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✫

✩

✪

Quantum State Transformation
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✫

✩

✪

Quantum State Transition Postulate

It seems that nature does not allow arbitrary
state transformation. Change of states (over
time) of a closeda quantum mechanical system
are caused by a specific class of
transformations, mathematically known as
unitary transformations.

aBy a closed system we mean that no measurement is performed on the sys-

tem.
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✫

✩

✪

Unitary Transformation

• A unitary transformation U : H → H is an

isomorphism, where H an inner product

space (Hilbert space).

• So U is a bijection that preserves inner

product.

• In our notation U : |x〉 7→ |y〉 and if

|x〉 , |x′〉 ∈ H, then

< |x〉 , |x′〉 >=< |Ux〉 , |Ux′〉 >.
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✫

✩

✪

Unitary Matrix

A unitary transformation will be represented by
a unitary matrix. We call a complex matrix U
as unitary if its conjugate transpose (Hermitian
transpose) U † (or U ∗) is its inverse i.e UU † = I.
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✫

✩

✪

One Qubit Transformation

• We encode |0〉 =
[

1

0

]

and |1〉 =
[

0

1

]

.

• So an 1-qubit unitary transformation or

1-qubit gate is a 2× 2 unitary matrix U i.e.

U †U = I.

• This means U † = U−1 and U † is also unitary.
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✫

✩

✪

Properties

It is clear that any quantum transformation is
reversible, as U |x〉 = |y〉 if and only if
U † |y〉 = |x〉.
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✫

✩

✪

Properties

• A unitary operator U is linear by definition.

• If a quantum state |x〉 is a superposition of

a1 |x1〉+ · · ·+ an |xn〉, then
U |x〉 = U(a1 |x1〉+ · · ·+ an |xn〉) =
a1U |x1〉+ · · ·+ anU |xn〉.
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✫

✩

✪

Properties

• The inner-product of U |x〉 and U |y〉 is
〈x|U †U |y〉 = 〈x|I|y〉 = 〈x|y〉.

• A unitary operator preserves the norm or

length of a state vector.

• It maps an orthonormal basis to another

orthonormal basis e.g.

H =

[

1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]

: {|0〉 , |1〉} → {|+〉 , |−〉}.
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✫

✩

✪

Properties

We know that U †U = I = UU † i.e.

[ u1i u2i · · · uni ] ·







u1j

u2j

· · ·
unj






= Iij =







1 if i = j,

0 if i 6= j.
.

So the columns of U are orthonormal.
U † is also unitary, the columns of U † are also
orthonormal. So the rows of U are so.
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✫

✩

✪

Properties

• If U1 and U2 are two unitary operators on

the same space, their product U1U2 is also

unitary:

(U1U2)
†U1U2 = U †

2U
†
1U1U2 = U †

2IU2 = I.

• If U1 and U2 are unitary operators on spaces

V1 and V2 respectively, then U1 ⊗ U2 is an

unitary operator on V1 ⊗ V2:

(U †
1 ⊗ U †

2)(U1 ⊗ U2) = (U †
1U1)⊗ (U †

2U2) =

I1 ⊗ I2.
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✫

✩

✪

Properties

• If U1 and U2 are unitary operators on spaces

V1 and V2 respectively, then U1 ⊕ U2 is an

unitary operator on V1 ⊕ V2.

• U1 + U2 need not be unitary, even if U1 and

U2 are.

• kU need not be unitary, even if U is.
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✫

✩

✪

Cloning of Classical Bit

We can use a CNOT gate to copy a classical bit.

a

CNOT

0

a

0⊕ a = a
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✫

✩

✪

No-Cloning Principle

There is no unitary operator that can create

clone of an arbitrary qubit state. This is

essentially an outcome of linearity.

• Assume that there is a 2-qubit unitary

transformation U such that U |a0〉 = |aa〉 for
any qubit state |a〉.

• Let |a〉 and |b〉 be orthogonal states.
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✫

✩

✪

No-Cloning Principle

• We have U |a0〉 = |aa〉 and U |b0〉 = |bb〉.

• Consider the state |c0〉, where
|c〉 = 1√

2
(|a〉+ |b〉). So |c0〉 = 1√

2
(|a0〉+ |b0〉).

