

- The parse tree is built starting from the leaf nodes labeled by the terminals (tokens).
- It tries to build the subtree of the rightmost non-terminal of the right-sentential form (with the the remaining input).
- In other words it tries to discover the rightmost derivations in reverse order and use the corresponding reductions.

- The process ends at the root of the tree labeled by the start symbol, or with an error condition.
- At any intermediate point there is a sequence of sub-trees and their roots. This sequence may be called the frontier of the parse tree.

- At every step the parser tries to find an appropriate β in the frontier, which can be reduced by a rule A → β to get the previous right-sentential form.
- If no such β is available, the parser either calls the scanner to get a new token, creates a leaf node and extend the frontier, or reports an error.

Lect VI: COM 5202: Compiler Construction

- As a parser reads input from left-to-right, the first reduction is the last step of derivation at the left-most end.
- Input further away from the left-end were produced by earlier steps of derivation.
- The reduction takes place following the sequence of rightmost derivations in reverse order.

Rightmost Derivation of $id_1 + id_2 * id_3$

- $\rightarrow E + T * \underline{F}$
- $\rightarrow E + \underline{T} * id_3$
- $\rightarrow E + \underline{F} * id_3$
- $\rightarrow \underline{E} + id_2 * id_3$
- $\rightarrow \underline{T} + id_2 * id_3$
- $\rightarrow \underline{F} + id_2 * id_3$
- $\rightarrow id_1 + id_2 * id_3$

- A frontier is a prefix of a right sentential form.
- The parse tree is built following post-order traversal.

10

- Let $\alpha\beta x$ and αAx be the $(i+1)^{th}$ and i^{th} right sentential forms, and $A \to \beta$ be a production rule $(x \in \Sigma^*)$.
- If k is the position of β in $\alpha\beta x$, the doublet $(A \rightarrow \beta, k)$ is called a handle of the frontier $\alpha\beta$ or the right sentential form $\alpha\beta x$.

Example

- In the first example (*ic* * *ic* + *ic*...), after the reduction of *E* + *F* to *E* + *T*, the parser does not find any other handle in the frontier and invokes the scanner. It supplies the token for '*'.
- The parser forms the corresponding leaf node and includes it in the frontier (E + T*).

Example

- Still there is no handle and the scanner is invoked again to get the next token 'ic'.
- The parser detects the handle $(F \rightarrow ic, E + T*\underline{ic})$ and reduces it to F.

Handle

- In an unambiguous grammar the rightmost derivation is unique, so a handle of a right sentential form is unique.
- But that is not be true for an ambiguous grammar.

Let the input be $ic_1 + ic_2 * ic_3$. The ambiguous expression grammar is $E \to E + E \mid E * E \mid ic$.

Handle	Ι	II	Reduction	
1^{st}	$\underline{ic_1}$	$\underline{ic_1}$	$E \to ic$	
2^{nd}	$E + \underline{ic_2}$	$E + \underline{ic_2}$	$E \rightarrow ic$	
3^{rd}	$E + E * ic_3$	$\underline{E+E}$	$E \rightarrow ic,$	
			$E \to E + E$	

Lect VI: COM 5202: Compiler Construction

Example

Let the input be $ic_1 + ic_2 * ic_3$. The ambiguous expression grammar is $E \to E + E \mid E * E \mid ic$.

Handle	Ι	II	Reduction
4^{th}	$E + \underline{E * E}$	$E * \underline{ic_3}$	$E \to E * E,$
			$E \to ic$
5^{th}	$\underline{E+E}$	$\underline{E * E}$	$E \to E + E,$
			$E \to E * E$
accept	E	E	
			J

Lect VI: COM 5202: Compiler Construction

Shift-Reduce Parsing

A bottom-up parser essentially takes two types of actions,

- if it detects a handle in the frontier, that is reduced to get a new frontier, or
- if the handle is not present, it calls the scanner, gets a new token and extends (shifts) the frontier.

The parser may fail to detect a handle and may report an error. But if discovered, the handle is always present at the right end of the frontier.

Shift-Reduce Parsing

- A shift-reduce parser uses a stack to hold the frontier (left end at the bottom of the stack).
- A frontier is a prefix of a right-sentential form at most up to the handle^a.
- A prefix of the frontier is also called a viable prefix of the right sentential form.

^aIn the previous example of the ambiguous grammar, the right sentential form E + E * ic has two handles E + E or ic.

If the parser can successfully reduce the whole input to the start symbol of the grammar. It reports acceptance of the input i.e. the input string is syntactically (grammatically) correct.

- $11 \text{ S} \rightarrow \text{ES} \mid \text{IS} \mid \text{WS} \mid \text{IOS}$
- 15 ES ightarrow id := E ;
- 16 IS \rightarrow if be then SL end |
 - if be then SL else SL end
- 18 WS \rightarrow while be do SL end
- 19 IOS \rightarrow scan id ; | print e ;

a

^aWe are considering BE and E as terminals.

