
School of Mathematical and Computational Sciences
Indian Association for the Cultivation of Science

Compiler Construction: COM 5202
Tutorial XI (09 April, 2025)

M. Sc Semester IV: 2024-2025 Instructor: Goutam Biswas

Exercise 1. The DAG for the following code sequence is given.

x = a[i]

a[j] = y

z = a[i]

a0 i0 j0

=[]x []=

y0

=[] z

Identify the common sub-expression.
Ans. There is no common sub-expression as j may be equal to i. The

assignment a[j]=y kills a[i]
Exercise 2. Consider the following matrix multiplication program. The de-
clared arrays are of type int a[20][20], b[20][20], c[20][20], sizeof(int)
is 4.

for(i=0; i<n; ++i)

for(j=0; j<n; ++j)

c[i][j] = 0;

for(i=0; i<n; ++i)

for(j=0; j<n; ++j)

for(k=0; k<n; ++k)

c[i][j] = c[i][j] + a[i][k]*b[k][j];

1. Translate the program into a sequence of 3-address statements.

2. Draw the DAG corresponding to the biggest block.

3. Eliminate common subexpressions, perform copy propagation, and elimi-
nate dead code.

Exercise 3. [20]
In this assignment we shall put main computation in the body of our recur-

sive descent parser of Tutorial 9, Ex 3. We know from Tutorial VII, Ex. 3
the equivalent grammar (after removal of left-recursion). It is as follows:

1

P → { DL : CL }

DL → D DL | ε

D → TY VL

TY → zah | flt

VL → id VL′

VL′ → id VL′ | ε

CL → C CL′

CL′ → CL | ε

C → PC | RC | AC

PC → print E

RC → input id

AC → id = E

E → T E′

E′ → + T E′ | − T E′ | ε

T → F T ′

T ′ → ∗ F T ′ | / F T ′ | ε

F → ic | fc | id | (E)

Augment necessary C code to your recursive descent parser (with the symbol
table) of the Tutorial IX, Ex. 3. We already had discussion about how to pass
synthesized and inherited attributes as parameters to the functions corresponding
to non-terminals. As an example The prototype for the function corresponding
to E′ may be int Eprime(valType *ivP, valType *svP), where valType is
the type of data, ivP is a pointer to inherited attribute and svP is a pointer to
synthesized attribute.

A change is necessary regarding the access of the input file by the scanner.
The scanner generator flex, by default, takes its input from stdin. In last two
assignments the input data, the program to parse, was written in a file (data),
and it was redirected to the parser as $./a.out < data.
But now our compiled code of the calculator will also take its data from stdin.
Naturally it will not work as the stdin redirected.
To avoid this problem we supply the file name of the input file (data) as a
command line argument to the main program of the recursive descent parser-
interpreter. It opens the file using fopen() call, and assign the file pointer (File
*) to the global variable yyin defined by lex (extern FILE *yyin;). After this
lex.yy.c will take its data directly from the file data.

Use the Makefile of Tutorial 9, Ex. 3 to control the whole process.
Finally prepare a .tar file using the following command.
$ tar cvf <roll no>.11.tar lex.l recursiveDescent.c Makefile If you
use any other header file of your own include that as well. Send the .tar file to
goutamamartya@gmail.com.

Following are a few sample of Input/Output. Note that while reading the
input, the variable name e.g. a0: is a prompt of my code. The actual input is
say 10 a0: 10. Input

// Syntactically correct program

{

: print 2*10/3+10

}

Output

$./a.out D0

Value: 16

2

Input

// Syntactically correct program

{

: print 2.0*10.5/3.7+11.2

}

Output

$./a.out D1

Value: 16.875676

Input

// Syntactically correct program

{

: print 2.0*10/3+11.2

}

Output

$./a.out D2

Value: 17.866667

Input

// Syntactically correct program

{

zah a0

:

input a0

print a0

}

Output

$./a.out D3

a0: 10

Value: 10

Input

// Syntactically correct program

{

flt a0

:

input a0

print a0

}

3

Output

$./a.out D4

a0: 12

Value: 12.000000

Input

// Syntactically correct program

{

zah a0 b0

:

input a0

b0 = a0

print b0

}

Output

$./a.out D5

a0: 12

Value: 12

Input

// Syntactically correct program

{

zah a0 b0

:

input a0

b0 = 2*a0-5+11/3

print b0

}

Output

$./a.out D6

a0: 20

Value: 38

Input

// Syntactically correct program

{

flt a0

zah b0

:

input a0

input b0

b0 = 3*a0 - b0/2

print b0

}

4

Output

$./a.out D7

a0: 10

b0: 20

Var-Data type mismatch: b0 (9)

Value: 20

5

