
BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 1✬

✫

✩

✪

Syntax Directed Attribute Synthesis

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 2✬

✫

✩

✪

Context-Free Processing

• The scanner and Parser together performs

the context-free analysis of the program text.

• The scanner supplies the token and its

attributes.

• The parser forms the parse tree or abstract

syntax tree.

• But this analysis does not go beyond the

local and nested structure of the grammar.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 3✬

✫

✩

✪

Non-Context-Free Structural Features

• Context-dependent language constraints

cannot be checked during pure context-free

analysis.

• Typical examples are deceleration and

initialization of variables before use.

• Correspondence between the formal and

actual parameters of functions etc..

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 4✬

✫

✩

✪

Translation

• Our main goal is the translation of source

language to a target language.

• This requires collection and synthesis of

attributes over the entire syntax tree.

• Attribute synthesis is often done

hand-in-hand with parsing.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 5✬

✫

✩

✪

Translation

If the complete parse tree is available and the
dependence of attributes of different
non-terminals are known. The parse tree can be
traversed to compute the attributes of
nonterminalsa and necessary semantic actions
can be performed.

aDependence should not form a cycle.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 6✬

✫

✩

✪

Translation

• But often Computation rules can be

associated with the production rules to

perform semantic actions along with parsing.

• Computed information is stored as

attributes of non-terminals in some data

structure e.g. symbol table.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 7✬

✫

✩

✪

Example

Consider the following production rule of the

classic expression grammar: E → E1 + T a.

We consider three different translations:

• implementation of a simple calculator,

• conversion of an infix expression to a postfix

expression,

• Semantically equivalent intermediate Code

generation for this rule.
aWe have used subscript to differentiate between two instances of E.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 8✬

✫

✩

✪

Note

• In first two cases the back-end is like an

interpreter.

• In the third case it translates the high-level

code to an intermediate code of a virtual

machine.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 9✬

✫

✩

✪

Example: Calculator

• The attributes of E and T are the values of

the expression corresponding to the sub-tree

of E and T .

• Let the name of the attribute be val.

• The semantic action associated with the

production rule is,

E → E1 + T {E·val = E1·val + T ·val}a.

aIn bison this gets translated to $$ = $1 + $3.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 10✬

✫

✩

✪

Note

• The action takes place when E1 + T is

reduced to E. The value is computed from

the attributes of E1 and T , and is saved as

the attribute of E.

• Alternatively, evaluation may take place

during the postorder traversal of the syntax

tree.

• There is no other side-effect of the semantic

action. It is local.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 11✬

✫

✩

✪

Note

• An obvious question is where do we store the

attributes of the non-terminals?

• A non-terminal and its attributes may from

a structure or record.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 12✬

✫

✩

✪

Note

• If we want to keep the provision to store a

value as a named object (variable), we need

a symbol table where the variable names and

their values are stored.

• In that case the semantic action of

ES → id := E will changes the state of the

symbol-table (side effect) by entering the

E·val corresponding to id.name in the

symbol table.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 13✬

✫

✩

✪

Example: Infix to Postfix Conversion

• Here the problem is to convert an infix

arithmetic expression to an equivalent

postfix expression.

• Both the input and output are strings of

characters, postfix expressions.

• Let the attribute exp be associated with

non-terminals E and T . Its type is char *.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 14✬

✫

✩

✪

Example: Infix to Postfix

E → E1 + T

{

E.exp=(char*)malloc(strlen(E1.exp)+

strlen(T.exp)+4);

strcpy(E.exp, E1.exp); strcat(E.exp, " ");

strcat(E.exp, T.exp);

strcat(E.exp, " + ");

free(E1.exp); free(T.exp); // you may or may not

}

Again there is no side-effect

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 15✬

✫

✩

✪

Example: Code Generation

• The main difference of translation for code

generation with two previous translations is

that often no data value corresponding to E1

or T is available during compilation.

• The attributes E1 and T are two sequences

of translated codes. They will compute

values of expressions corresponding to E1

and T during a program execution.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 16✬

✫

✩

✪

Example: Code Generation

• The translation for to the rule E → E1 + T

generates code so that at run time the

computed values of E1 and T are added to

generate and store the value of expression E.

• The computed values of the expressions E1

and T are possibly stored in compiler defined

temporary variables/virtual registers.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 17✬

✫

✩

✪

Example: Code Generation

• The compiler creates temporary variables

where the intermediate values of

sub-expressions are stored. These variable

names may also be entered in the symbol

table.

