

LR(k) Grammar

An LR(k) grammar is a context-free grammar where the handle in a right sentential form can be identified with a lookahead of at most k input. We shall only consider k = 0, 1.

LR(0) Parsing

An LR(0) parser can take shift-reduce decisions entirely on the basis of the states of LR(0) automaton^a of the grammar. Consider the following grammar with the augmented start symbol and the production rule.

^aThe parsing table can be filled from the automaton.

Example

The production rules are,

$$S \rightarrow aSa \mid bSb \mid c$$

The production rules of the augmented grammar are,

$$S' \rightarrow S$$

$$S \rightarrow aSa \mid bSb \mid c$$

The states of the LR(0) automaton are the following:

q_A :	$S \to S $
q_5 :	$S \to aS \bullet a$
q_6 :	$S \to bS \bullet b$
q_7 :	$S \to aSa \bullet$
q_8 :	$S \to bSb \bullet$

Complete and Incomplete Items

An LR(0) item is called complete if the '•' is at the right end of the production, $A \to \alpha$ •. This indicates that the DFA has already 'seen' a handle and it is on the top of the stack.

LR(0) Grammar

A grammar G is of type LR(0) if the DFA of its viable prefixes has the following properties:

- no state has both complete and incomplete items,
- no state has more than one complete items.

Note

A state with a unique complete item $A \to \alpha \bullet$, indicates a reduction of the handle α by the rule $A \to \alpha$.

A state with incomplete items indicates shift actions. The parsing table for the given grammar is as follows.

State		Goto			
	a	b	c	\$	S
0	s_2	s_3	s_4		1
1				s_A	
2	s_2	s_3	s_4		5
3	s_2	s_3	s_4		6
4	r_3	r_3	r_3	r_3	
5	S_7				
6		s_8			
7	r_1	r_1	r_1	r_1	
8	r_2	r_2	r_2	r_2	

Note

The parser does not look-ahead for any shift operation. It gets the current state from the top-of-stack and the token from the scanner. Using the parsing table it gets the next state and pushes it in the stack^a. The token is consumed.

^aIt may push the token and its attributes in the value stack for semantic action.

In case of LR(0) parser it does not look-ahead even for any reduce operation^a. It gets the current state from the top-of-stack and the production rule number from the parsing table (for all correct input they are same), and reduces the right sentential form by the rule^b.

^aIt may read the input to detect error. Note the column corresponding to 'c' for the states 4, 7, 8 with unique complete items.

^bThe Goto portion of the table is used to push a new state on the stack after a reduction.

Parsing Example Right-Sentential Form

Stack	Input	Handle	Action	
\$	aabcbaa\$	nil	shift	
\$a	abcbaa\$	nil	shift	
\$aa	bcbaa\$	nil	shift	
\$aab	cbaa\$	nil	shift	
\$aabc	baa\$	nil	reduce	
\$aabS	baa\$	nil	shift	

Parsing Example Right-sentential Form

Stack	Input	Handle	Action	
\$aab S b	aa\$	nil	reduce	
\$aaS	aa\$	nil	shift	
\$aa S a	a\$	nil	reduce	
\$aS	a\$	nil	shift	
\$a S a	\$	nil	reduce	
\$S	\$	nil	accept	

Parsing: DFA States

Stack	Input	Handle	Action	
$$q_0$	aabcbaa\$	nil	S_2	
$\$q_0q_2$	abcbaa\$	nil	S_2	a
$$q_0q_2q_2$	bcbaa\$	nil	S_3	
$$q_0q_2q_2q_3$	cbaa\$	nil	S_4	
$$q_0q_2q_2q_3q_4$	baa\$	$S \to c$	r_3	

^aThe length of |c| = 1, so q_4 is popped out and $Goto(q_3, S) = q_6$ is pushed in the stack.

Parsing: DFA States

Stack	Input	Handle	Action	
$q_0q_2q_2q_3q_4$	baa\$	$S \to c$	r_3	
$q_0q_2q_2q_3q_6$	baa\$	nil	s_8	a
$q_0q_2q_2q_3q_6q_8$	aa\$	$S \to bSb$	r_2	
$q_0q_2q_2q_5$	aa\$	nil	S_7	
$q_0q_2q_2q_5q_7$	a\$	$S \to aSa$	$\mid r_1 \mid$	

^aThe length of |bSb|=3, so $q_3q_6q_8$ are popped out and $Goto(q_2,S)=q_5$ is pushed in the stack.

Parsing: DFA States

Stack	Input	Handle	Action	
$$q_0q_2q_2q_5q_7$	a\$	$S \to aSa$	$\mid r_1 \mid$	
$$q_0q_2q_5$	a\$	nil	S_7	a
$$q_0q_2q_5q_7$	\$	$S \to aSa$	$\mid r_1 \mid$	
$$q_0q_1$	\$	$S' \to S$	accept	

^aThe length of |aSa| = 3, so $q_2q_5q_7$ are popped out and $Goto(q_2, S) = q_5$ is pushed in the stack. Similarly, $Goto(q_0, S) = q_1$ is pushed in the stack.

