Indian Institute of Technology, Kharagpur
Mid-Spring Semester 2017-18

Date of Examination: 22-02-2018 Session: AN (2-4 pm) Duration: 2 hrs
Subject No.: CS31702

Subject: COMPUTER ARCHITECTURE AND OPERATING SYSTEMS
Department /Center /School: Computer Science and Engineering

Specific charts, graph paper, log book etc., required: NO Total Marks : 60
Special instructions (if any): ANSWER ALL QUESTIONS

Note: All parts of the question (a,b,c,d) should be answered at a stretch.

1. (a) Name 8 great ideas exploited extensively by the designers of computer
architectures.
Design for Moores Law
Use abstraction to simplify design
Make the common case fast
Performance via parallelism
Performance via pipelining
Performance via prediction
Hierarchy of memories
Dependability via redundancy

(b) For the following MIPS instructions specify the instruction formats by
splitting the 32-bit machine code into subsets and label them. Briefly
name the above labels and interpret them in execution of the instruction.

i. Arithmetic instructions with register operands.
op: opcode (6 bits); rs: source reg-1 (5 bits); rt: source reg-2 (5 bits); rd:
destination reg (5 bits); shamt: shift amount (5 bits); funct: function (6 bits)
opcode specify the broad class of operation (Ex: arithmetic).
function: specific operation within arithmetic (say add or sub).
Arithmatic instructions perform arithmetic operations on 2 source register
operands (rs and rt) and the result will be stored at destination register (rd).
For arithmetic instructions the shmt field is zero.

ii. Arithmetic instructions with immediate operands.
op: opcode (6 bits); rs: source reg (5 bits); rt: destination (5 bits); constant:
(16 bits)
opcode specify the arithmetic with immediate mode of operation.
These instructions perform arithmetic operations on source register operand
(rs) and a constant. The result will be stored at destination register (rt).

iii. Memory access instructions
op: opcode (6 bits); rs: base reg (5 bits); rt: destination (5 bits); offset: (16
bits)
opcode specify the type of memory access operation (load or store)
These instructions first compute the target memory address by adding the offset
to the contents of base register. Then it access the memory location either to read
the value from the memory or write into memory. The second register present

in the instruction will be used to receive the value from memory in case of
load or the value present in the register will be moved to memory in case of store.

iv. Branch instructions
op: opcode (6 bits); rs: reg-1 (5 bits); rt: reg-2 (5 bits); label: (16 bits)
opcode specify the type of branch operation (bne or be)
These instructions first check whether the contents present in two registers are
equal or not. Based on the validity of the condition, the branch decision will be
made. If branch is taken then the value present in the label will be multiplied by
4 and add to pc+4. Otherwise, if branch is not taken the following instruction
(pc+4) will be executed.

v. Jump instructions
op: opcode (6 bits); address: (26 bits);
opcode specify that it is jump operation (unconditional)
This can be viewed as an unconditional jump instruction. The target address
1s calculated as follows: 4 MSBs of pc+4 address concatenated with 2-bit left
shifted address present in the instruction.

(c) Write the MIPS code for the following C function. Provide suitable
comments against to each MIPS instruction for understanding its func-
tionality.
int sum(int a, int b, int c, int d)

{

mt e;

e = a+b+c+d;

return(e);

¥

Before calling the function, the function arguments (parameters) are stored in
registers a0, al, a2 and a3. The contents of PC+4 (address of next instruction to
be executed) are stored on register ra (for returning to the instruction where the
functional call has taken). Use jal instruction to move the control to procedure.

sum :

addi sp, sp, -4 (Pushing the sp (stack pointer) down to create a space for storing
the contents of save reg)

sw s0, 0(sp) (storing the contents of sO on stack. Because we need to use s0 register
in the procedure call for storing the sum.)

add t0, a0, al (adding first two arquments of a function and place the result in
temporary register t0)

add t1, a2, a8 (adding last two arguments of a function and place the result in
temporary register t1)

add s0, t0, t1 (computing the final sum and stored in s0)

add v0, s0, $0 (move the contents of sO to v0)

lw s0, 0(sp) (restore the earlier contents of s0 from sp)

addi sp, sp, 4 (push the sp up to remove the s0 reg)

gr ra (return the control to an address mentioned in register ra)

(d) Answer the following in view of IEEE 754 Single precesion floating point

2. (a)

(b)

number representation:

i. Representation format with appropriate details (number of bits and
labels associated to different subsets).
Representation Format: sign: 1 bit, exponent: 8 bits and fraction: 23 bits

ii. How the floating point value is computed from the above representa-
tion?
(—1)% x (1 + Fraction) x 2(Fzponent=bias)

iii. Compute the range of numbers that can be represented using single
precesion encoding.
—1.11111111111111111111111 x 27126
+1.11111111111111111111111 x 2+127

(24104543 = 20M)

Discuss how combinational and sequential logics differ? Provide 2 exam-
ple circuits to each of the logic.

