
Chapter 5

Large and Fast: Exploiting
Memory Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Memory Technology
 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $5000 per GB
 Dynamic RAM (DRAM)

 50ns – 70ns, $20 – $75 per GB
 Magnetic disk

 5ms – 20ms, $0.20 – $2 per GB
 Ideal memory

 Access time of SRAM
 Capacity and cost/GB of disk

§5.1 Int roductio n

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Principle of Locality
 Programs access a small proportion of their

address space at any time
 Temporal locality (in time)

 Items accessed recently are likely to be
accessed again soon

 e.g., instructions in a loop, induction variables
 Spatial locality (in space)

 Items near those accessed recently are likely to
be accessed soon

 E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Taking Advantage of Locality
 Memory hierarchy
 Store everything on disk
 Copy recently accessed (and nearby)

items from disk to smaller DRAM memory
 Main memory

 Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory
 Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Memory Hierarchy Levels
 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in
upper level

 Hit: access satisfied by upper level
 Hit ratio: hits/accesses

 If accessed data is absent
 Miss: block copied from lower level

 Time taken: miss penalty
 Miss ratio: misses/accesses

= 1 – hit ratio
 Then accessed data supplied from

upper level

The Memory Hierarchy: Terminology

 Hit Rate: the fraction of memory accesses found in a level
of the memory hierarchy

 Hit Time: Time to access that level which consists of

 Time to access the block + Time to determine hit/miss

 Miss Rate: the fraction of memory accesses not found in a
level of the memory hierarchy 1 - (Hit Rate)

 Miss Penalty: Time to replace a block in that level with the
corresponding block from a lower level which consists of

 Time to access the block in the lower level + Time to transmit that block
to the level that experienced the miss + Time to insert the block in that
level + Time to pass the block to the requestor

Hit Time << Miss Penalty

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Cache Memory
 Cache memory

 The level of the memory hierarchy closest to
the CPU

 Given accesses X1, …, Xn–1, Xn

§5.2 T
h e B

asic s of C
a ches

 How do we know if
the data is present?

 Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Direct Mapped Cache
 Location determined by address
 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a
power of 2

 Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Tags and Valid Bits
 How do we know which particular block is

stored in a cache location?
 Store block address as well as the data
 Actually, only need the high-order bits
 Called the tag

 What if there is no data in a location?
 Valid bit: 1 = present, 0 = not present
 Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Cache Example
 8-blocks, 1 word/block, direct mapped
 Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Address Subdivision

Caching: A Simple First Example

00

01
10
11

Cache

Main Memory

Q2: How do we find it?

Use next 2 low order
memory address bits
– the index – to
determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

Tag Data

Q1: Is it there?

Compare the cache
tag to the high order 2
memory address bits
to tell if the memory
block is in the cache

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One word blocks
Two low order bits
define the byte in the
word (32b words)

(block address) modulo (# of blocks in the cache)

Index

Direct Mapped Cache

0 1 2 3

4 3 4 15

 Consider the main memory word reference string
 0 1 2 3 4 3 4 15

00 Mem(0) 00 Mem(0)
00 Mem(1)

00 Mem(0) 00 Mem(0)
00 Mem(1)
00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 4

11 15

00 Mem(1)
00 Mem(2)

00 Mem(3)

Start with an empty cache - all
blocks initially marked as not valid

 8 requests, 6 misses

 One word blocks, cache size = 1K words (or 4KB)

MIPS Direct Mapped Cache Example

20Tag 10
Index

Data Index TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

Multiword Block Direct Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte
offset

20

20Tag

Hit Data

32

Block offset

 Four words/block, cache size = 1K words

What kind of locality are we taking advantage of?

Taking Advantage of Spatial Locality

0

 Let cache block hold more than one word
 0 1 2 3 4 3 4 15

1 2

3 4 3

4 15

00 Mem(1) Mem(0)

miss

00 Mem(1) Mem(0)

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

01 5 4
hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

miss

11 15 14

Start with an empty cache - all
blocks initially marked as not valid

 8 requests, 4 misses

Total # of bit needed for a cache

 function of the cache size and the address size.
 For the following

 32-bit byte addresses
 A direct-mapped cache
 The cache size is 2n blocks

 n bits for the index

 The block size is 2m words (2m+2 bytes)
 m bits for the word within the block

 tag size = 32 – (n+m+2).
 Total # of bits = 2n *(block size+tag size+valid field size)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Example: Larger Block Size
 64 blocks, 16 bytes/block

 To what block number does address 1200
map?

