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‘Quantum State Transition Postulate.

It seems that nature does not allow arbitrary
state transformation. Change of states (over
time) of a closed® quantum mechanical system

are caused by a specific class of
transtormations, mathematically known as
unitary transformations.

2By a closed system we mean that no measurement is performed on the sys-

tem.
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/ Unitary Transformation I \

e A unitary transformation U : H — H is an

iIsomorphism, where H an inner product

space (Hilbert space).

e S50 U is a bijection that preserves inner

product.

e In our notation U : |z) — |y) and if
), |x") € H, then
<lz),|z") >=<|Ux),|Ux") >.
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‘ Unitary Matrix'

A unitary transformation will be represented by
a unitary matrix. We call a complex matrix U

as unitary if its conjugate transpose (Hermitian
transpose) UT (or U*) is its inverse i.e UUT = I.
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‘One Qubit Transformation'

e We encode [0) = | i ] and |1) = [ ¢ ].

e S50 an 1-qubit unitary transformation or

I-qubit gate is a 2 X 2 unitary matrix U i.e.
U'U =1

e This means U' = U1 and UT is also unitary.
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‘ Properties I

It is clear that any quantum transformation is
reversible, as U |xr) = |y) if and only if

Uly) = [x),
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‘ Properties I

e A unitary operator U is linear by definition.

e If a quantum state |x) is a superposition of
a1 ‘$1> T Ap ‘xn>> then
Ulz) = Ulay|z1) + -+ an |2n)) =
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/ ‘ Properties I \

e The inner-product of U |x) and U |y) is
(|UTUy) = (z[I]y) = (z]y).

e A unitary operator preserves the norm or

length of a state vector.

e It maps an orthonormal basis to another

orthonormal basis e.g.
V2 1V2 . B
H= | e o0y (1)
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‘ Properties I

We know that UTU =1 = UUT" i.e.

ulj

1 ifi =,
0 ifi#j.

U2j

So the columns of U are orthonormal.
U7 is also unitary, the columns of UT are also
orthonormal. So the rows of U are so.
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/ ‘ Properties I \

o If U; and U, are two unitary operators on

the same space, their product U;Us 1s also
unitary:

(UL U)UU, = USUTUNU, = ULTU, = 1

e If /1 and Uy are unitary operators on spaces
V1 and V5 respectively, then Uy @ Us 1s an

unitary operator on V; ® Va:

(Ul @ UNU, @ Uy) = (UTUh) @ (UIU,) =

\_ h®hk Y,
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‘ Properties I

o If U1 and U, are unitary operators on spaces

V1 and V5 respectively, then Uy @ Us is an

unitary operator on V; @ Vs.

e U; + U; need not be unitary, even if U; and

Us are.

e kU need not be unitary, even it U 1is.
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‘ Cloning of Classical Bit'

We can use a CNOT gate to copy a classical bit.

a ® a
0 <> O0Pa=a
CNOT
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‘ No-Cloning Principle I

There is no unitary operator that can create

clone of an arbitrary qubit state. This is

essentially an outcome of linearity.

e Assume that there is a 2-qubit unitary
transformation U such that U |a0) = |aa) for

any qubit state |a).

e Let |a) and |b) be orthogonal states.
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/ ‘ No-Cloning Principle I \

e We have U |a0) = |aa) and U |b0) = |bb).

e Consider the state |c0), where
c) = 5(la) + [b)). So [c0) = (|a0) + [b0)).

UlcO) = (U |a0) + U [b0)), by linearity

Sl Sl

(]aa> + |bb)) by cloning.
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‘ No-Cloning Principle I

On the other hand,

Ul|c0) = |cc)y, by cloning

1 1
— ﬁ(‘@ +|0)) ® ﬁ(‘@ +10)),

_ %(\aa} + |ab) + |ba) + |bb)).

p—{

t 1s a contradiction as.

(|aa) + |bb)) # %(\aa} + |ab) + |ba) + |bb)).

2

(o
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vector {(x|.

Outer Product '

e Given a ket vector |z}, its dual is a bra

e The inner product of |x) and |y) is (z|y) € c.

e The outer product of |z) and |y) is |z) (y|.
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Outer Product '

e If we represent |x) as a column vector

(21, ,Zn), then (x| is the row vector

1 --- T,|, where T; is the conjugate of x;.

e The outer product |z) (y|, is the tensor
product |x) ® (y|.
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‘Outer Products: 1-bit Base Vectors'

_ o O O O =

o O
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Any 1-bit transformation is a linear
combination of the outer products of vectors.

a b
c d

‘ 1-Bit Transformation'

] = a(|0) (0) +0(|0) (1]) + (|1) (Of) + d(|1) (1]),
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quantum system, then

(1) (z[) [y)

\_

Property of Outer Product I

Let |x), |y) be two states of the state-space of a

z) (zly)

|y |z) -

The outer product |z) (x| projects a vector |y)
to the subspace spanned by |z).