Exercise

Show that the following grammar is LR(0):

$$G = (\{ic, -, \}, (\}, \{E, T\}, P, S), \text{ where}$$

$$E \rightarrow E - T \mid T$$

$$T \rightarrow (E) \mid ic$$

Exercise

Show that the following grammar is not LR(0):

$$G = (\{ic, +, *,), (\}, \{E, T, F\}, P, S), \text{ where}$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid ic$$

Lect VII: COM 5202: Compiler Construction

Goutam Biswas

We consider our old grammar (augmented with S').

```
0: S' \rightarrow P$
```

 $1: P \rightarrow m L s e$

 $2: L \rightarrow DL$

 $3: L \rightarrow D$

 $4: D \rightarrow TV;$

 $5: V \rightarrow dV$

 $6: V \rightarrow d$

 $7: T \rightarrow i$

 $8: T \rightarrow f$

q_0 :	$S' \to \bullet P$	$P \to \bullet m \ L \ s \ e$	
q_1 :	$S' \to P \bullet \$$		
q_2 :	$P \rightarrow m \bullet L s e$	$L \to \bullet D L$	$L \to \bullet D$
	$P \to m \bullet L s e$ $D \to \bullet T V ;$	T o ullet i	$T \to ullet f$
q_3 :	$P \to m \ L \bullet s \ e$		
q_4 :	$L \to D \bullet L$	$L \to D \bullet$	$L \to \bullet D L$
	$L \to D \bullet L$ $L \to \bullet D$	$D \to \bullet T V$;	$T \to ullet i$
	$T \to ullet f$		

q_5 :	$D \to T \bullet V \; ; \qquad V \to \bullet d \; V V \to \bullet d$
q_6 :	T o i ullet
q_7 :	$T \to f ullet$
q_8 :	$P \to m \ L \ s \bullet e$
q_9 :	$L \to D L \bullet$
$q_{10}:$	$D \to T \ V \bullet;$
$q_{11}:$	$V \to d \bullet V$ $V \to d \bullet V \to \bullet d V$
	V o ullet d

$q_{12}:$	$P \to m \ L \ s \ e \bullet$

$$q_{13}: \mid D \to T \ V ; \bullet$$

$$q_{14}: \mid V \to d V \bullet$$

Note

In the LR(0) automaton of the grammar there are two states q_4 and q_{11} with both complete and incomplete items. So the grammar is not of type LR(0).

Note

Consider the state q_4 . The complete item is $L \to D \bullet$ and the incomplete items are $T \to \bullet i$ and $T \to \bullet f$. The Follow $(L) = \{s\}$ is different from i, f. So we can put Action $(4, i) = s_6$, Action $(4, f) = s_7$ and Action $(4, s) = r_3$ (reduce by the production rule number 3) in the parsing table.

SLR Parsing Table: Action

- If $A \to \alpha \bullet a\beta \in q_i \ (a \in \Sigma)$ and $Goto(q_i, a) = q_j$, then $Action(i, a) = s_j$.
- If $A \to \alpha \bullet \in q_i$ $(A \neq S')$ and $b \in \text{Follow}(A)$, then $\text{Action}(i, b) = r_k$, where k is the rule number of $A \to \alpha$.
- If $S' \to S \bullet \$ \in q_i$, then Action(i,\$) = accept.

Note

If this process does not lead to a table with multiple entries, then the grammar is of type SLR (simple LR).

SLR Parsing Table: Goto

If $A \to \alpha \bullet B\beta \in q_i$ $(B \in N)$ and $Goto(q_i, B) = q_j$, then in the table Goto(i, B) = j. All other entries of the table are errors.

FOLLOW() Sets

Non-terminal	Follow
P	\$
L	S
D	i, f, s
T	d
V	•

SLR Parsing Table

S		Action						Goto					
	\overline{m}	S	e	;	d	i	f	\$	P	L	D	V	T
0	s_2								1				
1								A					
2						s_6	S_7			3	4		5
3		S_8											
4		r_3				s_6	S_7			9	4		5
5					S_{11}							10	

Example

S	Action									Goto					
	\boxed{m}	S	e	•	d	i	f	\$	P	L	D	\overline{V}	T		
6					r_7										
7					r_8										
8				S_{12}											
9		r_2													
10				S_{13}											
11				r_6	S_{11}							14			

Example

S	Action									Goto				
	m	S	e	•	d	i	f	\$	P	L	D	V	T	
12								r_1						
13		r_4				r_4	r_4							
14				r_5										

Consider the following grammar G_{rr} (augmented by the S').

```
0: S' \rightarrow S
```

$$1: S \rightarrow E + T$$

$$2: S \rightarrow T$$

$$3: T \rightarrow i * E$$

$$4: T \rightarrow i$$

$$5: E \rightarrow T$$

The states of the LR(0) automaton are as follows:

q_0 :	$S' \to ullet S$	$S \to \bullet E + T$	$S \to \bullet T$
	E o ullet T	$T \rightarrow \bullet i * E$	$T \to ullet i$
q_1 :	$S' \to S \bullet \$$		
q_2 :	$S \to E \bullet + T$		
q_3 :	$S \to T ullet$	E o T ullet	
q_4 :	$T \to i \bullet * E$	$T \rightarrow i \bullet$	
q_5 :	$S' \to S \$ \bullet$		

$$q_6:$$
 $S oup E + ullet T$ $T oup ullet i * E$ $T oup ullet i$ $q_7:$ $T oup i * ullet E$ $E oup ullet T$ $T oup ullet i * E$ $T oup ullet i * E$

- The state q_3 has two complete items $S \to T$ and $E \to T$ •.
- Also the Follow $(S) = \{\$\}$ and Follow $(E) = \{\$, +\}$ has a common element.
- So there are two conflicting reduce entries in the SLR table corresponding to the row- q_3 and the column-\$ Action[q_3][\$] = { r_2, r_5 }.