 Block address = 1200/16 = 75
 Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits

Sources of Cache Misses
 Compulsory (cold start or process migration, first

reference):
 First access to a block, “cold” fact of life, not a whole lot you

can do about it. If you are going to run “millions” of instruction,
compulsory misses are insignificant

 Solution: increase block size (increases miss penalty; very
large blocks could increase miss rate)

 Capacity:
 Cache cannot contain all blocks accessed by the program
 Solution: increase cache size (may increase access time)

 Conflict (collision):
 Multiple memory locations mapped to the same cache location
 Solution 1: increase cache size
 Solution 2: increase associativity (stay tuned) (may increase

access time)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Block Size Considerations
 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache
 Larger blocks fewer of them

 More competition increased miss rate

 Larger blocks pollution

 Larger miss penalty
 Can override benefit of reduced miss rate
 Early restart

 Resume exe. as soon as the requested word of the block is
returned

 critical-word-first

Miss Rate Versus Block Size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Cache Misses
 On cache hit, CPU proceeds normally
 On cache miss

 Stall the CPU pipeline
 Fetch block from next level of hierarchy
 Instruction cache miss

 Restart instruction fetch
 Data cache miss

 Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Write-Through
 On data-write hit, could just update the block in

cache
 But then cache and memory would be inconsistent

 Write through: All writes go to main memory as
well as cache
 Lots of traffic
 Slows down writes

 But makes writes take longer
 e.g., if base CPI = 1 without misses, 10% of instructions

are stores, write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Write-Through

 Solution: write buffer
 Holds data waiting to be written to

memory
 CPU continues immediately

 Only stalls on write if write buffer is already
full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Write-Back
 Alternative: On data-write hit (block is

already in cache but needs to be updated)
just update the block in cache
 Keep track of whether each block is dirty

 When a dirty block is replaced
 Write it back to memory
 Can use a write buffer to allow replacing block

to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Write Allocation
 What should happen on a write miss?
 Alternatives for write-through

 Allocate on miss: fetch the block
 Write around: don’t fetch the block

 Since programs often write a whole block before
reading it (e.g., initialization)

 For write-back
 Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Example: Intrinsity FastMATH
 Embedded MIPS processor

 12-stage pipeline
 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache
 Each 16KB: 256 blocks × 16 words/block
 D-cache: write-through or write-back

 SPEC2000 miss rates
 I-cache: 0.4%
 D-cache: 11.4%
 Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Main Memory Supporting Caches
 Use DRAMs for main memory

 Fixed width (e.g., 1 word)
 Connected by fixed-width clocked bus

 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer
 15 bus cycles per DRAM access
 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
 The number of bytes transferred per bus cycle for a

single miss is
 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Advanced DRAM
Organization
 Bits in a DRAM are organized as a

rectangular array
 DRAM accesses an entire row
 Burst mode: supply successive words from a

row with reduced latency
 Double data rate (DDR) DRAM

 Transfer on rising and falling clock edges
 Quad data rate (QDR) DRAM

 Separate DDR inputs and outputs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

DRAM Generations

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time
 Memory stall cycles

 Mainly from cache misses
 With simplifying assumptions:

§5.3 M
e asuring and Im

provin g C
ach e P

erfo rm
ance

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Cache Performance Example
 Given

 I-cache miss rate = 2%
 D-cache miss rate = 4%
 Miss penalty = 100 cycles
 Base CPI (ideal cache) = 2
 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Average Access Time
 Hit time is also important for performance
 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty
 Example

 CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns
 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Performance Summary
 When CPU performance increased

 Miss penalty becomes more significant
 Decreasing base CPI

 Greater proportion of time spent on memory
stalls

 Increasing clock rate
 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Associative Caches
 Fully associative

 Allow a given block to go in any cache entry
 Requires all entries to be searched at once
 Comparator per entry (expensive)

 n-way set associative
 Each set contains n entries
 Block number determines which set