~
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‘ Example I

(10) (0] (} 0)+ 5 \1>)

1

— ﬁ((!@ (0]) 10) 4 (]0) €0]) |1))
1

_ \ﬁ(ym (010) +|0) (0]1))

_ L
V2

Note: [0) (0| is not a unitary transformation.
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‘ 1-qubit Unitary Transformations I

The first 1-qubit unitary transformation is the

identity map, the 2 x 2 identity matrix that
keeps a qubit state unchanged.
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/ ‘ 1-qubit Unitary Transformations I \

e Next 1-qubit unitary transformation is the
not gate. It should interchange the
amplitudes of base vectors i.e.

—(a|0) +b|1)) =b|0) +all).

e The Boolean transformation matrix for NOT
will do the job.

|:O 1}[a}:[b},where[0 1}:0><1+|1><O|.
1 0 b a 1 0
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‘ 1-qubit Unitary Transformations I

e 1-qubit not-gate is called X or o, or oy. It is

one of the three Pauli matrices.

e In Boolean logic, identity and not are the

only two possible 1-bit reversible gates.

e But the situation is different in case of

quantum gates.
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cos 6 sin 0
o U/ =

e The adjoint of U is UT = cost meind

cos 6 sin 0 cosf —sinb 1 0
o UUT =

e So for every value of §§ we have a unitary

‘Unitary Transformations are Uncountable. \

1S a unitary operator.

—sinf® cosf

sin 0 cos 6

satistying

—sinf cos6@ sin 0 cos 6 0 1

gate.
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No Finite Set of Generators'

e There are uncountably many unitary

transformations. So it is impossible to get a

finite set of generators or universal

transformation gates.

e However there are finite set of

transformations that can approximate any

arbitrary transformation to any desired

accuracy.

~
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/ Tensor Product of Transformations. \

\U:U1®---®Uk- /

e Multi-qubit transformations can be
expressed as linear combination of tensor
products of 1-qubit or 2-qubit

transformations.

e Let in an n-qubit system the transformations
Ui,--- , U, are applied to qubits
(1,41), (21 + 1,29), -+, (ix_1,n) respectively.
The combined transtormation on n-qubits is
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‘ Qubit Gate Array'

/

Lect 3

Goutam Biswas



Quantum Computing 29

Tensor Product of Transformations'

e The leftmost transformation is
U1 &1 U,.

e SeccondoneisUs @I ® I.
e ThirdoneisUs;® I ® Us.

e Last transformation is Us ® I & 1.
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General Form of an 1-Qubit Operator'

Let U be an 1-qubit operator. We know

1 = det(])
= det(UUT)
— |det(U)||det(UT)]

= |det(U)||det(U)]
= |det(U)|* = |det(U)].
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/ ‘General Form of 1-Qubit Operator' \

o Let U = {a b}. We know that |det(U)| = 1

C

and U~1 = UT.
e Ignoring the global phase, we have
{ Z } — { S } . where @ is the complex

conjugate of a.

Q. ol

C

\_ /
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e So, U = ei(b{ v }, where |al? + |c]* = 1.
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e We can rewrite
U=¢e?| " | =¢?

C a

7= (O{ o 6)7 then

[ — €i¢ e @t cos 9
e (@~ gin g

i e 0

— €¢ |

O 6’LOL

‘General Form of 1-Qubit Operator'

0 —e “'sinf

—10

e’ cos @

e’V sin 6 e cos 0

o [f we substitute § = —(a + ) and

—e =P ging

e (@t8) co5 0

—sin 6

cos 6 0

cos 6

sin 0

~
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A Few important 1-Qubit Gates'

We have already talked about the Pauli matrix
X. Two other Pauli matrices are Y and Z.

0 —2 a —1b
==
a|0) +b|1) = —ib|0) +ia|1), where
D =41y (0] — o) (1].

1 O

S

I'his 1s also known as o, or os.

o /
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A Few important 1-Qubit Gates'

-

a|0) +b|1) — a|0) — b|1), where

{3 01} = 10) (0] — |1) (1].