• The attributes of a non-terminal like E or T

may be a code sequence and information

about the corresponding temporary variable.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 18✬

✫

✩

✪

Example: Code Generation

The code corresponding to E → E1 + T may

look like,

{

E.loc = newLoc();

codeGen(assignPlus, E.loc, E1.loc, T.loc);

}

where assignPlus means
E.loc = E1.loc + T.loc.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 19✬

✫

✩

✪

Note

• This action has side-effects, it may make an

entry of the new location in the symbol

table. And the generated code is added in a

data structure of code sequence.

• As an alternative E and T may store their

code sequences as their second attribute.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 20✬

✫

✩

✪

Associating Information with CFG

• A context-free grammar can be extended by

associating two features with it: data and

computation.

• Data is associated to a syntactic category by

attaching attributes to the non-terminals.

• Computation is associated with the

production rules.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 21✬

✫

✩

✪

Syntax Directed Definition

• Initial attribute values are supplied by the

scanner.

• A context-free grammar augmented with

attributes and rules for computing the

attributes, is a syntax directed definition of

semantics. It is called an attribute grammar.

• There should not be any circularity in the

definition of attributes.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 22✬

✫

✩

✪

Syntax Directed Translation

• A syntax-directed translation is an

executable specification of syntax directed

definition. Fragments of executable codes are

associated to different points in the

production rules.

• The order of execution of the code is

important in this case.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 23✬

✫

✩

✪

Example

A → {Action1} B {Action2} C {Action3}

Action1: takes place before parsing of the
input corresponding to the non-terminal B.
Action2: takes place after consuming the input
for B, but before consuming the input for C.
Action3: takes place at the time of reduction of
BC to A or after consuming the input
corresponding to BC.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 24✬

✫

✩

✪

Note

• Embedded action may create some problem

in a parser generator like Bison.

• Bison replaces the embedded action in a

production rule by an ε-production and

associates the embedded action with the new

rule.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 25✬

✫

✩

✪

Note

• But this may change the nature of the

grammar. As an example, the grammar

S → A | B, A → aba,B → abb is LALR.

• An embedded action is introduced as shown,

S → A | B, A → a {action} ba,B → abb.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 26✬

✫

✩

✪

Note

• Bison modifies the grammar to

S → A|B,A → aMba,B → abb,

M → ε {action} .

• The modified grammar is no longer LALR.

The state

{A → a •Mba, $, B → a • bb, $,M → •, b}

has a shift-reduct conflict.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 27✬

✫

✩

✪

Attribute Computation: a General Approach

• Construct the parse tree. Compute the

attributes of the non-terminals following the

data-flow in attribute dependence graph.

But construction of complete parse tree is

costly.

• There are restricted SDDs that do not

require explicit construction of parse tree.

They are S-attributed and L-attributed

definitions.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 28✬

✫

✩

✪

A Simple Example

Consider the following grammar of signed

binary numerals, a character string of 1’s and

0’s. We wish to translate it to integer.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 29✬

✫

✩

✪

0 : S′ → N$

1 : N → S L

2 : S → +

3 : S → −

4 : L → L B

5 : L → B

6 : B → 0

7 : B → 1

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 30✬

✫

✩

✪

Note

• We first construct the LR(0) automaton of

the grammar and find that the grammar is

SLR.

• We associate attributes to the non-terminals.

• We also associate SDDs to the production

rules.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 31✬

✫

✩

✪

LR(0) Automaton

q0 : S′ → •N$ N → •SL S → •+

S → •−

q1 : S′ → N • $

q2 : N → S • L L → •LB L → •B

B → •0 B → •1

q3 : S → +•

q4 : S → −•

q5 : N → SL• L → L •B B → •0

B → •1

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 32✬

✫

✩

✪

LR(0) Automaton

q6 : L → B•

q7 : B → 0•

q8 : B → 1•

q9 : L → LB•

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 33✬

✫

✩

✪

SLR Parsing Table

S Action Goto

+ − 0 1 $ N S L B

0 s3 s4 1 2

1 Acc

2 s7 s8 5 6

3 r2 r2

4 r3 r3

5 s7 s8 r1 9

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 34✬

✫

✩

✪

SLR Parsing Table

S Action Goto

+ − 0 1 $ N S L B

6 r5 r5 r5

7 r6 r6 r6

8 r7 r7 r7

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 35✬

✫

✩

✪

Attributes of Non-Terminals

Following are the attributes of different

non-terminals:

