char x[], char y[])
{ int i;
 i = 0;
 while ((x[i]=y[i])!='\0')
 i += 1;
}
 Addresses of x, y in $a0, $a1
 i in $s0

Chapter 2 — Instructions: Language of the Computer — 49

String Copy Example
 MIPS code:

strcpy:
 addi $sp, $sp, -4 # adjust stack for 1 item
 sw $s0, 0($sp) # save $s0
 add $s0, $zero, $zero # i = 0
L1: add $t1, $s0, $a1 # addr of y[i] in $t1
 lbu $t2, 0($t1) # $t2 = y[i]
 add $t3, $s0, $a0 # addr of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]
 beq $t2, $zero, L2 # exit loop if y[i] == 0
 addi $s0, $s0, 1 # i = i + 1, byte offset
 j L1 # next iteration of loop
L2: lw $s0, 0($sp) # restore saved $s0
 addi $sp, $sp, 4 # pop 1 item from stack
 jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 50

0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants
 Most constants are small

 16-bit immediate is sufficient
 For the occasional 32-bit constant

lui rt, constant
 Copies 16-bit constant to left 16 bits of rt
 Clears right 16 bits of rt to 0

lui $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000ori $s0, $s0, 2304

§2.10 M
IP

S
 A

d dressin g for 32 -B
it Im

m
ediat es and A

ddres ses

Chapter 2 — Instructions: Language of the Computer — 51

Branch Addressing
 Branch instructions specify

 Opcode, two registers, target address
 Most branch targets are near branch

 Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4
 PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 52

Jump Addressing
 Jump (j and jal) targets could be

anywhere in text segment
 Encode full address in instruction

op address

6 bits 26 bits

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

Chapter 2 — Instructions: Language of the Computer — 53

Target Addressing Example
 Loop code from earlier example

 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

 add $t1, $t1, $s6 80004 0 9 22 9 0 32

 lw $t0, 0($t1) 80008 35 9 8 0

 bne $t0, $s5, Exit 80012 5 8 21 2

 addi $s3, $s3, 1 80016 8 19 19 1

 j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 54

Branching Far Away
 If branch target is too far to encode with

16-bit offset, assembler rewrites the code
 Example

beq $s0,$s1, L1
↓

bne $s0,$s1, L2
j L1
L2: …

Chapter 2 — Instructions: Language of the Computer — 55

Addressing Mode Summary

Chapter 2 — Instructions: Language of the Computer — 56

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 T
ranslati ng and S

tartin g a P
ro gram

Chapter 2 — Instructions: Language of the Computer — 57

Assembler Pseudoinstructions
 Most assembler instructions represent machine

instructions one-to-one
 Pseudoinstructions: figments of the assembler’s

imagination that helps assembly language programmers

move $t0, $t1→ add $t0, $zero, $t1
blt $t0, $t1, L → slt $at, $t0, $t1

bne $at, $zero, L
 $at (register 1): assembler temporary

 Other such pseudoinstructions are listed in
the manual that has been uploaded

Chapter 2 — Instructions: Language of the Computer — 58

Producing an Object Module
 Assembler (or compiler) translates program into

machine instructions
 Provides information for building a complete

program from the pieces
 Header: described contents of object module
 Text segment: translated instructions
 Static data segment: data allocated for the life of the

program
 Relocation info: for contents that depend on absolute

location of loaded program
 Symbol table: global definitions and external refs
 Debug info: for associating with source code

Chapter 2 — Instructions: Language of the Computer — 59

Linking Object Modules
 Produces an executable image

1. Merges segments

2. Resolve labels (determine their addresses)

3. Patch location-dependent and external refs
 Could leave location dependencies for

fixing by a relocating loader
 But with virtual memory, no need to do this
 Program can be loaded into absolute location

in virtual memory space

Chapter 2 — Instructions: Language of the Computer — 60

Loading a Program
 Load from image file on disk into memory

1. Read header to determine segment sizes

2. Create virtual address space

3. Copy text and initialized data into memory
 Or set page table entries so they can be faulted in

4. Set up arguments on stack

5. Initialize registers (including $sp, $fp, $gp)

6. Jump to startup routine
 Copies arguments to $a0, … and calls main
 When main returns, do exit syscall

Chapter 2 — Instructions: Language of the Computer — 61

Dynamic Linking
 Only link/load library procedure when it is

called
 Requires procedure code to be relocatable
 Avoids image bloat caused by static linking of

all (transitively) referenced libraries
 Automatically picks up new library versions

