
BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 1✬

✫

✩

✪

Bottom-UP Parsing

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 2✬

✫

✩

✪

The Process

• The parse tree is built starting from the leaf

nodes labeled by the terminals (tokens).

• It tries to build the subtree of the rightmost

non-terminal of the right-sentential form

(with the the remaining input).

• In other words it tries to discover the

rightmost derivations in reverse order and

use the corresponding reductions.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 3✬

✫

✩

✪

The Process

• The process ends at the root of the tree

labeled by the start symbol, or with an error

condition.

• At any intermediate point there is a sequence

of sub-trees and their roots. This sequence

may be called the frontier of the parse tree.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 4✬

✫

✩

✪

The Process

• At every step the parser tries to find an

appropriate β in the frontier, which can be

reduced by a rule A → β to get the previous

right-sentential form.

• If no such β is available, the parser either

calls the scanner to get a new token, creates

a leaf node and extend the frontier, or

reports an error.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 5✬

✫

✩

✪

Growing Frontier

+ ic * ic

F

T

ic

F

T

ic

F

T

* + ic * ic

F

T

ic

F

T

ic

F

T

*

F

E Eold frontier new frontier

F −−> ic

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 6✬

✫

✩

✪

The Process

• As a parser reads input from left-to-right,

the first reduction is the last step of

derivation at the left-most end.

• Input further away from the left-end were

produced by earlier steps of derivation.

• The reduction takes place following the

sequence of rightmost derivations in reverse

order.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 7✬

✫

✩

✪

Rightmost Derivation of id1 + id2 ∗ id3

E → E + T

→ E + T ∗ F

→ E + T ∗ id3

→ E + F ∗ id3

→ E + id2 ∗ id3

→ T + id2 ∗ id3

→ F + id2 ∗ id3

→ id1 + id2 ∗ id3

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 8✬

✫

✩

✪

Reduction of id1 + id2 ∗ id3

id1 + id2 ∗ id3

→ F + id2 ∗ id3

→ T + id2 ∗ id3

→ E + id2 ∗ id3

→ E + F ∗ id3

→ E + T ∗ id3

→ E + T ∗ F

→ E + T

→ E

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 9✬

✫

✩

✪

Note

• A frontier is a prefix of a right sentential

form.

• The parse tree is built following post-order

traversal.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 10✬

✫

✩

✪

Frontiers of id1 + id2 ∗ id3

id1 one new token

→ F

→ T

→ E + id2 two new tokens

→ E + F

→ E + T ∗ id3 two new tokens

→ E + T ∗ F

→ E + T

→ E

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 11✬

✫

✩

✪

Handle

• Let αβx and αAx be the (i+ 1)th and ith

right sentential forms, and A → β be a

production rule (x ∈ Σ∗).

• If k is the position of β in αβx, the doublet

(A → β, k) is called a handle of the frontier

αβ or the right sentential form αβx.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 12✬

✫

✩

✪

Example

• In the first example (ic ∗ ic+ ic · · ·), after

the reduction of E + F to E + T , the parser

does not find any other handle in the frontier

and invokes the scanner. It supplies the

token for ‘∗’.

• The parser forms the corresponding leaf

node and includes it in the frontier (E + T∗).

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 13✬

✫

✩

✪

Example

• Still there is no handle and the scanner is

invoked again to get the next token ‘ic’.

• The parser detects the handle

(F → ic, E + T∗ic) and reduces it to F .

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 14✬

✫

✩

✪

Handle

• In an unambiguous grammar the rightmost

derivation is unique, so a handle of a right

sentential form is unique.

• But that is not be true for an ambiguous

grammar.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 15✬

✫

✩

✪

Example

Let the input be ic1 + ic2 ∗ ic3. The ambiguous
expression grammar is E → E + E | E ∗ E | ic.

Handle I II Reduction

1st ic1 ic1 E → ic

2nd E + ic2 E + ic2 E → ic

3rd E + E ∗ ic3 E + E E → ic,

E → E + E

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 16✬

✫

✩

✪

Example

Let the input be ic1 + ic2 ∗ ic3. The ambiguous
expression grammar is E → E + E | E ∗ E | ic.