Combinational logic: Output depends only on current inputs. Examples: ALU, Mul-
tiplexer, gates, controller

Sequential logic: It has atleast 2 inputs and one output. The inputs are data and
clock. Clock determines when the data to be written into the element. QOutput of
sequential logic depends on the inputs as well as internal state of the element. FEx-
amples: memory, registers, flipflops, ...

Design data path and controller for a single-cycle processor to execute
R-type, memory reference and control flow instructions. Draw a neat
sketch with all hardware components and place the connections and sig-
nals carefully. Highlight the salient points in the design of above men-
tioned datapath and controller.

In single cycle processor each resource will be available through out the cycle for
executing the instruction. But, each resource (functional unit) can be used only once
during execution of an instruction. With these constraints, a single cycle processor
consists of 2 memory units: one for holding the instructions known as instruction
memory used during fetching the instruction from the memory and other one used
to hold data known as data-memory mainly meant for data access from memory
(load and store instructions). Initially the entire program (all instructions) is in
instruction memory. For fetching the instructions in sequence (ome-by-one), pro-
gram counter contains the address of the present instruction to be fetched from the
memory. At the end of the execution of this instruction, the next instruction to
be executed will depend on the type of the present instruction. If the instruction is
branch instruction, the branch target address depends on the condition checked be-
tween the operands present in two registers. In case of branch-on-equal instruction,
if the contents of two registers are same, then the target address is sum of the off-
set present in the instruction and PC+4. If branch is not successful, then the next
instruction to be fetched is PC+/. For executing the branch instruction we need
a controller which decode its opcode and recognize it as branch instruction, and up
on knowing it as branch, we need to compute both PC+4 as well as PC+/+offset.

Irestruction |25_P] é;ﬂ\,l Jump address [31-0]

| left 2
& BN |pciapiag
| i
4 —= 1
r Ty
\J Feg sl { Shift
£ ume et 2™
nstnicson [(31-26] % :
————— Control 3
- x. .._I
REN 18 H=S :
™| aodress
IrsTucton T~ | regster: e
B1-a T M e Tand L, SALU
Inztruction rE T z E-'- ragsies 1343 .'-'Il_
meEmary r—. 1) | d o -
| TMgats Registers L |
K, % o -"'-\.\..
[Sign- i { aLu
! e -'d _F',c pitral |
o S

Parallelly, we need to check the contents of registers, whether they are same or not
by using ALU functionality. For calculating PC+/4 and PC+/j+offset, we need 2
more adders. So for executing branch instruction, we need 2 adders, 1 ALU and a
2-to-1 multiplexer to choose the address between PC+4 and PC+/+offset based on
the validity of the condition. To accommodate jump (unconditional branch) instruc-
tion, after fetching while decoding the instruction the controller come to know that
its qump instruction and hence the address of the next instruction to be fetched will
be computed by concatenating the 4 MSBs of PC+4 and 2-bit left-shifted 26 LSBs
of JMP instruction. To include this instruction along with branch and other R-type
and memory-access instructions, we need to include one more 2-to-1 multiplexer,
where the 2 inputs are jump-target address and PC+j or PC+/4+offset (branch).
For executing R-type instructions we need instruction memory (instruction memory
is required for all types of instructions), register-file, controller and ALU. In R-type
instruction source and destination operands are from the registers. Based on the type
of arithmetic operation, the ALU has to be controlled for specific functionality. For
the considered 3 types of instructions (R-type, memory-access and control flow) the
2 inputs of ALU may come from registers or one from register and other from the
offset present (lw, sw) in the instruction itself. Therefore for selecting the 2nd input
(either from register or from instruction offset) a 2-to-1 multiplexer is employed.
In R-type instruction, the result produced by ALU will be stored back in one of the
registers of the reg-file. Even for lw instruction also, the contents of specific memory
location will fetched and written into one of the registers of the reg-file. The regis-
ters that were used to store the result in case of R-type and memory content in case

(c)