Chapter 2 — Instructions: Language of the Computer — 62

Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

Chapter 2 — Instructions: Language of the Computer — 63

C Sort Example
 Illustrates use of assembly instructions

for a C bubble sort function
 Swap procedure (leaf)

void swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

 v in $a0, k in $a1, temp in $t0

§2.13 A
 C

 S
ort E

xam
p le to P

u t It A
ll Togethe r

Chapter 2 — Instructions: Language of the Computer — 64

The Procedure Swap

swap: sll $t1, $a1, 2 # $t1 = k * 4
 add $t1, $a0, $t1 # $t1 = v+(k*4)
 # (address of v[k])
 lw $t0, 0($t1) # $t0 (temp) = v[k]
 lw $t2, 4($t1) # $t2 = v[k+1]
 sw $t2, 0($t1) # v[k] = $t2 (v[k+1])
 sw $t0, 4($t1) # v[k+1] = $t0 (temp)
 jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 65

The Sort Procedure in C
 Non-leaf (calls swap)

void sort (int v[], int n)
{
 int i, j;
 for (i = 0; i < n; i += 1) {
 for (j = i – 1;
 j >= 0 && v[j] > v[j + 1];
 j -= 1) {
 swap(v,j);
 }
 }
}

 v in $a0, k in $a1, i in $s0, j in $s1

Chapter 2 — Instructions: Language of the Computer — 66

The Procedure Body
 move $s2, $a0 # save $a0 into $s2
 move $s3, $a1 # save $a1 into $s3
 move $s0, $zero # i = 0
for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)
 beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)
 addi $s1, $s0, –1 # j = i – 1
for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)
 bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
 sll $t1, $s1, 2 # $t1 = j * 4
 add $t2, $s2, $t1 # $t2 = v + (j * 4)
 lw $t3, 0($t2) # $t3 = v[j]
 lw $t4, 4($t2) # $t4 = v[j + 1]
 slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3
 beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3
 move $a0, $s2 # 1st param of swap is v (old $a0)
 move $a1, $s1 # 2nd param of swap is j
 jal swap # call swap procedure
 addi $s1, $s1, –1 # j –= 1
 j for2tst # jump to test of inner loop
exit2: addi $s0, $s0, 1 # i += 1
 j for1tst # jump to test of outer loop

Pass
params
& call

Move
params

Inner loop

Outer loop

Inner loop

Outer loop

Chapter 2 — Instructions: Language of the Computer — 67

sort: addi $sp,$sp, –20 # make room on stack for 5 registers
 sw $ra, 16($sp) # save $ra on stack
 sw $s3,12($sp) # save $s3 on stack
 sw $s2, 8($sp) # save $s2 on stack
 sw $s1, 4($sp) # save $s1 on stack
 sw $s0, 0($sp) # save $s0 on stack
 … # procedure body
 …
 exit1: lw $s0, 0($sp) # restore $s0 from stack
 lw $s1, 4($sp) # restore $s1 from stack
 lw $s2, 8($sp) # restore $s2 from stack
 lw $s3,12($sp) # restore $s3 from stack
 lw $ra,16($sp) # restore $ra from stack
 addi $sp,$sp, 20 # restore stack pointer
 jr $ra # return to calling routine

The Full Procedure

Chapter 2 — Instructions: Language of the Computer — 68

Fallacies
 Powerful instruction  higher performance

 Fewer instructions required
 But complex instructions are hard to implement

 May slow down all instructions, including simple ones

 Compilers are good at making fast code from simple
instructions

 Use assembly code for high performance
 But modern compilers are better at dealing with

modern processors
 More lines of code  more errors and less productivity

§2.19 F
allacies and P

itfalls

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

