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Memory Technology
 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $5000 per GB
 Dynamic RAM (DRAM)

 50ns – 70ns, $20 – $75 per GB
 Magnetic disk

 5ms – 20ms, $0.20 – $2 per GB
 Ideal memory

 Access time of SRAM
 Capacity and cost/GB of disk

§5.1 Int roductio n
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Principle of Locality
 Programs access a small proportion of their 

address space at any time
 Temporal locality (in time)

 Items accessed recently are likely to be 
accessed again soon

 e.g., instructions in a loop, induction variables
 Spatial locality (in space)

 Items near those accessed recently are likely to 
be accessed soon

 E.g., sequential instruction access, array data
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Taking Advantage of Locality
 Memory hierarchy
 Store everything on disk
 Copy recently accessed (and nearby) 

items from disk to smaller DRAM memory
 Main memory

 Copy more recently accessed (and 
nearby) items from DRAM to smaller 
SRAM memory
 Cache memory attached to CPU
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Memory Hierarchy Levels
 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in 
upper level

 Hit: access satisfied by upper level
 Hit ratio: hits/accesses

 If accessed data is absent
 Miss: block copied from lower level

 Time taken: miss penalty
 Miss ratio: misses/accesses

= 1 – hit ratio
 Then accessed data supplied from 

upper level



The Memory Hierarchy:  Terminology

 Hit Rate: the fraction of memory accesses found in a level 
of the memory hierarchy

 Hit Time: Time to access that level which consists of

  Time to access the block + Time to determine hit/miss

 Miss Rate: the fraction of memory accesses not found in a 
level of the memory hierarchy       1 - (Hit Rate)

 Miss Penalty: Time to replace a block in that level with the 
corresponding block from a lower level which consists of

  Time to access the block in the lower level + Time to transmit that block 
to the level that experienced the miss + Time to insert the block in that 
level + Time to pass the block to the requestor

Hit Time << Miss Penalty
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Cache Memory
 Cache memory

 The level of the memory hierarchy closest to 
the CPU

 Given accesses X1, …, Xn–1, Xn

§5.2 T
h e B

asic s of C
a ches

 How do we know if 
the data is present?

 Where do we look?
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Direct Mapped Cache
 Location determined by address
 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a 
power of 2

 Use low-order 
address bits
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Tags and Valid Bits
 How do we know which particular block is 

stored in a cache location?
 Store block address as well as the data
 Actually, only need the high-order bits
 Called the tag

 What if there is no data in a location?
 Valid bit: 1 = present, 0 = not present
 Initially 0
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Cache Example
 8-blocks, 1 word/block, direct mapped
 Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N
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Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110
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Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010
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Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010
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Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000
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Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010
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Address Subdivision



Caching:  A Simple First Example

00

01
10
11

Cache

Main Memory

Q2: How do we find it?

Use next 2 low order 
memory address bits 
– the index – to 
determine which 
cache block (i.e., 
modulo the number of 
blocks in the cache)

Tag Data

Q1: Is it there?

Compare the cache 
tag to the high order 2 
memory address bits 
to tell if the memory 
block is in the cache

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One word blocks
Two low order bits 
define the byte in the 
word (32b words)

(block address) modulo (# of blocks in the cache)

Index



Direct Mapped Cache

0 1 2 3

4 3 4 15

 Consider the main memory word reference string
                       0   1   2   3   4   3   4   15

00    Mem(0) 00    Mem(0)
00    Mem(1)

00    Mem(0) 00    Mem(0)
00    Mem(1)
00    Mem(2)

miss miss miss miss

miss misshit hit

00    Mem(0)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01 4

11 15

00    Mem(1)
00    Mem(2)

00    Mem(3)

Start with an empty cache - all 
blocks initially marked as not valid

 8 requests, 6 misses



 One word blocks, cache size = 1K words (or 4KB)

MIPS Direct Mapped Cache Example

20Tag 10
Index

Data  Index TagValid
0
1
2
.
.
.

1021
1022
1023

31 30       . . .        13 12  11     . . .        2  1  0
Byte 
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit



Multiword Block Direct Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30   . . .         13 12  11    . . .    4  3 2  1 0
Byte 
offset

20

20Tag

Hit Data

32

Block offset

 Four  words/block, cache size = 1K words

What kind of locality are we taking advantage of?