Non-terminal Attribute Type

N val int

S sign char

L val int

B val int

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 36✬

✫

✩

✪

SDD

0 : S′ → N print N.val

1 : N → SL if (S.sign == ’-’) N.val= - L.val;

else N.val = L.val;

2 : S → + S.sign = ’+’;

3 : S → − S.sign = ’-’;

4 : L → L1B L.val = 2*L1.val+B.val;

5 : L → B L.val = B.val;

6 : B → 0 B.val = 0;

7 : B → 1 B.val = 1;

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 37✬

✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Parsing $0 +101$ shift

Value $

Parsing $03 101$ reduce

Value $+

Parsing $02 101$ shift

Value $S S.sign=’+’

Parsing $028 01$ reduce

Value $S1

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 38✬

✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Parsing $026 01$ reduce

Value $SB B.val = 1

Parsing $025 01$ shift

Value $SL L.val = B.val

Parsing $0257 1$ reduce

Value $SL0

Parsing $0259 1$ reduce

Value $SLB B.val = 0

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 39✬

✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Parsing $025 1$ shift

Value $SL L.val = 2*L1.val + B.val

Parsing $0258 $ reduce

Value $SL1

Parsing $0259 $ reduce

Value $SLB B.val=1

Parsing $025 $ reduce

Value $SL L.val = 2*L1.val + B.val

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 40✬

✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Parsing $01 $ Accept

Value $N N.val = +L.val

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 41✬

✫

✩

✪

Decorated Parse Tree

N

0

1

S

+

L3

L2

L1S.sign = ’+’

N.val=L1.val

B1 B1.val=0

B2B2.val=1
L2.val=2*L3.val+B1.val

L1.val=2*L1.val + B2.val

B0.val=1B0

1

L3.val=B0.val

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 42✬

✫

✩

✪

Synthesized Attribute

• In this example the value of an attribute of a

non-terminal is either coming from the

scannera or it is computed from the

attributes of its children.

• This type of attribute is known as a

synthesized attribute.

aAttribute of a terminal comes from the scanner.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 43✬

✫

✩

✪

S-Attributed

• An attributed grammar is called

S-attributed if every attribute is synthesized.

• Attributes in such a grammar can be easily

computed during a bottom-up parsing.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 44✬

✫

✩

✪

Another Set of Attributes

Non-terminal Attribute Type

N val int

S sign char

L val, pos int, int

B val, pos int, int

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 45✬

✫

✩

✪

SDD

0 : S′ → N print N.val

1 : N → SL L.pos = 0

if (S.sign == ’-’) N.val= - L.val;

else N.val = L.val;

2 : S → + S.sign = ’+’;

3 : S → − S.sign = ’-’;

4 : L → L1B L1.pos = L.pos+1;

B.pos = L.pos;

L.val = L1.val+B.val;

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 46✬

✫

✩

✪

SDD

5 : L → B B.pos = L.pos;

L.val = B.val;

6 : B → 0 B.val = 0;

7 : B → 1 B.val = 2B.pos;

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 47✬

✫

✩

✪

Exercise

Draw the parse tree for −101 and show the flow
of information.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 48✬

✫

✩

✪

Note

• Attributes of a non-terminal depends on the

nature of translation. But it may also

depend on the nature of the grammar.

• Following is a grammar of integers in 2’s

complement numerals. It is to be translated

to a signed decimal numeral.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 49✬

✫

✩

✪

Exercise

1 : N → L

2 : L → L B

3 : L → B

4 : B → 0

5 : B → 1

Associate appropriate attributes to the
non-terminals and give rules of semantic
actions. Write bison specification for the
grammar.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 50✬

✫

✩

✪

Example

Consider a right-recursive grammar of signed

binary strings:

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 51✬

✫

✩

✪

0 : S′ → N

1 : N → S L

2 : S → +

3 : S → −

4 : L → B L

5 : L → B

6 : B → 0

7 : B → 1

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 52✬

✫

✩

✪

Attributes of Non-Terminals

We need a new attribute of L to remember the bit

position:

Non-terminal Attribute Type

N val int

S sign char

L val int

pos int

B val int

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 53✬

✫

✩

✪

Action for Rules

0 : S′ → N print N.val

1 : N → SL if (S.sign == ’-’) N.val=- L.val;

else N.val = L.val;