U |c0〉 =
1√
2
(U |a0〉+ U |b0〉), by linearity

=
1√
2
(|aa〉+ |bb〉) by cloning.
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✫

✩

✪

No-Cloning Principle

On the other hand,

U |c0〉 = |cc〉 , by cloning

=
1√
2
(|a〉+ |b〉)⊗ 1√

2
(|a〉+ |b〉),

=
1

2
(|aa〉+ |ab〉+ |ba〉+ |bb〉).

It is a contradiction as.
1√
2
(|aa〉+ |bb〉) 6= 1

2
(|aa〉+ |ab〉+ |ba〉+ |bb〉).
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✫

✩

✪

Outer Product

• Given a ket vector |x〉, its dual is a bra

vector 〈x|.

• The inner product of |x〉 and |y〉 is 〈x|y〉 ∈ C.

• The outer product of |x〉 and |y〉 is |x〉 〈y|.
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✫

✩

✪

Outer Product

• If we represent |x〉 as a column vector

(x1, · · · , xn), then 〈x| is the row vector

[x1 · · · xn], where xi is the conjugate of xi.

• The outer product |x〉 〈y|, is the tensor

product |x〉 ⊗ 〈y|.
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✫

✩

✪

Outer Products: 1-bit Base Vectors

|0〉 〈0| =





1

0



⊗
[

1 0

]

=





1

[

1 0

]

0

[

1 0

]



 =





1 0

0 0





|0〉 〈1| =





1

0



⊗
[

0 1

]

=





1

[

0 1

]

0

[

0 1

]



 =





0 1

0 0





|1〉 〈0| =





0

1



⊗
[

1 0

]

=





0

[

1 0

]

1

[

1 0

]



 =





0 0

1 0





|1〉 〈0| =





0

1



⊗
[

0 1

]

=





0

[

0 1

]

1

[

0 1

]



 =





0 0

0 1



.
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✫

✩

✪

1-Bit Transformation

Any 1-bit transformation is a linear
combination of the outer products of vectors.
[

a b

c d

]

= a(|0〉 〈0|) + b(|0〉 〈1|) + c(|1〉 〈0|) + d(|1〉 〈1|),
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✫

✩

✪

Property of Outer Product

Let |x〉, |y〉 be two states of the state-space of a

quantum system, then

(|x〉 〈x|) |y〉 = |x〉 〈x|y〉 ,
= 〈x|y〉 |x〉 .

The outer product |x〉 〈x| projects a vector |y〉
to the subspace spanned by |x〉.

Lect 3 Goutam Biswas



Quantum Computing 21✬

✫

✩

✪

Example

(|0〉 〈0|)
(

1√
2
|0〉+ 1√

2
|1〉

)

=
1√
2
((|0〉 〈0|) |0〉 + (|0〉 〈0|) |1〉)

=
1√
2
(|0〉 〈0|0〉+ |0〉 〈0|1〉)

=
1√
2
|0〉 .

Note: |0〉 〈0| is not a unitary transformation.
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✫

✩

✪

1-qubit Unitary Transformations

The first 1-qubit unitary transformation is the

identity map, the 2× 2 identity matrix that

keeps a qubit state unchanged.
[

1 0

0 1

]

.
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✫

✩

✪

1-qubit Unitary Transformations

• Next 1-qubit unitary transformation is the

not gate. It should interchange the

amplitudes of base vectors i.e.

¬(a |0〉 + b |1〉) = b |0〉 + a |1〉.
• The Boolean transformation matrix for NOT
will do the job.





0 1

1 0









a

b



 =





b

a



, where





0 1

1 0



 = |0〉 〈1|+ |1〉 〈0| .
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✫

✩

✪

1-qubit Unitary Transformations

• 1-qubit not-gate is called X or σx or σ1. It is

one of the three Pauli matrices.

• In Boolean logic, identity and not are the

only two possible 1-bit reversible gates.

• But the situation is different in case of

quantum gates.

Lect 3 Goutam Biswas



Quantum Computing 25✬

✫

✩

✪

Unitary Transformations are Uncountable

• U =

[

cos θ sin θ

− sin θ cos θ

]

is a unitary operator.

• The adjoint of U is U † =

[

cos θ − sin θ

sin θ cos θ

]

,

satisfying

• UU † =

[

cos θ sin θ

− sin θ cos θ

][

cos θ − sin θ

sin θ cos θ

]

=

[

1 0

0 1

]

.