Handle I II Reduction

4th E + E ∗ E E ∗ ic3 E → E ∗ E,

E → ic

5th E + E E ∗ E E → E + E,

E → E ∗ E

accept E E

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 17✬

✫

✩

✪

Shift-Reduce Parsing

A bottom-up parser essentially takes two types

of actions,

• if it detects a handle in the frontier, that is

reduced to get a new frontier, or

• if the handle is not present, it calls the

scanner, gets a new token and extends

(shifts) the frontier.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 18✬

✫

✩

✪

Note

The parser may fail to detect a handle and may
report an error. But if discovered, the handle is
always present at the right end of the frontier.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 19✬

✫

✩

✪

Shift-Reduce Parsing

• A shift-reduce parser uses a stack to hold the

frontier (left end at the bottom of the stack).

• A frontier is a prefix of a right-sentential

form at most up to the handlea.

• A prefix of the frontier is also called a viable

prefix of the right sentential form.

aIn the previous example of the ambiguous grammar, the right sentential form

E + E ∗ ic has two handles E + E or ic.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 20✬

✫

✩

✪

Accept

If the parser can successfully reduce the whole
input to the start symbol of the grammar. It
reports acceptance of the input i.e. the input
string is syntactically (grammatically) correct.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 21✬

✫

✩

✪

Example

Consider our old grammar:

1 P → main DL SL end

2 DL → D DL | D

4 D → T VL ;

5 VL → id VL | id

7 T → int | float

9 SL → S SL | ε

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 22✬

✫

✩

✪

Production Rules

11 S → ES | IS | WS | IOS

15 ES → id := E ;

16 IS → if be then SL end |

if be then SL else SL end

18 WS → while be do SL end

19 IOS → scan id ; | print e ;

a

aWe are considering BE and E as terminals.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 23✬

✫

✩

✪

Input

Let the input be
main

int id ;
id := E ;
print E ;

end$
The end of input is marked by eof ($) and the
bottom-of-stack is also marked by $.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 24✬

✫

✩

✪

Parsing

Value Stack Next Input Handle Action

$ main nil shift

$ main int nil shift

$ main int id (T → int) reduce

$ main T id nil shift

$ main T id ; (VL → id) reduce

$ main T VL ; nil shift

$ main T VL ; id (D → T VL ;) reduce

$ main D id (DL → D) reduce

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 25✬

✫

✩

✪

Note

• The position of the handle is always on the

top-of-stack. The problem is its detection.

• When does the parser asks for a new token

from the scanner and push it in the stack?

• And how does it detect the handle and

reduce it.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 26✬

✫

✩

✪

Automaton of Viable Prefixes

• It is known that the viable prefixes of any

CFG is a regular language over Σ ∪N .

• For some class of context-free grammar it is

possible to design a DFA that can be used

(along with some heuristic information) to

take the shift-reduce decision of a parser on

the basis of the DFA state and a fixed

number of look-ahead of tokens.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 27✬

✫

✩

✪

LR(k) Parsing

LR(k) is an important class of CFG where a
bottom-up parsing technique can be used
efficientlya.
The ‘L’ is for left-to-right scanning of input,
and ‘R’ is for discovering the rightmost
derivation in reverse order (reduction) by
looking ahead at most k input tokens.

aOperator precedence parsing is another bottom-up technique that we shall

not discuss. The time complexity of LR(k) is O(n) where n is the length of the

input.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 28✬

✫

✩

✪

Note

We shall consider the cases where k = 0 and
k = 1. We shall also consider two other special
cases, simple LR(1) or SLR and look-ahead LR
or LALR. An LR(0) parser does not look-ahead
to decide its shift or reduce actionsa.

aIt may look-ahead for early detection of error.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 29✬

✫

✩

✪

Note

• An LR parser decides about shift or reduce

actions depending on the state of the

automaton accepting the viable prefixes and

examining a fixed number of current input

tokens (look-ahead).

• The states of the deterministic automaton

are subsets of items defined as follows.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 30✬

✫

✩

✪

LR(0) Items

• Given a context-free grammar G, an LR(0)

item corresponding to a production rule

A → α is A → β • γ where α = βγ.

• LR(0) items corresponding to the rule

E → E + T are E → •E + T , · · · ,

E → E + T•.