Taking Advantage of Spatial Locality 

0

 Let cache block hold more than one word
                          0   1   2   3   4   3   4   15

1 2

3 4 3

4 15

00    Mem(1)    Mem(0)

miss

00    Mem(1)    Mem(0)

hit

00    Mem(3)    Mem(2)
00    Mem(1)    Mem(0)

miss

hit

00    Mem(3)    Mem(2)
00    Mem(1)    Mem(0)

miss

00    Mem(3)    Mem(2)
00    Mem(1)    Mem(0)

01 5 4
hit

00    Mem(3)    Mem(2)
01    Mem(5)    Mem(4)

hit

00    Mem(3)    Mem(2)
01    Mem(5)    Mem(4)

00    Mem(3)    Mem(2)
01    Mem(5)    Mem(4)

miss

11 15 14

Start with an empty cache - all 
blocks initially marked as not valid

 8 requests, 4 misses



Total # of bit needed for a cache

 function of the cache size and the address size.
 For the following

 32-bit byte addresses
 A direct-mapped cache
 The cache size is 2n blocks 

 n bits for the index

 The block size is 2m words (2m+2 bytes) 
 m bits for the word within the block

 tag size = 32 – (n+m+2).
 Total # of bits = 2n *(block size+tag size+valid field size) 
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Example 
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Example: Larger Block Size
 64 blocks, 16 bytes/block

 To what block number does address 1200 
map?

 Block address = 1200/16 = 75
 Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits



Sources of Cache Misses
 Compulsory (cold start or process migration, first 

reference):
 First access to a block, “cold” fact of life, not a whole lot you 

can do about it.  If you are going to run “millions” of instruction, 
compulsory misses are insignificant

 Solution: increase block size (increases miss penalty; very 
large blocks could increase miss rate)

 Capacity:
 Cache cannot contain all blocks accessed by the program
 Solution: increase cache size (may increase access time)

 Conflict (collision):
 Multiple memory locations mapped to the same cache location
 Solution 1: increase cache size
 Solution 2: increase associativity (stay tuned) (may increase 

access time)
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Block Size Considerations
 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache
 Larger blocks  fewer of them

 More competition  increased miss rate

 Larger blocks  pollution

 Larger miss penalty
 Can override benefit of reduced miss rate
 Early restart

 Resume exe. as soon as the requested word of the block is 
returned 

  critical-word-first



Miss Rate Versus Block Size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Cache Misses
 On cache hit, CPU proceeds normally
 On cache miss

 Stall the CPU pipeline
 Fetch block from next level of hierarchy
 Instruction cache miss

 Restart instruction fetch
 Data cache miss

 Complete data access



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Write-Through
 On data-write hit, could just update the block in 

cache
 But then cache and memory would be inconsistent

 Write through: All writes go to main memory as 
well as cache
 Lots of traffic
 Slows down writes

 But makes writes take longer
 e.g., if base CPI = 1 without misses, 10% of instructions 

are stores, write to memory takes 100 cycles
  Effective CPI = 1 + 0.1×100 = 11
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Write-Through

 Solution: write buffer
 Holds data waiting to be written to 

memory
 CPU continues immediately

 Only stalls on write if write buffer is already 
full
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Write-Back
 Alternative: On data-write hit (block is 

already in cache but needs to be updated) 
just update the block in cache
 Keep track of whether each block is dirty

 When a dirty block is replaced
 Write it back to memory
 Can use a write buffer to allow replacing block 

to be read first
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Write Allocation
 What should happen on a write miss?
 Alternatives for write-through

 Allocate on miss: fetch the block
 Write around: don’t fetch the block

 Since programs often write a whole block before 
reading it (e.g., initialization)

 For write-back
 Usually fetch the block
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Example: Intrinsity FastMATH
 Embedded MIPS processor

 12-stage pipeline
 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache
 Each 16KB: 256 blocks × 16 words/block
 D-cache: write-through or write-back