Parsing

Value Stack	Next Input	Handle	Action
\$	main	nil	shift
\$ main	int	nil	shift
\$ main <u>int</u>	id	$(T \to \texttt{int})$	reduce
\$ main T	id	nil	shift
\$ main T <u>id</u>	•	(VL ightarrow id)	reduce
\$ main T VL	•	nil	shift
<pre>\$ main T VL ;</pre>	id	$(D \rightarrow \mathbf{T} \ \mathbf{VL} ;)$	reduce
\$ main <u>D</u>	id	$(\text{DL} \rightarrow \text{D})$	reduce

- The position of the handle is always on the top-of-stack. The problem is its detection.
- When does the parser asks for a new token from the scanner and push it in the stack?
- And how does it detect the handle and reduce it.

Automaton of Viable Prefixes

- It is known that the viable prefixes of any CFG is a regular language over $\Sigma \cup N$.
- For some class of context-free grammar it is possible to design a DFA that can be used (along with some heuristic information) to take the shift-reduce decision of a parser on the basis of the DFA state and a fixed number of look-ahead of tokens.

LR(k) Parsing

LR(k) is an important class of CFG where a bottom-up parsing technique can be used efficiently^a. The 'L' is for left-to-right scanning of input, and 'R' is for discovering the rightmost derivation in reverse order (reduction) by looking ahead at most k input tokens.

^aOperator precedence parsing is another bottom-up technique that we shall not discuss. The time complexity of LR(k) is O(n) where n is the length of the input.

We shall consider the cases where k = 0 and k = 1. We shall also consider two other special cases, simple LR(1) or SLR and look-ahead LR or LALR. An LR(0) parser does not look-ahead to decide its shift or reduce actions^a.

^aIt may look-ahead for early detection of error.

- An LR parser decides about shift or reduce actions depending on the state of the automaton accepting the viable prefixes and examining a fixed number of current input tokens (look-ahead).
- The states of the deterministic automaton are subsets of items defined as follows.

LR(0) Items

- Given a context-free grammar G, an LR(0)item corresponding to a production rule $A \to \alpha$ is $A \to \beta \bullet \gamma$ where $\alpha = \beta \gamma$.
- LR(0) items corresponding to the rule $E \to E + T$ are $E \to \bullet E + T, \cdots,$ $E \to E + T \bullet.$

• The LR(0) item of $A \to \varepsilon$ is $A \to \bullet$.

Viable Prefix and Valid Item

An LR(0) item $A \to \alpha_1 \bullet \alpha_2$ is said to be valid for a viable prefix $\alpha \alpha_1$ if there is a right-most sentential form $\alpha \alpha_1 \alpha_2 x$, where $x \in \Sigma^*$. It essentially means that during parsing the viable prefix $\alpha \alpha_1$ may be extended to a handle $\alpha_1 \alpha_2$,

$$S \Rightarrow_{rm}^* \alpha Ax \Rightarrow_{rm} \alpha \alpha_1 \alpha_2 x.$$

- Given a viable prefix there may be more than one valid items.
- As an example, in the expression grammar, the valid items corresponding to the viable prefix E + T are E → E + T • and T → T • *F.

Note

- Using the first one the prefix can be extended to right sentential form as $E + T\varepsilon = E + T, E + T + ic, \cdots$.
- Using the second one the prefix can be extended as $E + T * ic, \cdots$.

Main Theorem

The main theorem of LR parsing claims that, the set of valid items of a viable prefix α forms the state of a deterministic finite automaton that can be reached from the start state by a path labeled by α .

- An item A → α β in the state of the automaton indicates that the parser has already seen the string of terminals x derived from α (α → x) and it expects to see a string of terminals derivable from β.
- If $\beta = B\mu$ i.e. $A \to \alpha \bullet B\mu$, where B is a non-terminal; then the parser also expects to see any string generated by 'B'.

- So all the items of the form $B \to \bullet \gamma$ are included in the state of $A \to \alpha \bullet B\beta$.
- In terms of finite automaton, it is equivalent to ε-transition from the state of A → α • Bµ.
 So B → •γ is included in the DFA state of A → α • Bµ (ε-closure).

Canonical LR(0) Collection

The set of states of the the DFA of the viable prefix automaton is a collection of the set of LR(0) items and is known as the canonical LR(0) collection^a.

^aIt is a set of sets.

Consider the following grammar:

 $1: P \rightarrow m L s e$ $2: L \rightarrow DL$ $3: L \rightarrow D$ $4: D \rightarrow TV;$ $5: V \rightarrow dV$ $6: V \rightarrow d$ $7: T \rightarrow i$ $8: T \rightarrow f$

Closure()

If i is an LR(0) item, then Closure(i) is defined as follows:

- $i \in \text{Closure}(i)$ basis,
- If A → α Bβ ∈ Closure(i) and B → γ is a production rule, then B → •γ ∈ Closure(i).
 If I is a set of LR(0) items, the Closure(I) = ⋃_{i∈I} Closure(i).

