
School of Mathematical and Computational Sciences
Indian Association for the Cultivation of Science

Compiler Construction: COM 5202
Tutorial IX (26 March, 2025)

M. Sc Semester IV: 2024-2025 Instructor: Goutam Biswas

Exercise 1. Consider the following grammar G of simple type declaration.

D → T L

T → int

T → float

L → L , id

L → id

(a) Transform it an equivalent LL(1) grammar G1 by removing left-recursion.

(b) The non-terminal T has a synthesized attribute T.t to remember the type.
Non-terminal L and L′ (created after the removal of left-recursion) each
has an inherited attribute, L.i and L′.i to propagate the type information.
Give an SDD corresponding to the rules of G1 so that type information
can be updated in the symbol table.
Assume that the scanner is posting the identifier(ID) in the symbol table
and returns the pointer to the entry as the attribute of ID.

(c) How do you pass the synthesized and inherited attributes in a recursive
descent LL(1) parser?

Exercise 2. The following grammar generates radix-3 positional numeral ({0, 1, .2},
positiion weights are power of 3) with a radix-3 point.

S → L · L

S → L

L → L B

L → B

B → 2

B → 1

B → 0

Design an SDD to compute S·val, the decimal value of the input string. For
example, the translation of 102.201 should be the decimal number 1× 32+0×
31 + 2× 30 + 2

3
+ 0

32
+ 1

33
= 11 7

9
≈ 11.78 in decimal.

Exercise 3. [10]
In this assignment you will use a simple symbol table and do some ba-

sic context-sensitive analysis during the parsing phase. The recursive-descent
parser of Tutorial VII, Ex. 3 (26 February, 2025) will be augmented with
necessary C code.

The suggested symbol table is a linked list (unordered) of the following type
of structures. You may change the structure if you wish.

1



typedef struct sym {

char *varP;

struct sym *next;

char type; // ’i’: int, ’r’: double, ’n’: not assigned

char init; // ’t’: initialized, ’f’: not initialized

union {

int integer;

double real;

} val ;

} *symP;

Following is an explanation of different fields.

• varP - pointer to the identifier name, the content of yylval.string when
the token is ID.

• next - pointer to the next entry of the symbol table record.

• type - single character, the type of the variable. ‘i’ for integer, ‘f’ for
floating-point number, and ‘n’ - not known.

• init - flag whether the variable is initialized or not. ‘t’ for initialized and
‘f’ for uninitialized.

• val - data, union of int and double.

Following are the actions to be taken:

(a) The symbol table is a global data structure.

(b) Modify the scanner lex.l so that it will make an entry of an identifier in
the symbol table if it is not already there.
It will search for the identifier in the existing table. If it is not present,
it creates a node of type struct sym, inserts it in the existing table and
initialises the following fields:
varP: with identifier name.
next: pointer to the existing table.
type: unknown.
init: not initialised.

Finally the the scanner will return the token ID along with the pointer to
the corresponding node in the symbol table.

(c) The parser is augmented with the following actions.

• The type of a variable is updated in the symbol table when the type
information is available.

• Decleration of the same variable twice is an error:
zah a0, b0, c0

flt b0

• A variable is initialized by two rules.
RC: input fact and
AC: fact = 2*n

2



In both the cases appropriate flag of the symbol table entry for fact
is to be updated.
It is an error if the variable is not declared.

• An uninitialized variable can be detected when it is used in an ex-
pression F: ID.
It is an error in our case if a variable is used in an expression without
initialization.

• If it is an error, report it, but fix the error and continue parsing.

Use the Makefile of Tutorial 7, Ex. 3.
Finally prepare a .tar file using the following command.
$ tar cvf <roll no>.9.tar y.tab.h lex.l recursiveDescent.c Makefile

Send the .tar file to goutamamartya@gmail.com.

Input

// Syntactically correct program

{

zah a0, b0, c0

:

input a0

b0 = 5*a0

c0 = b0 + b0/a0 - 10

print c0

}

Output

$ ./a.out < d1

Accept

Input

// Same variable declared twice

{

zah a0, b0, c0, b0

:

input a0

b0 = 5*a0

c0 = b0 + b0/a0 - 10

print c0

}

Output

$ ./a.out < d2

Redeclaration: b0: (3)

Reject

Input

3



// Var not declared and more

{

zah b0, c0

:

input a0

b0 = 5*a0

c0 = b0 b0/a0 - 10

print c0

}

Output

$ ./a.out < d3

Variable a0 not decl.: (5)

’=’ missing: (7)

Input

// Variable not initialized

{

zah a0, b0, c0

:

// input a0

b0 = 5*a0

c0 = b0 + b0/a0 - 10

print c0

}

Output

$ ./a.out < d4

Variable a0 not init.: (6)

Reject

4