 SPEC2000 miss rates
 I-cache: 0.4%
 D-cache: 11.4%
 Weighted average: 3.2%
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Example: Intrinsity FastMATH
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Main Memory Supporting Caches
 Use DRAMs for main memory

 Fixed width (e.g., 1 word)
 Connected by fixed-width clocked bus

 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer
 15 bus cycles per DRAM access
 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
 The number of bytes transferred per bus cycle for a 

single miss is
 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle
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Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle
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Advanced DRAM 
Organization
 Bits in a DRAM are organized as a 

rectangular array
 DRAM accesses an entire row
 Burst mode: supply successive words from a 

row with reduced latency
 Double data rate (DDR) DRAM

 Transfer on rising and falling clock edges
 Quad data rate (QDR) DRAM

 Separate DDR inputs and outputs
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DRAM Generations

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50
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Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time
 Memory stall cycles

 Mainly from cache misses
 With simplifying assumptions:
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Cache Performance Example
 Given

 I-cache miss rate = 2%
 D-cache miss rate = 4%
 Miss penalty = 100 cycles
 Base CPI (ideal cache) = 2
 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster
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Average Access Time
 Hit time is also important for performance
 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty
 Example

 CPU with 1ns clock, hit time = 1 cycle, miss 
penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns
 2 cycles per instruction
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Performance Summary
 When CPU performance increased

 Miss penalty becomes more significant
 Decreasing base CPI

 Greater proportion of time spent on memory 
stalls

 Increasing clock rate
 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when 
evaluating system performance
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Associative Caches
 Fully associative

 Allow a given block to go in any cache entry
 Requires all entries to be searched at once
 Comparator per entry (expensive)

 n-way set associative
 Each set contains n entries
 Block number determines which set

 (Block number) modulo (#Sets in cache)
 Search all entries in a given set at once
 n comparators (less expensive)
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Associative Cache Example
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Spectrum of Associativity
 For a cache with 8 entries
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Associativity Example
 Compare 4-block caches

 Direct mapped, 2-way set associative,
fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped
Block 

address
Cache 
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]
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Associativity Example
 2-way set associative

Block 
address

Cache 
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative
Block 

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]
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How Much Associativity
 Increased associativity decreases miss 

rate
 But with diminishing returns

 Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
 1-way: 10.3%
 2-way: 8.6%
 4-way: 8.3%
 8-way: 8.1%
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Set Associative Cache Organization
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Replacement Policy
 Direct mapped: no choice
 Set associative

 Prefer non-valid entry, if there is one
 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard 
beyond that

 Random
 Gives approximately the same performance 

as LRU for high associativity



Example 
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Multilevel Caches
 Primary cache attached to CPU

 Small, but fast
 Level-2 cache services misses from 

primary cache
 Larger, slower, but still faster than main 

memory
 Main memory services L-2 cache misses
 Some high-end systems include L-3 cache



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Multilevel Cache Example
 Given

 CPU base CPI = 1, clock rate = 4GHz
 Miss rate/instruction = 2%
 Main memory access time = 100ns

 With just primary cache
 Miss penalty = 100ns/0.25ns = 400 cycles
 Effective CPI = 1 + 0.02 × 400 = 9
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Example (cont.)
 Now add L-2 cache

 Access time = 5ns
 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit
 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss
 Extra penalty = 500 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
 Performance ratio = 9/3.4 = 2.6



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Multilevel Cache Considerations

 Primary cache
 Focus on minimal hit time (shorter clock cycle)

 L-2 cache
 Focus on low miss rate to avoid main memory 

access
 Hit time has less overall impact

 Results
 L-1 cache usually smaller than a single cache
 L-1 block size smaller than L-2 block size
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Interactions with Advanced CPUs

 Out-of-order CPUs can execute 
instructions during cache miss
 Pending store stays in load/store unit
 Dependent instructions wait in reservation 

stations
 Independent instructions continue

 Effect of miss depends on program data 
flow
 Much harder to analyse
 Use system simulation
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Interactions with Software
 Misses depend on 

memory access 
patterns
 Algorithm behavior
 Compiler 

optimization for 
memory access
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Virtual Memory
 Use main memory as a “cache” for 

secondary (disk) storage
 Managed jointly by CPU hardware and the 

operating system (OS)
 Programs share main memory

 Each gets a private virtual address space 
holding its frequently used code and data