 (Block number) modulo (#Sets in cache)
 Search all entries in a given set at once
 n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Associative Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Spectrum of Associativity
 For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Associativity Example
 Compare 4-block caches

 Direct mapped, 2-way set associative,
fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped
Block

address
Cache
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Associativity Example
 2-way set associative

Block
address

Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative
Block

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

How Much Associativity
 Increased associativity decreases miss

rate
 But with diminishing returns

 Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
 1-way: 10.3%
 2-way: 8.6%
 4-way: 8.3%
 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Set Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Replacement Policy
 Direct mapped: no choice
 Set associative

 Prefer non-valid entry, if there is one
 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard
beyond that

 Random
 Gives approximately the same performance

as LRU for high associativity

Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

Multilevel Caches
 Primary cache attached to CPU

 Small, but fast
 Level-2 cache services misses from

primary cache
 Larger, slower, but still faster than main

memory
 Main memory services L-2 cache misses
 Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Multilevel Cache Example
 Given

 CPU base CPI = 1, clock rate = 4GHz
 Miss rate/instruction = 2%
 Main memory access time = 100ns

 With just primary cache
 Miss penalty = 100ns/0.25ns = 400 cycles
 Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

Example (cont.)
 Now add L-2 cache

 Access time = 5ns
 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit
 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss
 Extra penalty = 500 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
 Performance ratio = 9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Multilevel Cache Considerations

 Primary cache
 Focus on minimal hit time (shorter clock cycle)

 L-2 cache
 Focus on low miss rate to avoid main memory

access
 Hit time has less overall impact

 Results
 L-1 cache usually smaller than a single cache
 L-1 block size smaller than L-2 block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Interactions with Advanced CPUs

 Out-of-order CPUs can execute
instructions during cache miss
 Pending store stays in load/store unit
 Dependent instructions wait in reservation

stations
 Independent instructions continue

 Effect of miss depends on program data
flow
 Much harder to analyse
 Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Interactions with Software
 Misses depend on

memory access
patterns
 Algorithm behavior
 Compiler

optimization for
memory access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Virtual Memory
 Use main memory as a “cache” for

secondary (disk) storage
 Managed jointly by CPU hardware and the

operating system (OS)
 Programs share main memory

 Each gets a private virtual address space
holding its frequently used code and data

 Protected from other programs
 CPU and OS translate virtual addresses to

physical addresses
 VM “block” is called a page
 VM translation “miss” is called a page fault

§5.4 V
ir tual M

e m
ory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

Address Translation
 Fixed-size pages (e.g., 4K)

Virtual memory implements the translation of a program’s
address space to physical addresses (address in main
memory)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Page Fault Penalty
 On page fault, the page must be fetched

from disk
 Takes millions of clock cycles
 Handled by OS code

 Try to minimize page fault rate
 Fully associative placement
 Smart replacement algorithms

 Locate pages using a table that indexes
the memory (page table)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Page Tables
 Stores placement information

 Each program has its own page table
 Array of page table entries, indexed by virtual

page number
 Page table register in CPU points to page

table in physical memory
 If page is present in memory

 PTE stores the physical page number
 Plus other status bits (referenced, dirty, …)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Translation Using a Page Table

Page Tables
 If page is not present

 OS gets control and find the page in the next
level

 PTE can refer to location in swap space on disk
 Swap space

 The space on the disk reserved for the full
virtual memory space of a process

 OS creates data structure to record where each
virtual page is stored on disk

 May be part of the page table or auxiliary data
structure indexed the same way as page table.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

Mapping Pages to Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Replacement and Writes
 To reduce page fault rate, prefer least-

recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on

access to page
 Periodically cleared to 0 by OS
 A page with reference bit = 0 has not been

used recently
 Disk writes take millions of cycles

 Block at once, not individual locations
 Write through is impractical
 Use write-back
 Dirty bit in PTE set when page is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

Fast Translation Using a TLB
 Address translation would appear to require

extra memory references
 One to access the PTE
 Then the actual memory access

 But access to page tables has good locality
 So use a fast cache of PTEs within the CPU
 Called a Translation Look-aside Buffer (TLB)
 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100

cycles for miss, 0.01%–1% miss rate
 Misses could be handled by hardware or software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Fast Translation Using a TLB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

TLB Misses
 If page is in memory

 Load the PTE from memory and retry
 Could be handled in hardware

 Can get complex for more complicated page table
structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)
 OS handles fetching the page and updating

the page table
 Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 72

TLB Miss Handler
 TLB miss indicates

 Page present, but PTE not in TLB
 Page not preset

 Must recognize TLB miss before destination
register overwritten (exception asserted by the end
of the same clock cycle that the memory access
occur)
 Raise exception with the next clock cycle.