Consider the grammar G_{sr} (augmented by the S').

 $0: S' \rightarrow A$ \$

 $1: A \rightarrow B a$

 $2: A \rightarrow Cb$

 $3: A \rightarrow a C a$

 $4: C \rightarrow B$

 $5: B \rightarrow cA$

 $6: B \rightarrow b$

Some states of the LR(0) automaton are as follows:

q_0 :	$S' \to \bullet A$	$A \to \bullet B \ a$	$A \to \bullet C b$
	$A \to \bullet a \ C \ a$	$B \to \bullet c A$	$B \to ullet b$
	$C \to ullet B$		
q_1 :	$S' \to A \bullet \$$		
q_2 :	$A \to B \bullet a$	$C \to B ullet$	
q_3 :	$A \to C \bullet b$		
q_4 :	$A \to a \bullet C a$	$C \to \bullet B$	$B \to \bullet c \ A$
	$B \to ullet b$		

q_5 :	$B \to c \bullet A$	$A \to \bullet B \ a$	$A \to \bullet C b$
	$A \to \bullet a \ C \ a$	$B \to \bullet c A$	$B \to ullet b$
	$C \to \bullet B$		
q_6 :	$B \to b \bullet$		
q_7 :	$S' \to A \$ \bullet$		
q_8 :	$A \to B \ a \bullet$		
q_9 :			
$q_{10}:$			

- The state q_2 has one complete item, $C \to B \bullet$ and one incomplete item, $A \to B \bullet a$.
- Follow $(C) = \{a, b\}.$
- The SLR parsing table will have two entries for $Action[q_2][a] = \{s_8, r_4\}$, as $a \in Follow(C)$.

- The grammar G_{rr} is not SLR due to the reduce/reduce conflict.
- The grammar G_{sr} is not SLR due to the shift/reduce conflict.

- If the state of an LR(0) automaton contains a complete item $A \to \alpha \bullet$ and the next input $a \in FOLLOW(A)$, the SLR action is reduction by the rule $A \to \alpha$.
- But in the same state if there is another complete item $B \to \beta \bullet$ with $a \in \text{Follow}(B)$, or a shift item $C \to \gamma \bullet a\mu$, there will be conflict in action.

- The set FOLLOW(A) is the super set of what can follow a complete A-item at a particular state.
- In the grammar G_{rr} , in the state q_3 , E cannot be followed by a \$. Similarly S cannot be followed by a +.
- Similarly in the grammar G_{sr} , in state q_2 , a cannot follow the variable C.

Both the reduce/reduce (G_{rr}) and shift/reduce (G_{sr}) conflicts may be resolved by explicitly carrying the look-ahead information.

Canonical LR(1) Item

- An object of the form $A \to \alpha \bullet \beta$, a, where $A \to \alpha\beta$ is a production rule and $a \in \Sigma \cup \{\$\}$, is called an LR(1) item.
- 'a' is called the look-ahead symbol that can follow A with this item.
- If there are more than one LR(1) items with same LR(0) core, we write them as $A \to \alpha \bullet \beta, a/b/\cdots$, a set.

Reduction

- The look-ahead symbols of an LR(1) item $A \to \alpha \bullet \beta, L$ are important when the item is complete i.e. $\beta = \varepsilon$.
- The reduction by the rule $A \to \alpha$ can take place if the look-ahead symbol is in L of $A \to \alpha \bullet, L$.
- The look-ahead set L is a subset of FOLLOW(A), but we carry them explicitly to resolve more conflicts.

Valid Item

An LR(1) item $A \to \alpha \bullet \beta$, a is valid for a viable prefix ' $u\alpha$ ', if there is a rightmost derivation: $S \to uAx \to u\alpha\beta x$, so that $a \in FIRST(x)$ or if $x = \varepsilon$, then a = \$.

Closure()

If i is an LR(1) item, then Closure(i) is defined as follows:

- $i \in \text{Closure}(i)$ basis,
- If $(A \to \alpha \bullet B\beta, a) \in \text{Closure}(i)$ and $B \to \gamma$ is a production rule, then $(B \to \bullet \gamma, b) \in \text{Closure}(i)$, where $b \in \text{FIRST}(\beta a)$.

Closure()

The closure of I, a set of LR(1) items, is defined as $Closure(I) = \bigcup_{i \in I} Closure(i)$.