Lect VI: COM 5202: Compiler Construction

$$\operatorname{Goto}(I,X)$$

Let I be a set of LR(0) items and $X \in \Sigma \cup N$. The set of LR(0) items, Goto(I, X) is $Closure(\{A \to \alpha \ X \bullet \beta : A \to \alpha \bullet X \ \beta \in I\}).$ Goto() is the state transition function δ of the DFA.

Lect VI: COM 5202: Compiler Construction

Augmented Grammar

We augment the original grammar with a new start symbol, say S', that has only one production rule $S' \to S$, where S is the start symbol of the original grammar. When we come to a state corresponding to $(S' \to S$, S) or with the LR(0) item $S' \to S \bullet$, we know that the input string is well-formed and the parser accepts it.

LR(0) Automaton

- The alphabet of the automaton is $\Sigma \cup N$.
- The start state is s₀ = Closure(S' → •S\$), the automaton expects to see the string generated by S followed by \$.
- All constructed states are final states^a of the automaton as it accepts a prefix language.

^aThe constructed automaton is incompletely specified and all unspecified transitions lead to the only non-final or dead state.

LR(0) Automaton

For every X ∈ Σ ∪ N and for all states s already constructed, we compute Goto(s, X)^a to build the automaton.

^aThis nothing but $\delta(s, X)$.

Example: States

Lect VI: COM 5202: Compiler Construction

Lect VI: COM 5202: Compiler Construction

- Kernel item:
 - $\{S' \to \bullet S\$\} \cup \{A \to \alpha \bullet \beta : \ \alpha \neq \varepsilon\}.$
- Non-kernel item: $\{A \to \bullet \alpha\} \setminus \{S' \to \bullet S\}$.

Every non-kernel item in a state comes from the closure operation and can be generated from the kernel items. So it is not necessary to store them explicitly.

Complete Item

- An item of the form A → α• is known as a complete item.
- If a state has a complete item A → α●, it indicates that the parser has possibly seen a handle and it may be reduced.
- But there may be other complications that we shall discuss afterward.

Structure of LR Parser

- Every LR-parser has a similar structure with a core parsing program.
- A stack to store the states of the DFA of viable prefixes and a parsing table.
- The content of the table is different for different types of LR parsers^a.

^aDepends on the type of DFA and other information.

Structure of LR Parsing Table

- The parsing table has two parts, action and goto.
- The action(i, a) is a function of two parameters, i is the current state of the DFA^a and 'a' is the current token.
- The table is indexed by '*i*' and '*a*'. The action stored in the table, are of four different types.

^aThe current state is available at the top of the stack.

Action-1

- $action(i, a) = s_j$, push the state j in the stack^a. In the automaton $\delta(i, a) = j$.
- The parser has not yet found the handle and augments the frontier by including a new token (forms a leaf node).

^aIn fact the input token and the related attributes are also pushed in the same or a different stack (value stack) for semantic actions. But that is not required for acceptance of input.

Action-2

- $action(i, a) = r_j$, reduce the handle by the rule number $j : A \to \alpha$.
- If $\alpha = \alpha_1 \alpha_2 \cdots \alpha_k$, then the top k states on the stack $\cdots qq_{i_1}q_{i_2}\cdots q_{i_k}$, corresponding to this α^a , are popped out and $\delta(q, A) =$ goto(q, A) = p is pushed.
- Old stack: $\cdots qq_{i_1}q_{i_2}\cdots q_{i_k}$ $(q_{i_k}=i)$. New stack: $\cdots qp$

^aAction $(q, \alpha_1) = q_{i_1}, \cdots,$ Action $(q_{i_{k-1}}, \alpha_k) = q_{i_k}.$

Goto in the Table

- After a reduction (action 2) by the rule $A \rightarrow \alpha$, the top-of-stack has the state q.
- The parser driver needs to find $\delta(q, A) =$ goto(q, A) = p and push it on the stack.
- This information is stored in the goto portion of the table. This is the state-transition function restricted to the non-terminals.

Action-3 & 4

- An LR-parser accepts the input at the accept state when the eof (\$) is reached.
- A parser rejects the input at a state where the table entry is undefined on the current token.

Configuration

- A configuration of an LR-parser is specified by the content of the stack and the remaining input.
- An LR-parser starts with the initial state at the top of the stack and the input. This is the initial configuration:

$$(\$q_0, a_1 \cdots a_j a_{j+1} \cdots a_n \$).$$

- At any point of computation, the top-of-stack contains the current state of the DFA. A configuration is (\$q_0q_{i_1} \cdots q_{i_k}, a_j a_{j+1} \cdots a_n\$).
- In terms of the sentential form it is $\alpha_1 \alpha_2 \cdots \alpha_k a_j \cdots a_n$ \$.

Goutam Biswas

- A final configuration is $(\$q_0q_f,\$)$, where $Goto(q_0, S) = q_f$, and the token stream is empty.
- An error configuration.:
 (\$q₀ · · · q, a_ja_{j+1} · · · a_n\$), where Action(q, a_j) is not defined.