 Protected from other programs
 CPU and OS translate virtual addresses to 

physical addresses
 VM “block” is called a page
 VM translation “miss” is called a page fault

§5.4 V
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Address Translation
 Fixed-size pages (e.g., 4K)

Virtual memory implements the translation of a program’s 
address space to physical addresses (address in main 
memory)
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Page Fault Penalty
 On page fault, the page must be fetched 

from disk
 Takes millions of clock cycles
 Handled by OS code

 Try to minimize page fault rate
 Fully associative placement
 Smart replacement algorithms

 Locate pages using a table that indexes 
the memory (page table) 
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Page Tables
 Stores placement information

 Each program has its own page table
 Array of page table entries, indexed by virtual 

page number
 Page table register in CPU points to page 

table in physical memory
 If page is present in memory

 PTE stores the physical page number
 Plus other status bits (referenced, dirty, …)
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Translation Using a Page Table



Page Tables
 If page is not present

 OS gets control and find the page in the next 
level

 PTE can refer to location in swap space on disk
 Swap space 

 The space on the disk reserved for the full 
virtual memory space of a process

 OS creates data structure to record where each 
virtual page is stored on disk 

 May be part of the page table or auxiliary data 
structure indexed the same way as page table.
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Mapping Pages to Storage
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Replacement and Writes
 To reduce page fault rate, prefer least-

recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on 

access to page
 Periodically cleared to 0 by OS
 A page with reference bit = 0 has not been 

used recently
 Disk writes take millions of cycles

 Block at once, not individual locations
 Write through is impractical
 Use write-back
 Dirty bit in PTE set when page is written
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Fast Translation Using a TLB
 Address translation would appear to require 

extra memory references
 One to access the PTE
 Then the actual memory access

 But access to page tables has good locality
 So use a fast cache of PTEs within the CPU
 Called a Translation Look-aside Buffer (TLB)
 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate
 Misses could be handled by hardware or software
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Fast Translation Using a TLB



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

TLB Misses
 If page is in memory

 Load the PTE from memory and retry
 Could be handled in hardware

 Can get complex for more complicated page table 
structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)
 OS handles fetching the page and updating 

the page table
 Then restart the faulting instruction
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TLB Miss Handler
 TLB miss indicates

 Page present, but PTE not in TLB
 Page not preset

 Must recognize TLB miss before destination 
register overwritten (exception asserted by the end 
of the same clock cycle that the memory access 
occur)
 Raise exception with the next clock cycle.

 Handler copies PTE from memory to TLB
 Then restarts instruction
 If page not present, page fault will occur
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Page Fault Handler
 Use faulting virtual address to find PTE
 Locate page on disk
 Choose page to replace

 If dirty, write to disk first
 Read page into memory and update page 

table
 Make process runnable again

 Restart from faulting instruction
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TLB and Cache Interaction
 If cache tag uses 

physical address
 Need to translate 

before cache lookup

 Alternative: use virtual 
address tag

 Complications due to 
aliasing

 Different virtual 
addresses for shared 
physical address
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Memory Protection
 Different tasks can share parts of their 

virtual address spaces
 But need to protect against errant access
 Requires OS assistance

 Hardware support for OS protection
 Privileged supervisor mode (aka kernel mode)
 Privileged instructions
 Page tables and other state information only 

accessible in supervisor mode
 System call exception (e.g., syscall in MIPS)
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The Memory Hierarchy

 Common principles apply at all levels of 
the memory hierarchy
 Based on notions of caching

 At each level in the hierarchy
 Block placement
 Finding a block
 Replacement on a miss
 Write policy
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Block Placement
 Determined by associativity

 Direct mapped (1-way associative)
 One choice for placement

 n-way set associative
 n choices within a set

 Fully associative
 Any location

 Higher associativity reduces miss rate
 Increases complexity, cost, and access time



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 79

Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible
 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set 
associative

Set index, then search 
entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0
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Replacement
 Choice of entry to replace on a miss