Goto(I, X)

Let I be a set of LR(1) items and $X \in \Sigma \cup N$. The set of LR(1) items Goto(I, X) is

Closure $(\{(A \to \alpha \ X \bullet \beta, a) : (A \to \alpha \bullet X \beta, a) \in I\})$.

LR(1) Automaton

The start state of the LR(1) automaton is $Closure(S' \to \bullet S, \$)$. Other reachable and final states can be constructed by computing GOTO() of already existing states. This is a fixed-point computation.

Consider the grammar G_{rr} .

```
0: S' \rightarrow S
```

$$1: S \rightarrow E + T$$

$$2: S \rightarrow T$$

$$3: T \rightarrow i * E$$

$$4: T \rightarrow i$$

$$5: E \rightarrow T$$

The states of the LR(1) automaton are as follows:

	$S' \to \bullet S, \$$	$S \to \bullet E + T, \$$	$S \to \bullet T, \$$
	$E \to \bullet T, +$	$T \rightarrow \bullet i * E, +/\$$	$T \rightarrow \bullet i, +/\$$
q_1 :	$S' \to S \bullet, \$$		
q_2 :	$S \to E \bullet + T, \$$		
q_3 :	$S \to T \bullet, \$$	$E \to T \bullet, +$	
q_4 :	$T \rightarrow i \bullet * E, +/\$$	$T \to i \bullet, +/\$$	
q_5 :	$S \to E + \bullet T, \$$	$T \rightarrow \bullet i * E, \$$	$T \to \bullet i, \$$

q_6 :	$T \to i * \bullet E, +/\$$	$E \to \bullet T, +/\$$	$T \rightarrow \bullet i *$	E, +/\$
	$T \rightarrow \bullet i, +/\$$			
$q_7:$	$S \to E + T \bullet, \$$			
q_8 :	$T \to i \bullet * E, \$$	$T \to i \bullet, \$$		
q_9 :	$T \rightarrow i * E \bullet, +/\$$			
$q_{10}:$	$E \to T \bullet, +/\$$			
$q_{11}:$	$T \to i * \bullet E, \$$	$E \to \bullet T, \$$	$T \rightarrow \bullet i *$	E,\$
	$T \rightarrow \bullet i, \$$			

$q_{12}:$	$\mid T \mid$	$\rightarrow i$	*	Eullet,\$
-----------	---------------	-----------------	---	-----------

$$q_{13}: E \to T \bullet, \$$$

Number of states of the LR(1) automaton are more than that of LR(0) automaton. Several states have the same core LR(0) items, but different look-ahead symbols - (q_4, q_8) , $(q_6, q_{11}), (q_9, q_{12}), (q_{10}, q_{13})$.

LR(1) Parsing Table: Action

- If $(A \to \alpha \bullet a\beta, b) \in q_i \ (a \in \Sigma)$ and $Goto(q_i, a) = q_j$, then $Action(i, a) = s_j$.
- If $(A \to \alpha \bullet, a) \in q_i$ $(A \neq S')$, then Action $(i, a) = r_k$, where k is the rule number of $A \to \alpha$.
- If $(S' \to S \bullet, \$) \in q_i$, then Action(i, \$) = accept.

LR(1) Parsing Table: Goto

If $A \to \alpha \bullet B\beta \in q_i \ (B \in N)$ and $Goto(q_i, B) = q_j$, then in the table Goto(i, B) = j. All other entries of the table are errors.

If the process constructs a table without multiple entries, the grammar is LR(1).

LR(1) Parsing Table

S		Act	tion			Got	O
	+	*	i	\$	S	E	T
0			S_4		1	2	3
1				A			
2	S_5						
3	r_5			r_2			
4	r_4	s_6		r_4			
5			s_8				7
6			s_4			9	10

LR(1) Parsing Table

S		Act	ion			Goto)
	+	*	i	\$	S	E	T
7				r_1			
8		s_{11}		r_4			
9	r_3			r_3			
10	r_5			r_5			
11			s_8			12	13
12				r_3			
13				r_5			

Non-LR(1) Grammar

 $0: S \rightarrow A$

 $1: A \rightarrow a A a$

 $2: A \rightarrow a Aa a b$

 $3: A \rightarrow ab$

States of LR(1) Automaton

q_0 :	$S \to \bullet A, \$$	$A \to \bullet aAa, \$$	$A \rightarrow \bullet aAaab, \$$
	$A \to \bullet ab, \$$		
q_1 :	$S \to A \bullet, \$$		
q_2 :	$A \rightarrow a \bullet Aa, \$$	$A \rightarrow a \bullet Aaab, \$$	$A \rightarrow a \bullet b, \$$
	$A \to \bullet aAa, a$	$A \to \bullet aAaab, a$	$A \to \bullet ab, a$
q_3 :	$A \rightarrow aA \bullet a, \$$	$A \rightarrow aA \bullet aab, \$$	
q_4 :	$A \to ab \bullet, \$$		
q_5 :	$A \rightarrow a \bullet Aa, a$	$A \rightarrow a \bullet Aaab, a$	$A \rightarrow a \bullet b, a$
	$A \to \bullet aAa, a$	$A \to \bullet aAaab, a$	$A \to \bullet ab, a$

