BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 1

4 N

‘ Bottom-UP Parsing I

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 2

/ ‘ The Process ' \

e The parse tree is built starting from the leaf

nodes labeled by the terminals (tokens).

e It tries to build the subtree of the rightmost
non-terminal of the right-sentential form

(with the the remaining input).

e In other words i1t tries to discover the

rightmost derivations in reverse order and

use the corresponding reductions.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 3

a N
‘ The Process '

e The process ends at the root of the tree

labeled by the start symbol, or with an error

condition.

e At any intermediate point there is a sequence
of sub-trees and their roots. This sequence

may be called the frontier of the parse tree.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 4

/ ‘ The Process I \

e At every step the parser tries to find an

appropriate 3 in the frontier, which can be

reduced by a rule A — 8 to get the previous

right-sentential form.

e If no such S is available, the parser either
calls the scanner to get a new token, creates
a leaf node and extend the frontier, or

reports an error.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

_

‘ Growing Frontier I

E Oderom‘ier E. newfmntier

F—>ic

Il
— T
Ll
Il
— T
Il
TI

~

/

Lect VI: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 6

/ ‘ The Process ' \

e As a parser reads input from left-to-right,

the first reduction is the last step of

derivation at the left-most end.

e Input turther away from the left-end were

produced by earlier steps of derivation.

e The reduction takes place following the

sequence of rightmost derivations in reverse

\ order. /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 7

‘Rightmost Derivation of id; + udsy * id3 I

E

E+T
E+TxF
E+ 1T x1ds
E + F *xdj
E +idsy *x ids
T + idy * ids
F +ids * ids

idl -+ ng X ng

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

N

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 8

/ Reduction of id; + 1ds * 2d5 I \

idy + idy * ids
F +ids * ids
T 4 idy * ids
E +idy * udy
E + F *ids
E+1T xads
E+1TxF
E+T

E

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

N

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 9

4 N

e A frontier is a prefix of a right sentential

form.

e The parse tree is built following post-order

traversal.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 10

/ Frontiers of 7d; + 1d> * ids I \

vdy one new token

E + ids two new tokens

E + T x1d3 two new tokens
E+TxF

E+T

E

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

N

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 11

4 N
Handle '

o Let afSz and aAx be the (i + 1) and "
right sentential forms, and A — 8 be a

production rule (z € ¥*).

e If £ is the position of § in afz, the doublet
(A — B, k) is called a handle of the frontier

a3 or the right sentential form afSx.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 12

4 N
Example I

e In the first example (ic * tc 4+ ic- - -), after
the reduction of £ + F' to £+ T, the parser

does not find any other handle in the frontier

and invokes the scanner. It supplies the

token for ‘x’.

e The parser forms the corresponding leaf
node and includes it in the frontier (E 4 T).

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 13

a N
Example I

e Still there is no handle and the scanner is

invoked again to get the next token ‘ic’.

e The parser detects the handle
(F' — ic, EF 4+ Txic) and reduces it to F.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

-

Handle '

e In an unambiguous grammar the rightmost
derivation is unique, so a handle of a right

sentential form is unique.

e But that is not be true for an ambiguous

gramimar.

.

~

/

14

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

15

-~

Example I

Let the input be ic; + 72¢9 * 1¢3. The ambiguous
expression grammar is ¥ — F+ E | Ex E | ic.

~

Handle | 1 11 Reduction
158 |y icy E — ic
2" | E +icy E+ic| E—ic
34 |E+Exics | E+FE | E—ic

E—FEFE+E

N\

/

Lect VI: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

16

-~

~

Example I
Let the input be ¢y + ¢y * 1c3. The ambiguous
expression grammar is ¥ — F+ FE | Ex E | ic.
Handle | I 11 Reduction
g \E+FExFE|FExic3| E— ExE,
E —ic
th | E+ F ExE |EFE— FE+E,
E—FExE
accept | B E

\=

/

Lect VI: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 17

‘ Shift-Reduce Parsing'

A bottom-up parser essentially takes two types

of actions,

e if it detects a handle in the frontier, that is

reduced to get a new frontier, or

e if the handle is not present, it calls the

scanner, gets a new token and extends
(shifts) the frontier.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 18

4 N

The parser may fail to detect a handle and may
report an error. But if discovered, the handle is
always present at the right end of the frontier.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 19

K ‘ Shift-Reduce Parsing' \

e A shift-reduce parser uses a stack to hold the
frontier (left end at the bottom of the stack).

e A frontier is a prefix of a right-sentential

form at most up to the handle®.

e A prefix of the frontier is also called a viable

prefix of the right sentential form.

2In the previous example of the ambiguous grammar, the right sentential form

kE—i— FE % 12¢c has two handles F/ + E or 1c. /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

-

Accept I

If the parser can successtully reduce the whole
input to the start symbol of the grammar. It
reports acceptance of the input i.e. the input

string is syntactically (grammatically) correct.

N\

~

/

20

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 21

4 Bampic] A

Consider our old grammar:
I P — main DL SL end
2 DL —- DDL | D
4 D — T VL ;
5 VL — id VL | id
7 T — int | float
9 SL —- S SL | ¢

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

22

-~

a

11
15
16

13
19

‘ Production Rules I

S — ES | IS | WS | IOS
ES

1

1d := E ;
IS — if be then SL end |

1f be then SL else SL end

WS — while be do SL end

I0S — scan id ; | print e ;

\ *We are considering BE and E as terminals.

~

/

Lect VI: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

23

-~

Input'

Let the input be
main
int 1d ;
1d := E ;
print E ;
end$

bottom-of-stack is also marked by $.