 Handler copies PTE from memory to TLB
 Then restarts instruction
 If page not present, page fault will occur

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 73

Page Fault Handler
 Use faulting virtual address to find PTE
 Locate page on disk
 Choose page to replace

 If dirty, write to disk first
 Read page into memory and update page

table
 Make process runnable again

 Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

TLB and Cache Interaction
 If cache tag uses

physical address
 Need to translate

before cache lookup

 Alternative: use virtual
address tag

 Complications due to
aliasing

 Different virtual
addresses for shared
physical address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

Memory Protection
 Different tasks can share parts of their

virtual address spaces
 But need to protect against errant access
 Requires OS assistance

 Hardware support for OS protection
 Privileged supervisor mode (aka kernel mode)
 Privileged instructions
 Page tables and other state information only

accessible in supervisor mode
 System call exception (e.g., syscall in MIPS)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

The Memory Hierarchy

 Common principles apply at all levels of
the memory hierarchy
 Based on notions of caching

 At each level in the hierarchy
 Block placement
 Finding a block
 Replacement on a miss
 Write policy

§5.5 A
 C

om
m

o n F
ram

ew
ork f or M

em
ory H

ie rarchie s

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

Block Placement
 Determined by associativity

 Direct mapped (1-way associative)
 One choice for placement

 n-way set associative
 n choices within a set

 Fully associative
 Any location

 Higher associativity reduces miss rate
 Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 79

Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible
 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set
associative

Set index, then search
entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 80

Replacement
 Choice of entry to replace on a miss

 Least recently used (LRU)
 Complex and costly hardware for high associativity

 Random
 Close to LRU, easier to implement

 Virtual memory
 LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 81

Write Policy
 Write-through

 Update both upper and lower levels
 Simplifies replacement, but may require write

buffer
 Write-back

 Update upper level only
 Update lower level when block is replaced
 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 82

Sources of Misses
 Compulsory misses (aka cold start misses)

 First access to a block
 Capacity misses

 Due to finite cache size
 A replaced block is later accessed again

 Conflict misses (aka collision misses)
 In a non-fully associative cache
 Due to competition for entries in a set
 Would not occur in a fully associative cache of

the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 83

Cache Design Trade-offs

Design change Effect on miss rate Negative performance
effect

Increase cache size Decrease capacity
misses

May increase access
time

Increase associativity Decrease conflict
misses

May increase access
time

Increase block size Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
increase miss rate
due to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 84

Virtual Machines
 Host computer emulates guest operating system

and machine resources
 Improved isolation of multiple guests
 Avoids security and reliability problems
 Aids sharing of resources

 Virtualization has some performance impact
 Feasible with modern high-performance comptuers

 Examples
 IBM VM/370 (1970s technology!)
 VMWare
 Microsoft Virtual PC

§5.6 V
ir tual M

a chines

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 85

Virtual Machine Monitor
 Maps virtual resources to physical

resources
 Memory, I/O devices, CPUs

 Guest code runs on native machine in
user mode
 Traps to VMM on privileged instructions and

access to protected resources
 Guest OS may be different from host OS
 VMM handles real I/O devices

 Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 86

Example: Timer Virtualization
 In native machine, on timer interrupt

 OS suspends current process, handles
interrupt, selects and resumes next process

 With Virtual Machine Monitor
 VMM suspends current VM, handles interrupt,

selects and resumes next VM
 If a VM requires timer interrupts

 VMM emulates a virtual timer
 Emulates interrupt for VM when physical timer

interrupt occurs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

Instruction Set Support
 User and System modes
 Privileged instructions only available in

system mode
 Trap to system if executed in user mode

 All physical resources only accessible
using privileged instructions
 Including page tables, interrupt controls, I/O

registers
 Renaissance of virtualization support

 Current ISAs (e.g., x86) adapting

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 88

Cache Control
 Example cache characteristics

 Direct-mapped, write-back, write allocate
 Block size: 4 words (16 bytes)
 Cache size: 16 KB (1024 blocks)
 32-bit byte addresses
 Valid bit and dirty bit per block
 Blocking cache

 CPU waits until access is complete

§5.7 U
sing a F

inite S
tate M

achine to C
on trol A

 S
im

ple C
ache

Tag Index Offset
03491031

4 bits10 bits18 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 89

Interface Signals

CacheCPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles
per access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 90

Finite State Machines
 Use an FSM to

sequence control steps
 Set of states, transition

on each clock edge
 State values are binary

encoded
 Current state stored in a

register
 Next state

= fn (current state,
current inputs)

 Control output signals
= fo (current state)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 91

Cache Controller FSM

Could partition
into separate

states to
reduce clock

cycle time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 92

Cache Coherence Problem
 Suppose two CPU cores share a physical

address space
 Write-through caches

§5.8 P
arallel ism

 and M
em

o ry H
ier archies : C

ache C
oher ence

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Coherence Defined
 Informally: Reads return most recently

written value
 Formally:

 P writes X; P reads X (no intervening writes)
 read returns written value

 P1 writes X; P2 reads X (sufficiently later)
 read returns written value

 c.f. CPU B reading X after step 3 in example
 P1 writes X, P2 writes X

 all processors see writes in the same order
 End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

Cache Coherence Protocols
 Operations performed by caches in

multiprocessors to ensure coherence
 Migration of data to local caches

 Reduces bandwidth for shared memory
 Replication of read-shared data

 Reduces contention for access

 Snooping protocols
 Each cache monitors bus reads/writes

 Directory-based protocols
 Caches and memory record sharing status of

blocks in a directory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

Invalidating Snooping Protocols

 Cache gets exclusive access to a block
when it is to be written
 Broadcasts an invalidate message on the bus
 Subsequent read in another cache misses

 Owning cache supplies updated value

CPU activity Bus activity CPU A’s
cache

CPU B’s
cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

Memory Consistency
 When are writes seen by other processors

 “Seen” means a read returns the written value
 Can’t be instantaneously

 Assumptions
 A write completes only when all processors have seen

it
 A processor does not reorder writes with other

accesses
 Consequence

 P writes X then writes Y
 all processors that see new Y also see new X

 Processors can reorder reads, but not writes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 97

Multilevel On-Chip Caches
§5.10 R

eal S
tu ff: T

he A
M

D
 O

pteron X
4 and Intel N

ehalem

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 98

2-Level TLB Organization
Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits

Physical addr 44 bits 48 bits

Page size 4KB, 2/4MB 4KB, 2/4MB

L1 TLB
(per core)

L1 I-TLB: 128 entries for small
pages, 7 per thread (2×) for
large pages
L1 D-TLB: 64 entries for small
pages, 32 for large pages
Both 4-way, LRU replacement

L1 I-TLB: 48 entries
L1 D-TLB: 48 entries
Both fully associative, LRU
replacement

L2 TLB
(per core)

Single L2 TLB: 512 entries
4-way, LRU replacement

L2 I-TLB: 512 entries
L2 D-TLB: 512 entries
Both 4-way, round-robin LRU

TLB misses Handled in hardware Handled in hardware

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 99

3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches
(per core)

L1 I-cache: 32KB, 64-byte
blocks, 4-way, approx LRU
replacement, hit time n/a
L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU
replacement, write-
back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte
blocks, 2-way, LRU
replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte
blocks, 2-way, LRU
replacement, write-
back/allocate, hit time 9 cycles

L2 unified
cache
(per core)

256KB, 64-byte blocks, 8-way,
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified
cache
(shared)