States of LR(1) Automaton

q_6 :	$A \to aAa \bullet, \$$	$A \to aAa \bullet ab, \$$
q_7 :	$A \to aA \bullet a, a$	$A \rightarrow aA \bullet aab, a$
q_8 :	$A \to ab \bullet, a$	
q_9	$A \rightarrow aAaa \bullet b, \$$	
$q_{10}:$	$A \to aAa \bullet, a$	$A \rightarrow aAa \bullet ab, a$
q_{11}	$A \rightarrow aAaab \bullet, \$$	

In state q_{10} , the shift/reduce conflict cannot be resolved and there will be multiple entries in Action $(10, a) = \{s_i, r_1\}$, where $Goto(q_{10}, a) = q_i$. This can be resolved with 2-look-ahead

States of LR(2) Automaton

q_0 :	$S \to \bullet A, \$$	$A \to \bullet aAa, \$$	$A \rightarrow \bullet aAaab, \$$
	$S \to \bullet A, \$$ $A \to \bullet ab, \$$		
q_1 :	$S \to A ullet, \$$		
q_2 :	$A \rightarrow a \bullet Aa, \$$	$A \rightarrow a \bullet Aaab, \$$	$A \rightarrow a \bullet b, \$$
	$A \rightarrow \bullet aAa, aa/a\$$	$A \to \bullet aAaab, aa/a\$$	$A \to ullet ab, aa/a\$$
q_3 :	$A \rightarrow aA \bullet a, \$$	$A \rightarrow aA \bullet aab, \$$	
q_4 :	A o ab ullet, \$		
$q_5:$	$A \rightarrow a \bullet Aa, aa/a\$$	$A \rightarrow a \bullet Aaab, aa/a\$$	$A \rightarrow a \bullet b, aa/a\$$
	$A \rightarrow \bullet aAa, aa$	$A \rightarrow \bullet aAaab, aa$	$A \to \bullet ab, aa$

States of LR(2) Automaton

q_6 :	$A \rightarrow aAa \bullet, \$$	$A \rightarrow aAa \bullet ab, \$$
$q_7:$	$A \rightarrow aA \bullet a, aa/a\$$	$A \rightarrow aA \bullet aab, aa/a\$$
q_8 :	$A \rightarrow ab \bullet, aa/a\$$	
q_9	$A \rightarrow aAaa \bullet b, \$$	
$q_{10}:$	$A \rightarrow aAa \bullet, aa/a\$$	$A \rightarrow aAa \bullet ab, aa/a\$$
q_{11}	$A \rightarrow aAaab \bullet, \$$	

In state q_{10} , the action is r_1 if the next two symbols are either 'aa' or 'a\$'. The action is shift if they are 'ab'. But we shall not use LR(2) parsing.

LALR Parser

- There are pairs of LR(1) states for the grammar G_{rr} with the same LR(0) items. These are (q_4, q_8) , (q_6, q_{11}) , (q_9, q_{12}) and (q_{10}, q_{13}) .
- If we can merge states with the same LR(0) items, the number of states of the automaton will be same as that of LR(0) automaton.

LALR Parser

- For some LR(1) grammar this merging will not lead to multiple entries in the parsing table.
- Such a grammar is known as LALR(1) (lookahead LR) grammar.

Note

- Merging of two LR(1) states with the same LR(0) item cannot give rise to a new shift/reduce conflict.
- If there is a pair of items of the form $\{A \to \alpha \bullet a\beta, \cdots, B \to \gamma \bullet, a\}$ in the merged state, it is already there in some LR(1) state.
- So the grammar is not even LR(1).

- Two states of an LALR parser cannot have the same set of LR(0) items.
- So the number of states of an LR(0) and an LALR(1) automaton are same.
- An LALR parser uses a better heuristic, than the global FOLLOW() sets of non-terminals, about symbols that can follow an LR(0) item at a state.

LALR States

The states of the LR(1) automaton are as follows:

q_0 :	$S' \to \bullet S, \$$	$S \to \bullet E + T, \$$	$S \to \bullet T, \$$
	$E \to \bullet T, +$	$T \rightarrow \bullet i * E, +/\$$	$T \to \bullet i, +/\$$
q_1 :	$S' \to S \bullet, \$$		
q_2 :	$S \to E \bullet + T, \$$		
q_3 :	$S \to T \bullet, \$$	$E \to T \bullet, +$	
$q_{4.8}:$	$T \rightarrow i \bullet * E, +/\$$	$T \rightarrow i \bullet, +/\$$	
q_5 :	$S \to E + \bullet T, \$$	$T \rightarrow \bullet i * E, \$$	$T \to \bullet i, \$$

$q_{6\cdot 11}:$	$T \rightarrow i * \bullet E, +/\$$ $E \rightarrow \bullet T, +/\$$ $T \rightarrow \bullet i * E, +/\$$	/\$
	$T \to \bullet i, +/\$$	
q_7 :	$S \to E + T \bullet, \$$	
$q_{9.12}$:	$T \rightarrow i * E \bullet, +/\$$	
$q_{10\cdot 13}$:	$E \to T \bullet, +/\$$	