• The LR(0) item of A → ε is A → •.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 31✬

✫

✩

✪

Viable Prefix and Valid Item

An LR(0) item A → α1 • α2 is said to be valid

for a viable prefix αα1 if there is a right-most

sentential form αα1α2x, where x ∈ Σ∗. It

essentially means that during parsing the viable

prefix αα1 may be extended to a handle α1α2,

S ⇒∗
rm αAx ⇒rm αα1α2x.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 32✬

✫

✩

✪

Note

• Given a viable prefix there may be more

than one valid items.

• As an example, in the expression grammar,

the valid items corresponding to the viable

prefix E + T are E → E + T• and

T → T • ∗F .

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 33✬

✫

✩

✪

Note

• Using the first one the prefix can be

extended to right sentential form as

E + Tε = E + T , E + T + ic, · · · .

• Using the second one the prefix can be

extended as E + T ∗ ic, · · · .

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 34✬

✫

✩

✪

Main Theorem

The main theorem of LR parsing claims that,
the set of valid items of a viable prefix α forms
the state of a deterministic finite automaton
that can be reached from the start state by a
path labeled by α.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 35✬

✫

✩

✪

Note

• An item A → α • β in the state of the

automaton indicates that the parser has

already seen the string of terminals x derived

from α (α → x) and it expects to see a

string of terminals derivable from β.

• If β = Bµ i.e. A → α •Bµ, where B is a

non-terminal; then the parser also expects to

see any string generated by ‘B’.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 36✬

✫

✩

✪

Note

• So all the items of the form B → •γ are

included in the state of A → α •Bβ.

• In terms of finite automaton, it is equivalent

to ε-transition from the state of A → α •Bµ.

So B → •γ is included in the DFA state of

A → α •Bµ (ε-closure).

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 37✬

✫

✩

✪

Canonical LR(0) Collection

The set of states of the the DFA of the viable
prefix automaton is a collection of the set of
LR(0) items and is known as the canonical
LR(0) collectiona.

aIt is a set of sets.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 38✬

✫

✩

✪

Example

Consider the following grammar:

1 : P → m L s e

2 : L → D L

3 : L → D

4 : D → T V ;

5 : V → d V

6 : V → d

7 : T → i

8 : T → f

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 39✬

✫

✩

✪

Closure()

If i is an LR(0) item, then Closure(i) is defined

as follows:

• i ∈ Closure(i) - basis,

• If A → α • Bβ ∈ Closure(i) and B → γ is a

production rule, then B → •γ ∈ Closure(i).

If I is a set of LR(0) items, the
Closure(I) =

⋃
i∈I Closure(i).

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 40✬

✫

✩

✪

Example

Let i = P → m • L s e,

Closure(i) = {

P → m • L s e

L → •D L

L → •D

D → •T V ;

T → •i

T → •f

}

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 41✬

✫

✩

✪

Goto(I,X)

Let I be a set of LR(0) items and X ∈ Σ ∪N .

The set of LR(0) items, Goto(I,X) is

Closure ({A → α X • β : A → α •X β ∈ I}) .

Goto() is the state transition function δ of the
DFA.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 42✬

✫

✩

✪

Example

From our previous example
Goto(Closure(P → m • L s e), D) is

{L → D • L

L → D•

L → •DL

L → •D

D → •TV ;

T → •i

T → •f}

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 43✬

✫

✩

✪

Augmented Grammar

We augment the original grammar with a new
start symbol, say S′, that has only one
production rule S′ → S$, where S is the start
symbol of the original grammar. When we
come to a state corresponding to (S′ → S$, S)
or with the LR(0) item S′ → S • $, we know
that the input string is well-formed and the
parser accepts it.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 44✬

✫

✩

✪

LR(0) Automaton

• The alphabet of the automaton is Σ ∪N .

• The start state is s0 = Closure(S′ → •S$),

the automaton expects to see the string

generated by S followed by $.

• All constructed states are final statesa of the

automaton as it accepts a prefix language.

aThe constructed automaton is incompletely specified and all unspecified

transitions lead to the only non-final or dead state.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 45✬

✫

✩

✪

LR(0) Automaton

• For every X ∈ Σ ∪N and for all states s

already constructed, we compute

Goto(s,X)a to build the automaton.

aThis nothing but δ(s,X).