2 : S → + S.sign = ’+’;

3 : S → − S.sign = ’-’;

4 : L → BL1 L.pos=L1.pos+1;

if(B.val)

L.val=pow(2,L.pos)+L1.val;

else L.val=L1.val;

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 54✬

✫

✩

✪

Actions for Production Rules

5 : L → B L.val = B.val; L.pos = 0

6 : B → 0 B.val = 0;

7 : B → 1 B.val = 1;

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 55✬

✫

✩

✪

Example

Consider the following grammar for variable

declaration:

1 : D → T L ;

2 : T → int

3 : T → double

4 : L → L , id

5 : L → id

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 56✬

✫

✩

✪

Parse Tree

The parse tree for the string double id, id; is
as follows:

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 57✬

✫

✩

✪

D

T L

Ldouble

id

,

;

id

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 58✬

✫

✩

✪

Note

• A scanner/lexical analyzer returns the token

corresponding to an identifier.

• If it returns the identifier name as an

attribute. The parser takes the necessary

action to search and enter it in the symbol

table.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 59✬

✫

✩

✪

Note

• Otherwise the scanner may search and make

an entry in the symbol table if it is new. It

sends the pointer to the symbol table as an

attribute to the parser.

• Then parser reduces the id to the

non-terminal L. It is also necessary to

update the type informationa of the

identifier in the symbol table.
aThe type information is important for space allocation, representation, op-

erations, correctness and other purposes.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 60✬

✫

✩

✪

Note

But the type information is not available from
any subtree rooted at L. It has to be inherited
from T via the root D.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 61✬

✫

✩

✪

SDDefinition

1 : D → TL; L.type = T.type

2 : T → int T.type = INT

3 : T → double T.type = DOUBLE

4 : L → L1, id L1.type = L.type

addSym(id.name, L.type)

5 : L → id addSym(id.name, L.type)

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 62✬

✫

✩

✪

Inherited Attribute

• Let B be a non-terminal of a parse tree node.

• An inherited attribute B.i is defined in

terms of the attributes of the parent and

sibling nodes of B.

• In the previous example the non-terminal L

gets the attribute from T as an inherited

attribute.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 63✬

✫

✩

✪

Synthesized Attribute

• The synthesized attribute B.s of a

non-terminal B is defined by the attributes

of its children.

• The attribute of a leaf-node comes from the

scanner.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 64✬

✫

✩

✪

S-Attributed Definitions

An SDD is S-attributed if every attribute is

synthesized. This may be called an S-attributed

grammar.

This definition can be implemented in a
LR-parser during a reduction as the traversal
on the parse-tree is postorder.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 65✬

✫

✩

✪

L-Attributed Definitions

An SDD is called L-attributed (‘L’ for left) if
each attribute is either synthesized, or inherited
with the following restrictions.
Let A → α1α2 · · ·αn be a production rule, and
αk has an inherited attribute ‘a’.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 66✬

✫

✩

✪

L-Attributed Definition

The value of αk.a is computed using

• the inherited attribute of A (parent),

• the inherited or synthesized attributes of

α1, α2, · · · , αk−1 (symbols to the left of αk),

• attributes of αk, provided no dependency

cyclea is formed.
aA → B { A.s = B.i;B.i = A.s+ k }.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 67✬

✫

✩

✪

Rules

The type definition mentioned earlier is L-attributed.

1 : D → TL; L.type = T.type

2 : T → int T.type = INT

3 : T → double T.type = DOUBLE

4 : L → L1, id L1.type = L.type

addSym(id.name, L.type)

5 : L → id addSym(id.name, L.type)

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 68✬

✫

✩

✪

Note

The question is how to propagate the type
information in a parser generated by bison
The non-terminal T gets the value of
synthesized type attribute when a T -production
rule is reduced.
But that cannot be propagated as an attribute
of the non-terminal L directly as this
non-terminal is not present in the stack.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 69✬

✫

✩

✪

Solution I

An ad hoc solution is to use a global variable to

hold the type value.