LALR Parsing Table

S	Action			Goto			
	+	*	i	\$	S	E	T
0			$S_{4.8}$		1	2	3
1				A			
2	S_5						
3	r_5			r_2			
$4 \cdot 8$	r_4	$S_{6.11}$		r_4			
5			$S_{4.8}$				7
6 · 11			$S_{4.8}$		9 · 12		10 · 13

LALR Parsing Table

S	Action			(Gote)	
	+	*	i	\$	S	E	T
7				r_1			
9 · 12	r_3			r_3			
10 · 13	r_5			r_5			

LR(1) but not LALR

Consider the grammar

```
0: S \rightarrow A
```

$$1: A \rightarrow a B a$$

$$2: A \rightarrow b B b$$

$$3: A \rightarrow a D b$$

$$4: A \rightarrow bDa$$

$$5: B \rightarrow c$$

$$6: D \rightarrow c$$

States of LR(1) Automaton

$$q_0: S \rightarrow \bullet A, \$$$
 $A \rightarrow \bullet aBa, \$$ $A \rightarrow \bullet bBb, \$$
 $A \rightarrow \bullet aDb, \$$ $A \rightarrow \bullet bDa, \$$
 $q_1: S \rightarrow A \bullet, \$$
 $q_2: A \rightarrow a \bullet Ba, \$$ $A \rightarrow a \bullet Db, \$$ $B \rightarrow \bullet c, a$
 $D \rightarrow \bullet c, b$
 $q_3: A \rightarrow b \bullet Bb, \$$ $A \rightarrow b \bullet Da, \$$ $B \rightarrow \bullet c, b$
 $D \rightarrow \bullet c, a$
 $q_4: A \rightarrow aB \bullet a, \$$
 $q_5: A \rightarrow aD \bullet b, \$$

States of LR(1) Automaton

$$q_6: B \to c \bullet, a \qquad D \to c \bullet, b$$

$$q_7: A \to bB \bullet b, \$$$

$$q_8: A \to bD \bullet a, \$$$

$$q_9: B \to c \bullet, b \qquad D \to c \bullet, a$$

The states q_6 and q_9 have the same LR(0) core, but they cannot be merged to form a LALR state as that will lead to reduce/reduce conflicts. So the grammar is LR(1) but not LALR.

Resolving Shift-Reduce Conflicts

- Take longest sequence of handle for reduction i.e. shift when there is a shift/reduce conflict e.g. associate the else to the nearest if.
- In an operator grammar use the associativity and precedence of operators. As an example $A \to \alpha \bullet \otimes \beta$, $B \to \gamma \oplus \mu \bullet$. 'shift' if \otimes is of higher precedence, reduce is \oplus is of higher precedence etc.

Resolving Reduce-Reduce Conflicts

- There are two or more complete items in a state.
- It is often resolved using the first grammar rule of complete items.
- But it may not give a satisfactory result.
 Consider the following grammar. The terminals are {i, f, id}. The start symbol is D.

Resolving Reduce-Reduce Conflicts

$$1,2$$
 D \rightarrow ID | FD

$$3 \text{ ID} \rightarrow \text{IS i}$$

$$4 \text{ FD} \rightarrow \text{FS f}$$

$$5,6$$
 IS \rightarrow IS IV | IV

$$7.8 \text{ FS} \rightarrow \text{FS FV} \mid \text{FV}$$

$$9 \text{ IV} \rightarrow \text{id}$$

$$10 \text{ FV} \rightarrow \text{id}$$

Resolving Reduce-Reduce Conflicts

- The state IV \rightarrow id•, FV \rightarrow id• has a reduce-reduce conflict.
- But resolving it to reduct by rule 9 is unacceptable.

Ambiguous Grammar & LR Parsing

An ambiguous grammar cannot be LR. But for some ambiguous grammars^a it is possible to use LR parsing techniques efficiently with the help of some extra grammatical information such as associativity and precedence of operators.

^aAs an example for operator-precedence grammars: CFG with no ε production and no production rule with two non-terminals coming side by side.

Example

Consider the expression grammar G_a

 $0: S \rightarrow E$

 $1: E \rightarrow E - E$

 $2: E \rightarrow E*E$

 $3: E \rightarrow (E)$

 $4: E \rightarrow -E$

 $5: E \rightarrow i$

Note that the terminal '-' is used both as binary as well as unary operator.

States of LR(0) Automaton

$$q_0: S \to \bullet E \qquad E \to \bullet E - E \qquad E \to \bullet E * E$$

$$E \to \bullet (E) \qquad E \to \bullet - E \qquad E \to \bullet i$$

$$q_1: S \to E \bullet \$ \qquad E \to E \bullet - E \qquad E \to E \bullet * E$$

$$q_2: E \to (\bullet E) \qquad E \to \bullet E - E \qquad E \to \bullet E * E$$

$$E \to \bullet (E) \qquad E \to \bullet - E \qquad E \to \bullet i$$

$$q_3: E \to - \bullet E \qquad E \to \bullet E - E \qquad E \to \bullet E * E$$

$$E \to \bullet (E) \qquad E \to \bullet - E \qquad E \to \bullet i$$

$$q_4: E \to i \bullet$$

States of LR(0) Automaton

Note

The states q_8 , q_9 and q_{10} have complete and incomplete items. FOLLOW $(E) = \{\$, -, *, \}$ cannot resolve the conflict. In fact no amount of look-ahead can help - the LR(1) initial state is