8MB, 64-byte blocks, 16-way,
replacement n/a, write-
back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way,
replace block shared by fewest
cores, write-back/allocate, hit
time 32 cycles

n/a: data not available

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 100

Mis Penalty Reduction
 Return requested word first

 Then back-fill rest of block
 Non-blocking miss processing

 Hit under miss: allow hits to proceed
 Mis under miss: allow multiple outstanding

misses
 Hardware prefetch: instructions and data
 Opteron X4: bank interleaved L1 D-cache

 Two concurrent accesses per cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 101

Pitfalls
 Byte vs. word addressing

 Example: 32-byte direct-mapped cache,
4-byte blocks

 Byte 36 maps to block 1
 Word 36 maps to block 4

 Ignoring memory system effects when
writing or generating code
 Example: iterating over rows vs. columns of

arrays
 Large strides result in poor locality

§5.11 F
allacies and P

itfalls

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 102

Pitfalls
 In multiprocessor with shared L2 or L3

cache
 Less associativity than cores results in conflict

misses
 More cores need to increase associativity

 Using AMAT to evaluate performance of
out-of-order processors
 Ignores effect of non-blocked accesses
 Instead, evaluate performance by simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 103

Pitfalls
 Extending address range using segments

 E.g., Intel 80286
 But a segment is not always big enough
 Makes address arithmetic complicated

 Implementing a VMM on an ISA not
designed for virtualization
 E.g., non-privileged instructions accessing

hardware resources
 Either extend ISA, or require guest OS not to

use problematic instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 104

Concluding Remarks
 Fast memories are small, large memories are

slow
 We really want fast, large memories
 Caching gives this illusion

 Principle of locality
 Programs use a small part of their memory space

frequently
 Memory hierarchy

 L1 cache L2 cache … DRAM memory
 disk

 Memory system design is critical for
multiprocessors

§5.12 C
onclud ing R

em
arks

	Chapter 5
	Memory Technology
	Principle of Locality
	Taking Advantage of Locality
	Memory Hierarchy Levels
	The Memory Hierarchy: Terminology
	Cache Memory
	Direct Mapped Cache
	Tags and Valid Bits
	Cache Example
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Address Subdivision
	Slide 18
	Slide 20
	MIPS Direct Mapped Cache Example
	Multiword Block Direct Mapped Cache
	Slide 24
	Total # of bit needed for a cache
	Example
	Example: Larger Block Size
	Sources of Cache Misses
	Block Size Considerations
	Miss Rate Versus Block Size
	Cache Misses
	Write-Through
	Slide 33
	Write-Back
	Write Allocation
	Example: Intrinsity FastMATH
	Slide 37
	Main Memory Supporting Caches
	Increasing Memory Bandwidth
	Advanced DRAM Organization
	DRAM Generations
	Measuring Cache Performance
	Cache Performance Example
	Average Access Time
	Performance Summary
	Associative Caches
	Associative Cache Example
	Spectrum of Associativity
	Associativity Example
	Slide 50
	How Much Associativity
	Set Associative Cache Organization
	Replacement Policy
	Slide 54
	Multilevel Caches
	Multilevel Cache Example
	Example (cont.)
	Multilevel Cache Considerations
	Interactions with Advanced CPUs
	Interactions with Software
	Virtual Memory
	Address Translation
	Page Fault Penalty
	Page Tables
	Translation Using a Page Table
	Slide 66
	Mapping Pages to Storage
	Replacement and Writes
	Fast Translation Using a TLB
	Slide 70
	TLB Misses
	TLB Miss Handler
	Page Fault Handler
	TLB and Cache Interaction
	Memory Protection
	Slide 76
	The Memory Hierarchy
	Block Placement
	Finding a Block
	Replacement
	Write Policy
	Sources of Misses
	Cache Design Trade-offs
	Virtual Machines
	Virtual Machine Monitor
	Example: Timer Virtualization
	Instruction Set Support
	Cache Control
	Interface Signals
	Finite State Machines
	Cache Controller FSM
	Cache Coherence Problem
	Coherence Defined
	Cache Coherence Protocols
	Invalidating Snooping Protocols
	Memory Consistency
	Multilevel On-Chip Caches
	2-Level TLB Organization
	3-Level Cache Organization
	Mis Penalty Reduction
	Pitfalls
	Slide 102
	Slide 103
	Concluding Remarks