(d)

of lw are denoted by 2-different sets of bits in the instruction. Therefore to select
the specific set of bits from 2 sets, to choose the destination register for storing the
result or loading the memory content, we need one more 2-to-1 multiplexer. After
specifying the register identity, the controller should enable the write signal to reg-file
to write the desired contents into specific register. In case of load/store instructions
ALU will be used for memory address computation with adder functionality with one
input from the register and other from the offset present in the instruction. Before
addition, the offset has to shift left by 2 bits to convert word address to byte address.
The memory address generated by ALU will be used by lw/sw to fetch/store the data
from the data memory. For reading/writing the data into data memory along with
the address, the controller should generate read/write signals based on the desired
operation as per the instruction. In both R-type and load instructions, the result (ei-
ther from arithmetic/logical operation or from memory content) will be stored back
into one of the registers of the reg-file. Therefore, one should select the output from
2 possibilities (either the output of ALU or output of data memory) based on the
type of instruction (R-type vs lw), we need to add 2-to-1 multiplexer for chosing the
appropriate one based on the type of instruction.

For guiding the above mentioned datapath (various functional units) for executing
vartous types of instructions, we need to design a controller circuit which will gen-
erate appropriate control signals to activate the functional units (datapath) as per
the desired instruction. In this limited scenario, a single cycle processor which can
support R-type, Memory-access and flow control instructions needs a controller with
10 control signals. These control signals consists of (i) signals for multiplezers (in-
cludes jump and branch), (ii) memory read, (iii) Memory write, (iv) reg write and
(v) ALU control. Five control signals for five 2-to-1 multiplexers, three signals for
each of MR, MW and RW operations and 2 signals for ALU operation which specify
(memory:00, branch:01 and R-type:10) the broader group of instruction and specific
ALU function will be specified by 3 bits (AND:000, OR:001, ADD: 010, SUB: 110
and SLT: 111).

How a multi-cycle processor (without pipelining) differ from single-cycle
processor? Mention its advantages as well as disadvantages over single-
cycle processor?

In multi-cycle processor each instuction requires multiple clock cycles for its exe-
cution. The design is based on the principle that each operation (such as fetching,
decoding and reading the register contents, ALU functionality and memory access)
will be carried out in one clock cycle. Based on this different instructions will
consume different nmber of cycles based the type of instruction.

Where as in single cycle processor, the design principle is that each instruction will
complete its execution in one clock cycle. In this scenario, the duration of clock
cycle to be set for the worst case, where the duration required for a critical/complex
instruction. Therefore the efficiency is not optimal.

Advantages of multi-cycle processor: (i) Resource optimization, (ii) Overall CPU
time for program execution is better compared to single cycle processor
Disadvantages of multi-cycle processor: (i) Additional hardware (registers and
multiplezers) and (ii) More complex controller.

Mention the additional functional units (hardware) and modifications in
the datapath of a 5-stage multi-cycle pipeline processor (assume there

3. (a)

is no need to address hazards), when compared with the datapath of
single-cycle processor in executing R-type, memory reference and control
flow instructions.

(i) pc+4 has to be fed-back to pc soon after the 1st cycle.

(i1) pipeline registers in-between the stages

(i1i) Destination register identities need to be passed across the stages in view of
writing into register at stage-5 (example: lw instruction).

In case of single cycle processor any instruction will complete its execution in one
clock cycle. Hence while designing the clock, the duration of the clock cycle (or clock
frequency) is set such that the most complex (i.e., lengthy instruction) instruction
can be completed within a clock cycle. Where as in multi-cycle pipelined processor
each instruction execution takes multiple cycles based on the type of instruction. In
each cycle one new instruction will be fed into the pipeline. Based on the length of
the pipeline (number of stages) the number of instructions symultaneously executed
is equal to number of stages. In each cycle each instruction will complete one of
the stages of the pipeline and at the beginning of the new cycle instructions will
move to the next/following stage. Since, parallelly several instructions are executing
simultaneously to keep track of the information related to instructions at the end
of the cycle the status of each instruction (in the respective pipeline stage) will be
stored in the inter-stage pipeline register, which will be used in the following cycle.
For each new cycle, a fresh/new instruction needs to be fetched from the memory for
execution. Therefore, the PC has to be updated with PC+4 in each cycle for fetching
the new instruction. These inter-stage pipeline registers are also used for holding
the control signals in an appropriate manner and passing them to the following
stages at suitable clock cycles. In 5-stage pipeline, for every instruction, all its
control signals are generated in its 2nd stage. But, they have to be supplied/asserted
at different times (clock cycles) for different stages, based on the movement of the
instruction across the stages. For this purpose inter-stage pipeline registers are used
to hold the contol signals and release them appropriately.