$$q_0: S \to \bullet E, \$$$
 $E \to \bullet E - E, \$/-/*$ $E \to \bullet E * E, \$/-/*$ $E \to \bullet (E), \$/-/*$ $E \to \bullet -E, \$/-/*$ $E \to \bullet i, \$/-/*$

$$q_8: E \to -E \bullet, \ E \to E \bullet -E, \ E \to E \bullet *E$$

The higher precedence of unary '-' over the binary '-' and binary '*' will help to resolve the conflict. The parser reduces the handle i.e. $Action(8, -) = Action(8, *) = Action(8, *) = Action(8, *) = r_4$.

$$q_9: E \to E - E \bullet, \ E \to E \bullet - E, \ E \to E \bullet *E$$

In this case if the look-ahead symbol is a '-' (it must be binary), the parser reduces due to the left associativity of binary '-'. But if the look-ahead symbol is a '*', the parser shifts i.e. Action(9, -) = Action(9,)) = Action(9, \$\$) = r_4 but Action(9, *) = s_6 .

$$q_{10}: E \to E * E \bullet, \ E \to E \bullet -E, \ E \to E \bullet *E$$

Actions are always reduce.

- What happens when an (LA)LR(1)-parser is in state q, the input token is a, and the parsing table entry Action(q, a) is empty i.e. no-shift, no-reduce, no-accept. This is an error condition.
- The token a is not a valid continuation of the input.

- The question is what action should the parser take.
- The simplest solution is highlight the position of error, and terminate parsing.
- The error may be due to a missing semicolon (';') or a parenthesis ('(').
- But it requires several pass of compilation to detect all errors.

- A better strategy is to change the state of the parser and to try to recover from the current error.
- Then continue the parsing to detect as many errors as possible in the same pass (panic-mode error recovery).

- The error recovery strategy may try to modify either the stack or the input stream or both.
- Modification of the stack amounts to modification of a portion of the parse tree that has already been constructed and found to be correct.

Panic-Mode Error Recovery

- The parsing stack is scanned so that a state q with a Goto on a non-terminal A is found.
- A few input tokens are discarded until a token $b \in \text{Follow}(A)$ is found in the input stream.
- The state Goto(s, A) is pushed in the stack and the normal parsing is resumed.

Panic-Mode Error Recovery

- The recovery works under the assumption that the error is within the string generated by A (within the phrase of A).
- The non-terminal A may represent an expression, where an operator or an operand is missing; or a statement, where a semicolon or an end is missing.

Phrase-level Recovery

- This is implemented separately for each erroneous (state, symbol) entry of the parsing table.
- It depends on the assumption of possible programmer error.
- The recovery procedure may modify the state at the top of the stack and/or the current input symbol.

Embedding Error Actions in Parsing table

- Phrase-level recovery routines can be embedded in the (LA)LR(1) parsing table.
- Each error entry may be a pointer to the corresponding error-handling routine.
- The error-handling routine should not drive the parser in an infinite loop.

We consider our old grammar.

```
0: S' \rightarrow P$
```

 $1: P \rightarrow m L s e$

 $2: L \rightarrow DL$

 $3: L \rightarrow D$

 $4: D \rightarrow TV;$

 $5: V \rightarrow dV$

 $6: V \rightarrow d$

 $7: T \rightarrow i$

 $8: T \rightarrow f$

q_0 :	$S' \to \bullet P$	$P \to \bullet m \ L \ s \ e$	
q_1 :	$S' \to P \bullet \$$		
q_2 :	$P \rightarrow m \bullet L s e$	$L \to \bullet D L$	$L \to \bullet D$
	$P \to m \bullet L \ s \ e$ $D \to \bullet T \ V \ ;$	$T \to ullet i$	$T \to ullet f$
q_3 :	$P \to m \ L \bullet s \ e$		
q_4 :	$L \to D \bullet L$	$L \to D \bullet$	$L \to \bullet D L$
	L o ullet D	$D \to \bullet T V$;	$T \to ullet i$
	T o ullet f		

q_5 :	$D \to T \bullet V \; ; \qquad V \to \bullet d \; V V \to \bullet d$
q_6 :	T o i ullet
q_7 :	$T \to f ullet$
q_8 :	$P \to m \ L \ s \bullet e$
q_9 :	$L \to D L \bullet$
$q_{10}:$	$D \to T \ V \bullet;$
$q_{11}:$	$V \to d \bullet V$ $V \to d \bullet V \to \bullet d V$
	V o ullet d

$q_{12}:$	$P \rightarrow m \ L \ s \ e \bullet$
-----------	---------------------------------------

$$q_{13}: D \to TV; \bullet$$

$$q_{14}: \mid V \to d V \bullet$$

Modified SLR Table

- Error entries of a state with reduction action are replaced by the same reduction action.
- Parser assumes that the appropriate token for reduction is missing due to programmer error, and the reduction takes place.
- But there will be no shift move with erroneous token.