 Least recently used (LRU)
 Complex and costly hardware for high associativity

 Random
 Close to LRU, easier to implement

 Virtual memory
 LRU approximation with hardware support
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Write Policy
 Write-through

 Update both upper and lower levels
 Simplifies replacement, but may require write 

buffer
 Write-back

 Update upper level only
 Update lower level when block is replaced
 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write 

latency 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 82

Sources of Misses
 Compulsory misses (aka cold start misses)

 First access to a block
 Capacity misses

 Due to finite cache size
 A replaced block is later accessed again

 Conflict misses (aka collision misses)
 In a non-fully associative cache
 Due to competition for entries in a set
 Would not occur in a fully associative cache of 

the same total size
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Cache Design Trade-offs

Design change Effect on miss rate Negative performance 
effect

Increase cache size Decrease capacity 
misses

May increase access 
time

Increase associativity Decrease conflict 
misses

May increase access 
time

Increase block size Decrease compulsory 
misses

Increases miss 
penalty. For very large 
block size, may 
increase miss rate 
due to pollution.
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Virtual Machines
 Host computer emulates guest operating system 

and machine resources
 Improved isolation of multiple guests
 Avoids security and reliability problems
 Aids sharing of resources

 Virtualization has some performance impact
 Feasible with modern high-performance comptuers

 Examples
 IBM VM/370 (1970s technology!)
 VMWare
 Microsoft Virtual PC
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Virtual Machine Monitor
 Maps virtual resources to physical 

resources
 Memory, I/O devices, CPUs

 Guest code runs on native machine in 
user mode
 Traps to VMM on privileged instructions and 

access to protected resources
 Guest OS may be different from host OS
 VMM handles real I/O devices

 Emulates generic virtual I/O devices for guest
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Example: Timer Virtualization
 In native machine, on timer interrupt

 OS suspends current process, handles 
interrupt, selects and resumes next process

 With Virtual Machine Monitor
 VMM suspends current VM, handles interrupt, 

selects and resumes next VM
 If a VM requires timer interrupts

 VMM emulates a virtual timer
 Emulates interrupt for VM when physical timer 

interrupt occurs
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Instruction Set Support
 User and System modes
 Privileged instructions only available in 

system mode
 Trap to system if executed in user mode

 All physical resources only accessible 
using privileged instructions
 Including page tables, interrupt controls, I/O 

registers
 Renaissance of virtualization support

 Current ISAs (e.g., x86) adapting
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Cache Control
 Example cache characteristics

 Direct-mapped, write-back, write allocate
 Block size: 4 words (16 bytes)
 Cache size: 16 KB (1024 blocks)
 32-bit byte addresses
 Valid bit and dirty bit per block
 Blocking cache

 CPU waits until access is complete

§5.7 U
sing a  F

inite S
tate M

achine  to C
on trol A

 S
im

ple C
ache

Tag Index Offset
03491031

4 bits10 bits18 bits
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Interface Signals

CacheCPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles 
per access
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Finite State Machines
 Use an FSM to 

sequence control steps
 Set of states, transition 

on each clock edge
 State values are binary 

encoded
 Current state stored in a 

register
 Next state

= fn (current state,
current inputs)

 Control output signals
= fo (current state)
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Cache Controller FSM

Could partition 
into separate 

states to 
reduce clock 

cycle time
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Cache Coherence Problem
 Suppose two CPU cores share a physical 

address space
 Write-through caches

§5.8 P
arallel ism

 and  M
em

o ry H
ier archies : C

ache  C
oher ence

Time 
step

Event CPU A’s 
cache

CPU B’s 
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Coherence Defined
 Informally: Reads return most recently 

written value
 Formally:

 P writes X; P reads X (no intervening writes)
 read returns written value

 P1 writes X; P2 reads X (sufficiently later)
 read returns written value

 c.f. CPU B reading X after step 3 in example
 P1 writes X, P2 writes X

 all processors see writes in the same order
 End up with the same final value for X
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Cache Coherence Protocols
 Operations performed by caches in 

multiprocessors to ensure coherence
 Migration of data to local caches

 Reduces bandwidth for shared memory
 Replication of read-shared data

 Reduces contention for access

 Snooping protocols
 Each cache monitors bus reads/writes

 Directory-based protocols
 Caches and memory record sharing status of 

blocks in a directory
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Invalidating Snooping Protocols