(24+8+2+3 = 15M)

Discuss the core reasons for structural, data and contorl hazards in case
of pipeline processors. Suggest the strategies to minimise the effect of
the above hazards to improve the efficiency of pipeline processor. Pro-
vide more details in case of compensating the data and control hazards.
(i) Structural Hazard: Multiple instructions inside the pipeline needs specific hard-
ware at the same time. FExample: Single memory contains both instructions and
data. In this case instruction fetching will conflict with data access with memory.
This can be overcome by replicating the hardware/resources (splitting the memory
into 2 units: instruction memory and data memory)

(ii) Data Hazards: Due to dependence of one instruction on earlier one which is
still in pipeline. One way to overcome these hazards is to stall the pipeline at a
specific cycle where one of the instruction expects the input from the earlier instruc-
tion, which 1s not available at that time. By stalling the pipeline for 1 or 2 cycles,
the desired input from the earlier instruction will be available for processing. In
some cases data-forwarding techniques will resolve data hazards without stalling the
pipeline. Another possible solution to avoid data hazards is to reorder the code by a
compiler.

LW

(x&

ovY

u\f& Q] , gg/ g;

(b)

s, e(Sr) kMH (T 3\ i /\<<

S <

(iii) Control Hazards: These hazards will be observed in case of execution of branch
instructions. In branch instructions, branching will be decided based on the condi-
tion to be checked. By that time the following instructions enter into the pipeline,
and hazards will result if branch is successful. In general, the control hazards will
come to know in the 4th stage, by that time 3 following instructions have already
entered into the pipeline. In case if branch is successful, we need to flush those 3
instructions and pc has to be updated with branch target address. With this 2-3 CPU
cycles will be wasted. The affect of branch-success can be minimized if we carry out
condition check and branch target address computations in 2nd stage, we can reduce
the wastage of CPU cycles to 1. If we want to improve the performance further in
presence of control hazards, dynamic and static branch predictions may be explored.
There exists another solution known to be delayed branch. In delayed branch, after
the branch instruction place few instructions which are not affected by branch. With
this we need not flush the instructions and CPU cycles are not wasted.

Illustrate the flow of the following sequence of instructions through 5-
stage multi-cycle pipeline processor using suitable diagrams synchronized
to clock.
lw s2, 40(s1)
add s3, s2, s4
or sb, s2, sb
and s7, $5, s3
Clearly show and explain (in sequence w.r.t clock) the sequence of events
(hazards) occur and actions taken against to the hazards in view of
execution of the above sequence of instructions.

The lw instruction will be executed smoothly and complete in 5 cycles. The add

T Ty

e
]

— "/77:\7
S, 6905y Ml’f hz“‘.%“ AL
— [[&=="|% [| =
: Vea [¢ s | ‘J
S Ly M ‘t[z,(ﬂi{ ‘ h e [,IL/\(Q (0
_ S| I ll=—

65 O ¥ S

instruction following the lw needs the contents of s2 in its 3rd stage. But, the

4. (a)

contents of s2 will be updated by lw instruction in its 5th stage (i.e., 4th stage of
add instruction). Since the earlier instruction to add is lw, only at the end of 4th
stage of lw (end of 3rd stage of add) can provide the contents of s2. Therefore,
in this scenario data forwarding is not applicable, and the only option is to stall
the execution stage of add instruction for one cycle. The details of stalling an
instruction at specific stage are discussed below. Here we are stalling the add
instruction at 3rd stage (EX). It means the instructions in the preceding 2 stages
have to be preserved and NOP (no operation) has to be introduced in EX stage of
add instruction. Later this NOP bubble will propagate through the following stages
in successive clock cycles. In stage-2, ID of add will take place and stage-1 the
following instruction or s fetched from memory. During NOP at stage-3, as we
are preserving the contents of inter-stage registers and pc, the same activity (in the
earlier cycle) is repeated during NOP. So for every insersion of NOP, one CPY
cycle will be wasted.

In the next cycle (i.e., 4th stage of lw), lw will fetch the value from memory and
stored in pipeline register at the end of the clock cycle and further written into s2
register in stage-5. At the begining of stage-5 (stage-4 of add) of lw, the contents
present in the pipeline register are forwarded to EX stage of add. However, or
instruction executes smoothly without any hazard, after the NOP. During NOP, or
instructon is in IF stage and it is in the same stage for 2 cycles due to NOP.

for the 4th instruction and, it encounters data hazard due to the dependency on its
earlier instruction or. However this dependency can be overcome by data-forwarding
from EX stage of or instruction to EX stage of and instruction.

