

Quantum State Transition Postulate

It seems that nature does not allow arbitrary state transformation. Change of states (over time) of a closed^a quantum mechanical system are caused by a specific class of transformations, mathematically known as unitary transformations.

^aBy a closed system we mean that no measurement is performed on the system.

Unitary Transformation

- A unitary transformation U : H → H is an isomorphism, where H an inner product space (Hilbert space).
- So U is a bijection that preserves inner product.
- In our notation $U : |x\rangle \mapsto |y\rangle$ and if $|x\rangle, |x'\rangle \in H$, then $\langle |x\rangle, |x'\rangle \ge = \langle |Ux\rangle, |Ux'\rangle \ge$.

Unitary Matrix

A unitary transformation will be represented by a unitary matrix. We call a complex matrix Uas unitary if its conjugate transpose (Hermitian transpose) U^{\dagger} (or U^{*}) is its inverse i.e $UU^{\dagger} = I$.

- We encode $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- So an 1-qubit unitary transformation or
 1-qubit gate is a 2 × 2 unitary matrix U i.e.
 U[†]U = I.
- This means $U^{\dagger} = U^{-1}$ and U^{\dagger} is also unitary.

It is clear that any quantum transformation is reversible, as $U |x\rangle = |y\rangle$ if and only if $U^{\dagger} |y\rangle = |x\rangle$.

- A unitary operator U is linear by definition.
- If a quantum state $|x\rangle$ is a superposition of $a_1 |x_1\rangle + \dots + a_n |x_n\rangle$, then $U |x\rangle = U(a_1 |x_1\rangle + \dots + a_n |x_n\rangle) =$ $a_1U |x_1\rangle + \dots + a_nU |x_n\rangle.$

- The inner-product of $U |x\rangle$ and $U |y\rangle$ is $\langle x | U^{\dagger}U | y \rangle = \langle x | I | y \rangle = \langle x | y \rangle.$
- A unitary operator preserves the norm or length of a state vector.
- It maps an orthonormal basis to another orthonormal basis e.g. $H = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} : \{|0\rangle, |1\rangle\} \rightarrow \{|+\rangle, |-\rangle\}.$

We know that $U^{\dagger}U = I = UU^{\dagger}$ i.e.

$$\begin{bmatrix} \overline{u_{1i}} & \overline{u_{2i}} & \cdots & \overline{u_{ni}} \end{bmatrix} \cdot \begin{bmatrix} u_{1j} \\ u_{2j} \\ \cdots \\ u_{nj} \end{bmatrix} = I_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

So the columns of U are orthonormal. U^{\dagger} is also unitary, the columns of U^{\dagger} are also orthonormal. So the rows of U are so.

- If U_1 and U_2 are two unitary operators on the same space, their product U_1U_2 is also unitary: $(U_1U_2)^{\dagger}U_1U_2 = U_2^{\dagger}U_1^{\dagger}U_1U_2 = U_2^{\dagger}IU_2 = I.$
- If U_1 and U_2 are unitary operators on spaces V_1 and V_2 respectively, then $U_1 \otimes U_2$ is an unitary operator on $V_1 \otimes V_2$: $(U_1^{\dagger} \otimes U_2^{\dagger})(U_1 \otimes U_2) = (U_1^{\dagger}U_1) \otimes (U_2^{\dagger}U_2) = I_1 \otimes I_2.$

- If U_1 and U_2 are unitary operators on spaces V_1 and V_2 respectively, then $U_1 \oplus U_2$ is an unitary operator on $V_1 \oplus V_2$.
- $U_1 + U_2$ need not be unitary, even if U_1 and U_2 are.
- kU need not be unitary, even if U is.

No-Cloning Principle

There is no unitary operator that can create clone of an arbitrary qubit state. This is essentially an outcome of linearity.

- Assume that there is a 2-qubit unitary transformation U such that $U |a0\rangle = |aa\rangle$ for any qubit state $|a\rangle$.
- Let $|a\rangle$ and $|b\rangle$ be orthogonal states.

No-Cloning Principle

- We have $U |a0\rangle = |aa\rangle$ and $U |b0\rangle = |bb\rangle$.
- Consider the state $|c0\rangle$, where $|c\rangle = \frac{1}{\sqrt{2}}(|a\rangle + |b\rangle)$. So $|c0\rangle = \frac{1}{\sqrt{2}}(|a0\rangle + |b0\rangle)$.

$$U |c0\rangle = \frac{1}{\sqrt{2}} (U |a0\rangle + U |b0\rangle), \text{ by linearity}$$
$$= \frac{1}{\sqrt{2}} (|aa\rangle + |bb\rangle) \text{ by cloning.}$$

Outer Product

- If we represent $|x\rangle$ as a column vector (x_1, \dots, x_n) , then $\langle x|$ is the row vector $[\overline{x_1} \cdots \overline{x_n}]$, where $\overline{x_i}$ is the conjugate of x_i .
- The outer product $|x\rangle \langle y|$, is the tensor product $|x\rangle \otimes \langle y|$.

Any 1-bit transformation is a linear combination of the outer products of vectors.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a(|0\rangle \langle 0|) + b(|0\rangle \langle 1|) + c(|1\rangle \langle 0|) + d(|1\rangle \langle 1|),$$

Property of Outer Product

Let $|x\rangle$, $|y\rangle$ be two states of the state-space of a quantum system, then

$$(|x\rangle \langle x|) |y\rangle = |x\rangle \langle x|y\rangle ,$$

= $\langle x|y\rangle |x\rangle .$

The outer product $|x\rangle \langle x|$ projects a vector $|y\rangle$ to the subspace spanned by $|x\rangle$.