Also known as o, or os3.

7
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A Few important 1-Qubit Gates'

:al0) +0]1) >‘H\/§z’]0>+a—\;§]1>.

\}5 a _ 1 a-+0b
-1 b | V2| a—b

1
V2 _
1 -
V2

+10) (1| +[1) (0] — |1) (1]) is called the

/
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A Few important 1-Qubit Gates'
0

| } is known as a phase gate and

[/

—mw /8
0 _ 6i7r/8 e/ 0
pim/4 0 et7/8

} 1s known as

/
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Pauli Matrices '

The general form of three Pauli matrices is

5@2: 5a:c — i(say
O-CL — . 9
5a:c ‘|‘ Z(Say _5az
where a € {x,y, 2z} and &4 is the Dirac’s
delta-function.

\_
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‘Properties of Pauli Matrices'

Four Pauli matrices are I, X = { (1) (1) } :

1 0 -1

Y = {O OZ}, /= {1 ’ } Some of its
properties are the following:
1. X2 =Y*=7*°=—XYZ=1

2. 7 =17 = (—iXYZ)Z = —iXY(2Z) =
—iXYI=—iXY.

\_ /
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‘Properties of Pauli Matrices'

X =XI=X(—iXYZ)=—i(XX)YZ =

—ilYZ ==Y Z.

Y =YI=Y(Z2)=(YZ)Z =i(—iYZ)Z =

1 X 4.

ZYX = 2Y(=iYZ)=—iZ(YY)Z =

— 414 = -1/ = —1l = —-XY /.

YZ =1 X =ilX =1ZY X)X = -ZY, etc.

~

/
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‘Visualization on Bloch Sphere'

We have already shown that a single qubit

state, ignoring the global phase, corresponds to
a point on Bloch Sphere by the following
mapping:. 1) = cos(6/2)]0) + e sin(6/2) |1),
where 0 <0 <mand —7m < ¢ <.

\_ /

Lect 3 Goutam Biswas




Quantum Computing 41

Image Source:
https://commons.wikimedia.org/wiki/
File:Sphere_ bloch. jpg
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The position of |0) is the north pole of the
sphere (where the z -axis meets the sphere). So
# = 0. And |1) is at the south pole.

Other axial points on the sphere are the
following :

\_ /
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Other Axial Points'

e x,.: 0=m/2 ¢ =0, state: |O>:/L§‘1> = |+)
o r : 0= W/Q,gb — 7, state: |O>\;§|1> — ’_>

o yi: 0 =7/2,¢=m/2, state: LI = |i)
oy : 0=m/2,¢=—m/2 state: DL = |—i)
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‘ Bloch Vector I

The point corresponding to the qubit state
cos0/210) + e?sin@/2|1) has the Cartesian

Bloch sphere. This is the Bloch vector

corresponding to the given qubit state.

Bloch vectors.

\_

coordinates (sin 6 cos ¢, sin 0 sin ¢, cos ) on the

We wish to see the effect of transtormation on

/
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‘Transformation as Rotation'

rotation of quantum state vector in the state
space. So it is important to look at the
eigenvalues and eigenvectors of some of the
important transformations.

\_

An unitary transformation may be viewed as a

/
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Eigenvalues and Eigenvectors'

Given a square matrix A, if there is a vector |z)

satisfying A |x) = A |x), then |z) is called an
eigenvector of A and A is the corresponding

eigenvalue.

We shall use the known fact that
det(A — AI) = 0 to compute eigenvectors and

eigenvalues of Pauli matrices.
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‘Eigenvalues of YI

We have

(2]

= det({; ;})

= M1

= A

In fact all Pauli matrices have A = 4

\_
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/ ‘Eigenvectors of YI \

So we have
0 — a o | e
i 0 b I
—1b a
= | =
Xe! b
= —b=4a and i1a = +b

\_ /
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‘Eigenvectors of YI

We also have |a|* + [b]> = 1. So the eigenvectors

of Y are
A | =l

Corresponding points on the Bloch sphere are

(0,+1,0) (Bloch vector), where § = T and

O = 5 or 7 Points where the y-axis meets the

sphere.
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e The Pauli matrix Y or o, rotates

state 1n 1ts state-space.

e The vectors that do not change “directions”

are |¢) and |—1).

a qubit

e These are not to be confused with the

3-dimensional Block vectors - (0, -

-1,0).

e We shall see the connection of Y with the

\ Bloch vectors.
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