• So for every value of θ we have a unitary

gate.
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✫

✩

✪

No Finite Set of Generators

• There are uncountably many unitary

transformations. So it is impossible to get a

finite set of generators or universal

transformation gates.

• However there are finite set of

transformations that can approximate any

arbitrary transformation to any desired

accuracy.
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✫

✩

✪

Tensor Product of Transformations

• Multi-qubit transformations can be

expressed as linear combination of tensor

products of 1-qubit or 2-qubit

transformations.

• Let in an n-qubit system the transformations

U1, · · · , Uk are applied to qubits

(1, i1), (i1 + 1, i2), · · · , (ik−1, n) respectively.

The combined transformation on n-qubits is

U = U1 ⊗ · · · ⊗ Uk.
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✫

✩

✪

Qubit Gate Array

O1

O2

O3

O4

I1

I2

I3

I4

U6U3U1

U2 U5

U4
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✫

✩

✪

Tensor Product of Transformations

• The leftmost transformation is

U1 ⊗ I ⊗ I ⊗ U2.

• Second one is U3 ⊗ I ⊗ I.

• Third one is U4 ⊗ I ⊗ U5.

• Last transformation is U6 ⊗ I ⊗ I.
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✫

✩

✪

General Form of an 1-Qubit Operator

Let U be an 1-qubit operator. We know

1 = det(I)

= det(UU †)

= |det(U)||det(U †)|
= |det(U)||det(U)|
= |det(U)|2 = |det(U)|.
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✫

✩

✪

General Form of 1-Qubit Operator

• Let U =

[

a b

c d

]

. We know that |det(U)| = 1

and U−1 = U †.

• Ignoring the global phase, we have
[

a c

b d

]

=

[

d −b

−c a

]

, where a is the complex

conjugate of a.

• So, U = eiφ
[

a −c

c a

]

, where |a|2 + |c|2 = 1.
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✫

✩

✪

General Form of 1-Qubit Operator

• We can rewrite

U = eiφ
[

a −c

c a

]

= eiφ
[

eiδ cos θ −e−iγ
sin θ

eiγ sin θ e−iδ
cos θ

]

.

• If we substitute δ = −(α + β) and

γ = (α− β), then

U = eiφ
[

e−i(α+β)
cos θ −e−i(α−β)

sin θ

ei(α−β)
sin θ ei(α+β)

cos θ

]

= eiφ
[

e−iα
0

0 eiα

][

cos θ − sin θ

sin θ cos θ

][

e−iβ
0

0 eiβ

]
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✫

✩

✪

A Few important 1-Qubit Gates

We have already talked about the Pauli matrix
X. Two other Pauli matrices are Y and Z.

Y =

[

0 −i

i 0

][

a

b

]

=

[

−ib

ia

]

⇒
a |0〉+ b |1〉 7→ −ib |0〉+ ia |1〉, where
[

0 −i

i 0

]

= i |1〉 〈0| − i |0〉 〈1|.
This is also known as σy or σ2.
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✫

✩

✪

A Few important 1-Qubit Gates

Z =

[

1 0

0 −1

][

a

b

]

=

[

a

−b

]

⇒
a |0〉+ b |1〉 7→ a |0〉 − b |1〉, where
[

1 0

0 −1

]

= |0〉 〈0| − |1〉 〈1|.
Also known as σz or σ3.
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✫

✩

✪

A Few important 1-Qubit Gates

H =

[

1
√

2

1
√

2

1
√

2
− 1

√

2

][

a

b

]

= 1√
2

[

a+ b

a− b

]

H : a |0〉 + b |1〉 7→ a+b√
2
|0〉+ a−b√

2
|1〉.

H =

[

1
√

2

1
√

2

1
√

2
− 1

√

2

]

=

1√
2
(|0〉 〈0|+ |0〉 〈1|+ |1〉 〈0| − |1〉 〈1|) is called the

Hadamard gate.
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✫

✩

✪

A Few important 1-Qubit Gates

S =

[

1 0

0 i

]

is known as a phase gate and

T =

[

1 0

0 eiπ/4

]

= eiπ/8
[

e−iπ/8
0

0 eiπ/8

]

is known as

π/8 gate.
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✫

✩

✪

Pauli Matrices

The general form of three Pauli matrices is

σa =

[

δaz δax − iδay

δax + iδay −δaz

]

,

where a ∈ {x, y, z} and δab is the Dirac’s
delta-function.
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✫

✩

✪

Properties of Pauli Matrices

Four Pauli matrices are I, X =

[

0 1

1 0

]

,

Y =

[

0 −i

i 0

]

, Z =

[

1 0

0 −1

]

. Some of its

properties are the following:

1. X2 = Y 2 = Z2 = −iXY Z = I.

2. Z = IZ = (−iXY Z)Z = −iXY (ZZ) =

−iXY I = −iXY .
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✫

✩

✪

Properties of Pauli Matrices

3. X = XI = X(−iXY Z) = −i(XX)Y Z =

−iIY Z = −iY Z.