T → int type = INT

T → double type = DOUBLE

L → L1, id addSym(id.name, type)

L → id addSym(id.name, type)

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 70✬

✫

✩

✪

Solution II

We introduce a different attribute of L, a list of
symbol table entries corresponding to different
identifiers, and initialize their types at the end.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 71✬

✫

✩

✪

1 : D → TL; initType(L.list, T.type)

2 : T → int T.type = INT

3 : T → double T.type = DOUBLE

4 : L → L1, id L.list = L 1.list +

mklist(addSym(id.name))

5 : L → id L.list =

mklist(addSym(id.name))

Read ‘+’ as append in the list.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 72✬

✫

✩

✪

Solution III

We can device another solution from the value
stack. For that we consider the states of LR(0)
automaton of the grammar.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 73✬

✫

✩

✪

LR(0) Automaton

q0 : S → •D D → •TL; T → •int

T → •double

q1 : S → D•

q2 : D → T • L L → •L, id L → •id

q3 : T → int•

q4 : S → double•

q5 : D → TL•; L → L•, id

q6 : L → id•

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 74✬

✫

✩

✪

LR(0) Automaton

q7 : L → L, •id

q8 : L → L, id•

q9 : D → TL; •

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 75✬

✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Par $0 int id, id;$ shift

Val $

Par $03 id, id;$ reduce

Val $int

Par $02 id, id;$ shift

Val $T T.type=INT

Par $026 , id;$ reduce

Val $T id

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 76✬

✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Par $025 , id;$ reduce

Val $T L addSym(id.name,L.type)

How does L gets the type information. Note that in

bison L ≡ $$ and id ≡ $1. But the type information is

available in T in the stack, below the handle.

Type Stack → Input→ Action/Value

Par $0257 id;$ shift

Val $T L ,

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 77✬

✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Par $02578 ;$ reduce

Val $T L , id

Par $025 ;$

Val $T L addSym(id.name,L.type)

Again the type information is available just below the
handle.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 78✬

✫

✩

✪

Note

In Bison the attribute below the handle can be
accessed. In this case the non-terminal T
corresponds to $0 and its type attribute is
$0.type.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 79✬

✫

✩

✪

Note

• Often a natural grammar is transformed to

make it suitable for parsing.

• But the new parse tree no longer match with

the abstract syntax tree of the language.

• As an example the left-recursion is removed

from the grammar for LL(1) parsing.

• The original S-attributed grammar gets

modified after this transformation.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 80✬

✫

✩

✪

S-Attributed Expression Grammar

S → E$ { print E.val }

E → E1 − T { E.val = E1.val - T.val}

E → T { E.val = T.val}

T → T1/F { T.val = T1.val / F.val}

T → F { T.val = F.val}

F → (F) { F.val = E.val}

F → ic { F.val = ic.val}

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 81✬

✫

✩

✪

Decorated Parse Tree of 2− 3− 4

E0

E1
T1

E2

T2 F1

ic

ic

3

ic

4

T3

F3

F2

ic.val=2

ic.val=3

ic.val=4

F3.s = 2

T3.s = 2

E2.s = 2

F2.s = 3

F1.s = 4

T1.s = 4

2

T2.s = 3

−

−

E1.s = E2.s− T2.s

E0.s = E1.s− T1.s

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 82✬

✫

✩

✪

Equivalent LL(1) Grammar

S → E$

E → TE ′

E ′ → −TE ′

E ′ → ε

T → FT ′

T ′ → /FT ′

T ′ → ε

F → (E)

F → ic

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 83✬

✫

✩

✪

Parse Tree of LL(1) Grammar

E0

T3

F3

ic

2

T1

E′

3

T ′

1

ε

E′

1

T ′

3

ε

T2

F2 T ′

2

ic

3

ε
F1

ic

4

ε

E′

2
−

−

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 84✬

✫

✩

✪

Partially Decorated Parse Tree of LL(1) Grammar

E0

T3

F3F3.s = 2

ic

2

ic.val=2

E′

2

T1

E′

3

T ′

1

ic.val=4 ε

E′

1

T ′

3

ε

T2

F2 T ′

2

F2.s = 3

ic

3

ic.val=3
F1.s = 4

ε
F1

ic

4

ε

−

−

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 85✬

✫

✩

✪

Note

• Two arguments of ‘−’ are in different

subtrees. It is necessary to pass the value of

T3.s to the subtree of E ′
1
.

• It is also necessary for left-associativity of

‘−’, to propagate the computed value down

the tree say from E ′
1
to E ′

2
.