How the pipeline stalls will be implemented? Pipeline need to be stalled in
case of data hazards if data forwarding is not applicable (situation where forwarding
in -ve time). For example arithmetic instructions followed by load where arithmetic
operation has to be performed on the register contents where the register has to be
loaded from the memory. In this case, the execution stage of arithmetic instruction
has to be stalled for cycle. During that cycle the pipeline stages preceding to EX
stage i.e., ID and IF stages have to be preserved and control signals to EX stage to
be deasserted (make them zero). which means no-operation bubble has been created
at EX stage and it has to propagate through following stages in successive cycles
by nullifying the control signals of the respective stages in respective clock cycles.
Preserving the preceeding stages means the contents of PC' and inter-stage pipeline
register IF/ID should not be changed in the following cycle. With this effect, during
NOP the preceding stages will repeat the same action as in their earlier cycle.

(54+8+2 = 15M)

Briefly explain the following (in the context of memory access through
memory hierarchy):

i. Compulsory miss & its solution
At the initial time of program execution, when entire cache is empty the first
few instructions through a miss. This is invitable (no option) and compulsory.
These misses can be reduced by increasing the block size so that based on the
principle of spacial locality, the further conpulsory misses will be reduced.

ii. Capacity miss & its solution
As the cache size is limited and much smaller than the physical memory, capacity

8

misses will result. One can reduce the capacity misses by increasing the size of
the cache.

iii. Conflict miss & its solution
There are also known to be collission misses. If a cache entry can hold very
few blocks, and multiple entries of physical memory are mapped to single or few
entries of cache, then the collision/conflict arises during replacement. We can
mainimise these misses either by increasing the cache size or by increasing the
associativity between physical and cache memories.

iv. Write-through policy
Suppose, if CPU needs to write into data cache, then the copy of the data present
in the physical memory also need to be changed. In write-through policy whenever
you are writing into cache, at the same time write into main memory also. But,
accessing main memory takes 100 CPU cycles, where CPU has to wait for long
time. Therefore, instead of writing into main memory immediately, CPU first
write into buffer, later it will be transfered to main memory.

v. Write-back policy

Suppose, if CPU needs to write into data cache, then the copy of the data present
in the physical memory also need to be changed. In write-back policy whenever
you are writing into cache, set the dirty-bit to 1, and CPU will continue in exe-
cution of the following instructions. The update in the main memory will takes
place at the time of replacement of the block. At the time of block replacement,
iof dirty-bit is set, the block to be replaced s first write into the memory and it
1s replaced with new one. Here also to increase the performance of CPU, write
buffer may be used for immediate purpose.

(b) Design a set-associative cache for the following specifications: (i) size of
main memory = 16 MB, (ii) size of cache (only data) = 64 KB, (iii) block
size = 64 bytes and (iv) number of sets = 512. Here, CPU access data
at word level. Show the hardware implementation of the cache for the
above specifications. Mention the following details in view of the above
set-associative cache:

i. Size of the Tag field
Size of the physical address = 24 bits
Number of bits for representing set index = 9 bits
Amount of data stored in each set = “EE = 128 bytes (7 bits)
Tag size = 24 - 9 -7 = 8 bils
ii. In the context of n-way associative, what is the value of ”n” in this
problem?
Number of blocks in a set =
associative cache memory.

128

o1 = 2. Hence the given problem is 2-way set

iii. What is the total size of the cache including the overhead?
Total size of the cache = size of valid bits + size of tag bits + data = 1024 bits
+ 1024 bytes + 64 KB = 65.125 KB

(5+5 = 10M)

N

A
Wt WHhE Ay
. LD QAR
I’l‘ o [V WQ e o ‘ L8
Vé 2 e ILwen 5 W o ((61*\@ _ Lk\l)vﬁ)
Dol Avie > Qo &= S = 6 Qe _ (zghy@
oL

‘# [slowen @i o~ Aef = (2¥ - 9 => 72—y Ak orpraelce

H bt J& rep A S = (o SIS L S
o p=
e ol O OU\ /o?@ /fwrg - Zqﬁﬁ’ﬁ’l: KRG

Fo A Cosvt Aue = CL € (27 = G- &8

10