1-qubit Unitary Transformations

The first 1-qubit unitary transformation is the identity map, the 2×2 identity matrix that keeps a qubit state unchanged.

$$\left[\begin{array}{rrr}1&0\\0&1\end{array}\right]$$

1-qubit Unitary Transformations

- 1-qubit not-gate is called X or σ_x or σ_1 . It is one of the three Pauli matrices.
- In Boolean logic, identity and not are the only two possible 1-bit reversible gates.
- But the situation is different in case of quantum gates.

Quantum Computing

- There are uncountably many unitary transformations. So it is impossible to get a finite set of generators or universal transformation gates.
- However there are finite set of transformations that can approximate any arbitrary transformation to any desired accuracy.

- Multi-qubit transformations can be expressed as linear combination of tensor products of 1-qubit or 2-qubit transformations.
- Let in an *n*-qubit system the transformations U_1, \dots, U_k are applied to qubits $(1, i_1), (i_1 + 1, i_2), \dots, (i_{k-1}, n)$ respectively. The combined transformation on *n*-qubits is $U = U_1 \otimes \dots \otimes U_k$.

A Few important 1-Qubit Gates

We have already talked about the Pauli matrix X. Two other Pauli matrices are Y and Z. $Y = \left| \begin{array}{cc|c} 0 & -i \\ i & 0 \end{array} \right| \left| \begin{array}{c} a \\ b \end{array} \right| = \left| \begin{array}{c} -ib \\ ia \end{array} \right| \Rightarrow$ $a |0\rangle + b |1\rangle \mapsto -ib |0\rangle + ia |1\rangle$, where $\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = i |1\rangle \langle 0| - i |0\rangle \langle 1|.$ This is also known as σ_y or σ_2 .

Goutam Biswas

A Few important 1-Qubit Gates

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ -b \end{bmatrix} \Rightarrow$$

$$a |0\rangle + b |1\rangle \mapsto a |0\rangle - b |1\rangle, \text{ where}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = |0\rangle \langle 0| - |1\rangle \langle 1|.$$
Also known as σ_z or σ_3 .

A Few important 1-Qubit Gates $H = \begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} a \\ b \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} a+b \\ a-b \end{vmatrix}$ $H: a |0\rangle + b |1\rangle \mapsto \frac{a+b}{\sqrt{2}} |0\rangle + \frac{a-b}{\sqrt{2}} |1\rangle.$ $H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} =$ $\frac{1}{\sqrt{2}}(|0\rangle \langle 0| + |0\rangle \langle 1| + |1\rangle \langle 0| - |1\rangle \langle 1|)$ is called the Hadamard gate.

Goutam Biswas

Pauli Matrices

The general form of three Pauli matrices is

$$\sigma_a = \left[egin{array}{ccc} \delta_{az} & \delta_{ax} - i \delta_{ay} \ \delta_{ax} + i \delta_{ay} & -\delta_a z \end{array}
ight],$$

where $a \in \{x, y, z\}$ and δ_{ab} is the Dirac's delta-function.

Goutam Biswas

Visualization on Bloch Sphere

We have already shown that a single qubit state, ignoring the global phase, corresponds to a point on Bloch Sphere by the following mapping:. $|\psi\rangle = \cos(\theta/2) |0\rangle + e^{i\phi} \sin(\theta/2) |1\rangle$, where $0 \le \theta \le \pi$ and $-\pi \le \phi \le \pi$.

Quantum Computing

The position of $|0\rangle$ is the north pole of the sphere (where the z_+ -axis meets the sphere). So $\theta = 0$. And $|1\rangle$ is at the south pole. Other axial points on the sphere are the following :

Bloch Vector

The point corresponding to the qubit state $\cos \theta/2 |0\rangle + e^{i\phi} \sin \theta/2 |1\rangle$ has the Cartesian coordinates $(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ on the Bloch sphere. This is the Bloch vector corresponding to the given qubit state. We wish to see the effect of transformation on Bloch vectors.

Transformation as Rotation

An unitary transformation may be viewed as a rotation of quantum state vector in the state space. So it is important to look at the eigenvalues and eigenvectors of some of the important transformations.

Eigenvalues and Eigenvectors

Given a square matrix A, if there is a vector $|x\rangle$ satisfying $A |x\rangle = \lambda |x\rangle$, then $|x\rangle$ is called an eigenvector of A and λ is the corresponding eigenvalue. We shall use the known fact that $\det(A - \lambda I) = 0$ to compute eigenvectors and eigenvalues of Pauli matrices.

Eigenvectors of Y

We also have $|a|^2 + |b|^2 = 1$. So the eigenvectors of Y are

$$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \pm i \frac{1}{\sqrt{2}} \end{bmatrix} = |i\rangle, |-i\rangle.$$

Corresponding points on the Bloch sphere are $(0, \pm 1, 0)$ (Bloch vector), where $\theta = \frac{\pi}{2}$ and $\phi = \frac{\pi}{2}$ or $\frac{3\pi}{2}$. Points where the *y*-axis meets the sphere.

- The Pauli matrix Y or σ_y rotates a qubit state in its state-space.
- The vectors that do not change "directions" are $|i\rangle$ and $|-i\rangle$.
- These are not to be confused with the 3-dimensional Block vectors $(0, \pm 1, 0)$.
- We shall see the connection of Y with the Bloch vectors.