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 46✬

✫

✩

✪

Example: States

s0 : S′ → •P$ P → •m L s e

s1 : S′ → P • $

s2 : P → m • L s e L → •D L L → •D

D → •T V ; T → •i T → •f

s3 : P → m L • s e

s4 : L → D • L L → D• L → •D L

L → •D D → •T V ; T → •i

T → •f

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 47✬

✫

✩

✪

States

s5 : D → T • V ; V → •d V V → •d

s6 : T → i•

s7 : T → f•

s8 : P → m L s • e

s9 : L → D L•

s10 : D → T V •;

s11 : V → d • V V → d• V → •d V

V → •d

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 48✬

✫

✩

✪

States

s12 : P → m L s e•

s13 : D → T V ; •

s14 : V → d V •

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 49✬

✫

✩

✪

State Transitions

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 50✬

✫

✩

✪

CS NS (Input)

m s e ; d i f P L D V T

0 2 1

2 6 7 3 4 5

3 8

4 6 7 9 4 5

5 11 10

8 12

10 13

11 11 14

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 51✬

✫

✩

✪

Items

• Kernel item:

{S′ → •S$} ∪ {A → α • β : α 6= ε}.

• Non-kernel item: {A → •α} \ {S′ → •S$}.

Every non-kernel item in a state comes from
the closure operation and can be generated
from the kernel items. So it is not necessary to
store them explicitly.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 52✬

✫

✩

✪

Complete Item

• An item of the form A → α• is known as a

complete item.

• If a state has a complete item A → α•, it

indicates that the parser has possibly seen a

handle and it may be reduced.

• But there may be other complications that

we shall discuss afterward.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 53✬

✫

✩

✪

Structure of LR Parser

• Every LR-parser has a similar structure with

a core parsing program.

• A stack to store the states of the DFA of

viable prefixes and a parsing table.

• The content of the table is different for

different types of LR parsersa.

aDepends on the type of DFA and other information.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 54✬

✫

✩

✪

Structure of LR Parsing Table

• The parsing table has two parts, action and

goto.

• The action(i, a) is a function of two

parameters, i is the current state of the

DFAa and ‘a’ is the current token.

• The table is indexed by ‘i’ and ‘a’. The

action stored in the table, are of four

different types.
aThe current state is available at the top of the stack.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 55✬

✫

✩

✪

Action-1

• action(i, a) = sj, push the state j in the

stacka. In the automaton δ(i, a) = j.

• The parser has not yet found the handle and

augments the frontier by including a new

token (forms a leaf node).

aIn fact the input token and the related attributes are also pushed in the same

or a different stack (value stack) for semantic actions. But that is not required

for acceptance of input.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 56✬

✫

✩

✪

Action-2

• action(i, a) = rj, reduce the handle by the

rule number j : A → α.

• If α = α1α2 · · ·αk, then the top k states on

the stack $· · · qqi1qi2 · · · qik, corresponding to

this αa, are popped out and δ(q, A) =

goto(q, A) = p is pushed.

• Old stack: $ · · · qqi1qi2 · · · qik (qik = i).

New stack: $ · · · qp
aAction(q, α1) = qi1 , · · · , Action(qik−1

, αk) = qik .

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 57✬

✫

✩

✪

Goto in the Table

• After a reduction (action 2) by the rule

A → α, the top-of-stack has the state q.

• The parser driver needs to find δ(q, A) =

goto(q, A) = p and push it on the stack.

• This information is stored in the goto

portion of the table. This is the

state-transition function restricted to the

non-terminals.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 58✬

✫

✩

✪

Action-3 & 4

• An LR-parser accepts the input at the

accept state when the eof ($) is reached.

• A parser rejects the input at a state where

the table entry is undefined on the current

token.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 59✬

✫

✩

✪

Configuration

• A configuration of an LR-parser is specified

by the content of the stack and the

remaining input.

• An LR-parser starts with the initial state at

the top of the stack and the input. This is

the initial configuration:

($q0, a1 · · · ajaj+1 · · · an$).

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 60✬

✫

✩

✪

Configuration

• At any point of computation, the

top-of-stack contains the current state of the

DFA. A configuration is

($q0qi1 · · · qik, ajaj+1 · · · an$).

• In terms of the sentential form it is

α1α2 · · ·αkaj · · · an$.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 61✬

✫

✩

✪

Final Configurations

• A final configuration is ($q0qf , $),

where Goto(q0, S) = qf , and the token

stream is empty.

• An error configuration.:

($q0 · · · q, ajaj+1 · · · an$), where Action(q, aj)

is not defined.

Lect VI: COM 5202: Compiler Construction Goutam Biswas