4. Y = Y I = Y (ZZ) = (Y Z)Z = i(−iY Z)Z =

iXZ.

5. ZY X = ZY (−iY Z) = −iZ(Y Y )Z =

−iZIZ = −iZZ = −iI = −XY Z.

6. Y Z = iX = iIX = i(iZY X)X = −ZY , etc.
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✫

✩

✪

Visualization on Bloch Sphere

We have already shown that a single qubit

state, ignoring the global phase, corresponds to

a point on Bloch Sphere by the following

mapping:. |ψ〉 = cos(θ/2) |0〉 + eiφ sin(θ/2) |1〉,
where 0 ≤ θ ≤ π and −π ≤ φ ≤ π.
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✫

✩

✪
Image Source:
https://commons.wikimedia.org/wiki/
File:Sphere bloch.jpg
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✫

✩

✪

Note

The position of |0〉 is the north pole of the
sphere (where the z+-axis meets the sphere). So
θ = 0. And |1〉 is at the south pole.
Other axial points on the sphere are the
following :
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✫

✩

✪

Other Axial Points

• x+: θ = π/2, φ = 0, state: |0〉+|1〉√
2

= |+〉

• x−: θ = π/2, φ = π, state: |0〉−|1〉√
2

= |−〉

• y+: θ = π/2, φ = π/2, state: |0〉+i|1〉√
2

= |i〉

• y−: θ = π/2, φ = −π/2, state: |0〉−i|1〉√
2

= |−i〉
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✫

✩

✪

Bloch Vector

The point corresponding to the qubit state

cos θ/2 |0〉 + eiφ sin θ/2 |1〉 has the Cartesian

coordinates (sin θ cosφ, sin θ sinφ, cos θ) on the

Bloch sphere. This is the Bloch vector

corresponding to the given qubit state.

We wish to see the effect of transformation on
Bloch vectors.
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✫

✩

✪

Transformation as Rotation

An unitary transformation may be viewed as a
rotation of quantum state vector in the state
space. So it is important to look at the
eigenvalues and eigenvectors of some of the
important transformations.
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✫

✩

✪

Eigenvalues and Eigenvectors

Given a square matrix A, if there is a vector |x〉
satisfying A |x〉 = λ |x〉, then |x〉 is called an

eigenvector of A and λ is the corresponding

eigenvalue.

We shall use the known fact that
det(A− λI) = 0 to compute eigenvectors and
eigenvalues of Pauli matrices.
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✫

✩

✪

Eigenvalues of Y

We have

det

([

0 −i

i 0

]

− λI

)

= 0

⇒ det(

[

−λ −i

i −λ

]

) = 0

⇒ λ2 − 1 = 0

⇒ λ = ±1.

In fact all Pauli matrices have λ = ±1.
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✫

✩

✪

Eigenvectors of Y

So we have
[

0 −i

i 0

][

a

b

]

= ±
[

a

b

]

⇒
[

−ib

ia

]

= ±
[

a

b

]

⇒ −ib = ±a and ia = ±b
⇒ a2 = −b2

⇒ a = ±ib.
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✫

✩

✪

Eigenvectors of Y

We also have |a|2 + |b|2 = 1. So the eigenvectors

of Y are
[

1
√

2

±i 1
√

2

]

= |i〉 , |−i〉 .

Corresponding points on the Bloch sphere are
(0,±1, 0) (Bloch vector), where θ = π

2
and

φ = π
2
or 3π

2
. Points where the y-axis meets the

sphere.
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✫

✩

✪

Note

• The Pauli matrix Y or σy rotates a qubit

state in its state-space.

• The vectors that do not change “directions”

are |i〉 and |−i〉.

• These are not to be confused with the

3-dimensional Block vectors - (0,±1, 0).

• We shall see the connection of Y with the

Bloch vectors.
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