Error Routine - 0 (e_0)

- The parser is in a state i ($i \neq 1$) and it encounters the eof (\$).
- Terminate parsing with a message 'unexpected <eof>'

Error Routine - 1 (e_1)

- The parser expects m at state 0 and the Action(0, m) = 2.
- If it encounters any other symbol at state 0, it pushes state 2 in the stack and generates error message 'm missing'.

Error Routine - $2(e_2)$

- At state 1 the parser has already seen a valid stream of tokens.
- If it sees anything other than eof (\$), it may accept the input and generate the error message 'extra character' at the end of input.

Error Routine - $3(e_3)$

- At state 2 if there is anything other than *i*, *f* or \$, the parser push either state 6 or state 7 in the stack (does not matter as it is an error condition).
- It prints 'missing i or f'.

Error Routine - $4(e_4)$

- At state 3 if there is anything other than s or \$, the parser pushes state 8 in the stack.
- It prints 'missing s'.

State - 4

- Error entries of state 4 are filled with reduction by rule 3 (r_3) .
- The reduction takes place and the error detection is deferred.

- Similarly we fill other error entries.
- The question is, whether there is any possibility of infinite loop.

SLR Parsing Table

S	Action									Goto					
	\overline{m}	S	e	•	d	i	f	\$	P	L	D	V	T		
0	s_2	e_1	e_1	e_1	e_1	e_1	e_1	e_0	1						
1	e_2	e_2	e_2	e_2	e_2	e_2	e_2	A							
2	e_3	e_3	e_3	e_3	e_3	s_6	S_7	e_0		3	4		5		
3	e_4	s_8	e_4	e_4	e_4	e_4	e_4	e_0							
4	r_3	r_3	r_3	r_3	r_3	s_6	S_7	r_3		9	4		5		
5	e_5	e_5	e_5	e_5	s_{11}	e_5	e_5	e_0				10			

Example

S	Action									Goto					
	\boxed{m}	S	e	• ;	d	i	f	\$	P	L	D	\overline{V}	T		
6	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7							
7	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8							
8	e_6	e_6	e_6	s_{12}	e_6	e_6	e_6	e_0							
9	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2							
10	e_7	e_7	e_7	s_{13}	e_7	e_7	e_7	e_0							
11	r_6	r_6	r_6	r_6	S_{11}	r_6	r_6	r_6				14			

Example

S	Action									Goto					
	\overline{m}	S	e	•	d	i	f	\$	P	L	D	V	T		
12	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1							
13	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4							
14	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5							

- It uses what is called an error production.
- Programmer decides on the non-terminals where error recovery is necessary e.g. non-terminals producing expressions, statements etc.

- The production rules of such a non-terminal A is augmented with a special production rule $A \to \operatorname{error} \alpha$, where $\alpha \in \Sigma^*$.
- error is a reserved word of Yacc.
- When an error is encountered in the subtree of A, the parser pops out states from the top of the stack until it finds a state with the item $A \to \bullet$ error α in it.

- The parser shifts the reserved token error.
- If $\alpha = \varepsilon$, i.e. $A \to \text{error} \bullet \text{ after the shift, a}$ reduction to A takes place immediately.
- User may specify error recovery routine with this reduction.
- The parser discards input tokens until it finds one on which normal parsing can be restarted.

- If α ≠ ε, Yacc looks for a substring that is α or can be reduced to α
 e.g. line → error '\n' | exp '\n'.
 The parser looks for a newline character on error on line.
- The top of stack have states corresponding to error α , which is reduced to A.

- A dummy node is created for A, and the parser continues with parsing.
- Let the production rules of A be $A \rightarrow BCD \mid \mathbf{error}$.

- The state at the top of stack is s_z and the current token is a. But $Action(s_z, a)$ in the table is empty, an error.
- Let the sequence of states and non-terminals at the top of stack are as follows.

• The set of valid items for the state s_x are

$$\{X \to \alpha \bullet A\beta, A \to \bullet BCD, A \to \bullet \text{ error}, B \to \cdots \}$$

• Element from the top of the stack are removed to get the error recovery state (s_x) , which has a Goto() on an error recovery non-terminal (A).

- A dummy node for A with **error** is created. Then A and $Goto(s_x, A)$ are pushed in the stack.
- The top of stack looks like,

• The valid items of s_u are

$$\{X \to \alpha A \bullet \beta, \cdots\}$$

- Tokens from the input stream are discarded until there is a token b such that $Action(s_u, b)$ is non-empty, not an error.
- This process cannot go to an infinite loop as there must be some Action() at the state s_u .

References

- [ASRJ] Compilers Principles, Techniques, and Tools, by A. V. Aho, Monica S. Lam, R. Sethi, & J. D. Ullman, 2nd ed., ISBN 978-81317-2101-8, Pearson Ed., 2008.
- [DKHJK] Modern Compiler Design, by Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J. H. Jacobs, Koen Langendoen, 2nd ed., ISBN 978 1461 446989, Springer (2012).
- [KL] Engineering a Compiler, by Keith D. Cooper & Linda Troczon, (2nd ed.), ISBN 978-93-80931-87-6, Morgan Kaufmann, Elsevier, 2012.