• We achieve this by inherited attributes E ′.i

and T ′.i of the non-terminals E ′ and T ′.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 86✬

✫

✩

✪

Note

But it is also necessary to propagate the
computed value towards the root. This is done
through the synthesized attributes of E ′ and T ′

i.e. E ′.s, T ′.s.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 87✬

✫

✩

✪

L-Attributed LL(1) Expression Grammar

E → T { E’.ival = T.sval } E ′

{ E.sval = E’.sval }

E ′ → −T { E1’.ival = E’.ival - T.sval } E ′
1

{ E’.sval = E1’.sval }

E ′ → ε { E’.sval = E’.ival }

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 88✬

✫

✩

✪

L-Attributed LL(1) Expression Grammar

T → F { T’.ival = F.sval } T ′

{ T.sval = T’.sval }

T ′ → /F { T1’.ival = T’.ival / F.sval } T ′
1

{ T’.sval = T1’.sval }

T ′ → ε { T’.sval = T’.ival }

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 89✬

✫

✩

✪

L-Attributed LL(1) Expression Grammar

F → (E) { F.sval = E.sval }

F → ic { F.sval = ic.val }

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 90✬

✫

✩

✪

Decorated Parse Tree of LL(1) Grammar

E0

T3

F3F3.s = 2

ic

2

ic.val=2

E′

2

T1

E′

3

T ′

1

ic.val=4 ε

E′

1

T ′

3

ε

T2

F2 T ′

2

F2.s = 3

ic

3

ic.val=3
F1.s = 4

ε
F1

ic

4

ε

T ′

3
.i = F3.s = 2

T3.s = T ′

3
.s = 2

T ′

3
.s = T ′

3
.i = 2

E′

1
.i = T3.s = 2

E′

3
.s = E′

3
.i = 9

−

−

E′

2
.i = E′

1
.i− T2.s = 2− 3 = −1

E′

3
.i = E′

2
.i− T1.s = −1− 4 = −5

E′

1
.s = E′

2
.s = −5

E′

0
.s = E′

1
.s = −5

E′

2
.s = E′

3
.s = −5

T ′

2
.i = F2.s = 3

T ′

2
.s = T ′

2
.i = 3

T2.s = T ′

2
.s = 3

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 91✬

✫

✩

✪

Another Example

L-attributed grammars come naturally with

flow-control statements. Following is an

example with if-then-else statement.

IS → if BE then S1 else S2.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 92✬

✫

✩

✪

Attributes of Statement

• Every statement has a natural synthesized

attribute, S.code, holding the code

corresponding to S.

• Also a statement S has a continuation, the

next instruction to be executed after

execution of S. This may be handled as a

jump target (label). But this label is an

inherited attribute of S, S.next, propagated

in the subtree of S.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 93✬

✫

✩

✪

Attributes of Boolean Expression

• The boolean expression also has a

synthesized attribute BE.code.

• But it has two inherited attributes, BE.true,

a jump target (label) where the control is

transferred if the boolean expression is

evaluated to true. This is the beginning of

S1.

Similarly there is BE.false, a label at the

beginning of S2.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 94✬

✫

✩

✪

SDD for if-then-else

IS → if BE l1=newLabel(), l2=newLabel()

then S1 BE.true = l1, BE.false=l2

else S2. S1.next = S2.next = IS.next

IS.code = BE.code + l1’:’ +

S1.code + l2’:’ + S2.code

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 95✬

✫

✩

✪

L-Attributed SDT for if-then-else

IS → if {l1=newLabel(),l2=newLabel()

BE.true = l1, BE.false=l2}

BE {S1.next = IS.next }

then S1 {S2.next = IS.next }

else S2.

{IS.code = BE.code + l1’:’ +

S1.code + l2’:’ + S2.code}

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 96✬

✫

✩

✪

Note

Afterward we shall see how this is managed in
an actual implementation using back-patching.

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 97✬

✫

✩

✪

SDD for Boolean Expression and

BE → BE1 and BE2 BE1.true=l=newLabel()

BE1.false = BE.false

BE2.true = BE.true

BE2.false = BE.false

BE.code = BE1.code +

l’:’ + BE2.code

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 98✬

✫

✩

✪

L-Attributed SDT for Boolean Expression and

Lect IX: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 99✬

✫

✩

✪

BE → { BE1.true=l=newLabel()

BE1.false = BE.false }

BE1 and

{ BE2.true = BE.true

BE2.false = BE.false }

BE2

{ BE.code = BE1.code +

l’:’ + BE2.code }

Lect IX: COM 5202: Compiler Construction Goutam Biswas