 Cache gets exclusive access to a block 
when it is to be written
 Broadcasts an invalidate message on the bus
 Subsequent read in another cache misses

 Owning cache supplies updated value

CPU activity Bus activity CPU A’s 
cache

CPU B’s 
cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1
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Memory Consistency
 When are writes seen by other processors

 “Seen” means a read returns the written value
 Can’t be instantaneously

 Assumptions
 A write completes only when all processors have seen 

it
 A processor does not reorder writes with other 

accesses
 Consequence

 P writes X then writes Y
 all processors that see new Y also see new X

 Processors can reorder reads, but not writes
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Multilevel On-Chip Caches
§5.10 R

eal S
tu ff: T

he A
M

D
 O

pteron X
4 and  Intel N

ehalem

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor
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2-Level TLB Organization
Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits

Physical addr 44 bits 48 bits

Page size 4KB, 2/4MB 4KB, 2/4MB

L1 TLB
(per core)

L1 I-TLB: 128 entries for small 
pages, 7 per thread (2×) for 
large pages
L1 D-TLB: 64 entries for small 
pages, 32 for large pages
Both 4-way, LRU replacement

L1 I-TLB: 48 entries
L1 D-TLB: 48 entries
Both fully associative, LRU 
replacement

L2 TLB
(per core)

Single L2 TLB: 512 entries
4-way, LRU replacement

L2 I-TLB: 512 entries
L2 D-TLB: 512 entries
Both 4-way, round-robin LRU

TLB misses Handled in hardware Handled in hardware
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3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches
(per core)

L1 I-cache: 32KB, 64-byte 
blocks, 4-way, approx LRU 
replacement, hit time n/a
L1 D-cache: 32KB, 64-byte 
blocks, 8-way, approx LRU 
replacement, write-
back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte 
blocks, 2-way, LRU 
replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte 
blocks, 2-way, LRU 
replacement, write-
back/allocate, hit time 9 cycles

L2 unified 
cache
(per core)

256KB, 64-byte blocks, 8-way, 
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way, 
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified 
cache 
(shared)

8MB, 64-byte blocks, 16-way, 
replacement n/a, write-
back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way, 
replace block shared by fewest 
cores, write-back/allocate, hit 
time 32 cycles

n/a: data not available
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Mis Penalty Reduction
 Return requested word first

 Then back-fill rest of block
 Non-blocking miss processing

 Hit under miss: allow hits to proceed
 Mis under miss: allow multiple outstanding 

misses
 Hardware prefetch: instructions and data
 Opteron X4: bank interleaved L1 D-cache

 Two concurrent accesses per cycle
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Pitfalls
 Byte vs. word addressing

 Example: 32-byte direct-mapped cache,
4-byte blocks

 Byte 36 maps to block 1
 Word 36 maps to block 4

 Ignoring memory system effects when 
writing or generating code
 Example: iterating over rows vs. columns of 

arrays
 Large strides result in poor locality

§5.11 F
allacies  and P

itfalls
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Pitfalls
 In multiprocessor with shared L2 or L3 

cache
 Less associativity than cores results in conflict 

misses
 More cores  need to increase associativity

 Using AMAT to evaluate performance of 
out-of-order processors
 Ignores effect of non-blocked accesses
 Instead, evaluate performance by simulation
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Pitfalls
 Extending address range using segments

 E.g., Intel 80286
 But a segment is not always big enough
 Makes address arithmetic complicated

 Implementing a VMM on an ISA not 
designed for virtualization
 E.g., non-privileged instructions accessing 

hardware resources
 Either extend ISA, or require guest OS not to 

use problematic instructions
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Concluding Remarks
 Fast memories are small, large memories are 

slow
 We really want fast, large memories 
 Caching gives this illusion 

 Principle of locality
 Programs use a small part of their memory space 

frequently
 Memory hierarchy

 L1 cache  L2 cache  …  DRAM memory
 disk

 Memory system design is critical for 
multiprocessors

§5.12 C
onclud ing R

em
arks
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