N\

The end of input is marked by eof ($) and the

~

/

Lect VI: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

24

-

~

‘Parsing.
Value Stack Next Input Handle Action
$ main nil shift
$ main int nil shift
$ main int id (T"— int) | reduce
$ main T id nil shift
$ main T id ; (VL — id) reduce
$ main T VL : nil shift
$ main T VL ; | id (D —T VL ;) | reduce
$ main D id (DL — D) reduce

-~

/

Lect VI: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 25

4 N
Note]

e The position of the handle is always on the

top-of-stack. The problem is its detection.

e When does the parser asks for a new token

from the scanner and push it in the stack?

e And how does it detect the handle and

reduce 1it.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 26

‘Automaton of Viable Preﬁxes. \

e [t is known that the viable prefixes of any

-

CFG is a regular language over > U V.

e For some class of context-free grammar it is
possible to design a DFA that can be used
(along with some heuristic information) to
take the shift-reduce decision of a parser on

the basis of the DFA state and a fixed

number of look-ahead of tokens.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 27

4 N

LR(k) Parsing

LR(k) is an important class of CFG where a
bottom-up parsing technique can be used
efficiently?.

The ‘L’ is for left-to-right scanning of input,
and ‘R’ is for discovering the rightmost
derivation in reverse order (reduction) by
looking ahead at most k& input tokens.

@0perator precedence parsing is another bottom-up technique that we shall
not discuss. The time complexity of LR(k) is O(n) where n is the length of the

input.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

28

-

to decide its shift or reduce actions®.

2]t may look-ahead for early detection of error.

.

We shall consider the cases where £ = 0 and
k= 1. We shall also consider two other special

cases, simple LR(1) or SLR and look-ahead LR
or LALR. An LR(0) parser does not look-ahead

~

/

Lect VI: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 29

- N

e An LR parser decides about shift or reduce

actions depending on the state of the
automaton accepting the viable prefixes and

examining a fixed number of current input
tokens (look-ahead).

e The states of the deterministic automaton

are subsets of items defined as follows.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

-

LR(0) Items

e Given a context-free grammar G, an LR(0)
item corresponding to a production rule

A— «ais A— [e~y where a = 7.

e LR(0) items corresponding to the rule
E—FE+T are b ol +1" -+,
E— E+4Te,

e The LR(0) item of A = eis A — e,

.

~

/

30

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 31

Viable Prefix and Valid Item'

An LR(0) item A — a1 @ ay is said to be valid

for a viable prefix aery if there is a right-most

sentential form aoajasx, where x € X*. It
essentially means that during parsing the viable

prefix acry may be extended to a handle aqas,

S =7 QAT =, aoqas.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 32

4 N

e Given a viable prefix there may be more

than one valid items.

e As an example, in the expression grammar,
the valid items corresponding to the viable
prefix B+ T are ¥ — F + T'e and
T — T e xF.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 33

4 N

e Using the first one the prefix can be

extended to right sentential form as
EFE+Te=F+T, E+T+ ic,---.

e Using the second one the prefix can be
extended as &+ 1T * ic,---.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 34

4 N

‘ Main Theorem '

The main theorem of LR parsing claims that,
the set of valid items of a viable prefix o forms
the state of a deterministic finite automaton
that can be reached from the start state by a
path labeled by a.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 35

4 N

e An item A — o e 3 in the state of the
automaton indicates that the parser has
already seen the string of terminals x derived
from o (@ — x) and it expects to see a

string of terminals derivable from /.

o [f 5=DBuie. A— aeBu, where B is a

non-terminal; then the parser also expects to

see any string generated by ‘B’.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 36

4 N

e So all the items of the form B — ey are
included in the state of A — o e BS.

e In terms of finite automaton, it is equivalent
to e-transition from the state of A — o e Bp.

So B — e is included in the DFA state of
A — a e By (e-closure).

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 37

4 N

Canonical LR(0) Collection

The set of states of the the DFA of the viable
prefix automaton is a collection of the set of

LR(0) items and is known as the canonical
LR(0) collection®.

21t is a set of sets.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 38

4 Bampic] A

Consider the following grammar:
1: P — mLse
2: L — DL
3: L — D
4. D — TV,
b5: V. = dV
6: V — d
7T =
8: T — f

N : p

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 39

4 N

Closure()

If ¢ is an LR(0) item, then Closure(i) is defined

as follows:

e ; € Closure(z) - basis,

o [f A— ae B € Closure(i) and B — v is a
production rule, then B — e+ &€ Closure().

If I is a set of LR(0) items, the
Closure(!) = J,.; Closure(z).

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 40

4 Bampic] A

Let =P —melL se,
Closure(z) = {

P—melse
L —eD L

L — el

D — TV :
1T — e

T — ef

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 41

4 N

Goto(1, X)

Let I be a set of LR(0) items and X € X U N.
The set of LR(0) items, Goto(I, X) is

Closure({A —>a Xef: A—>aeX pel}).

Goto() is the state transition function ¢ of the
DFA.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 42

4 Bampic] A

From our previous example

Goto(Closure(P — me L se), D) is

{L - DelL
L — De
L — eDL
L — eD
D — oTV:
I — e
T —ef}

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 43

4 N
‘ Augmented Grammar I

We augment the original grammar with a new
start symbol, say S’, that has only one

production rule S — S§, where S is the start
symbol of the original grammar. When we

come to a state corresponding to (S" — S§,.5)
or with the LR(0) item S’ — S e $, we know

that the input string is well-formed and the
parser accepts 1t.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 44

4 N

LR(0) Automaton

e The alphabet of the automaton is > U V.

e The start state is sg = Closure(S’ — ¢5§),
the automaton expects to see the string

generated by S followed by $.

e All constructed states are final states® of the

automaton as it accepts a prefix language.

@The constructed automaton is incompletely specified and all unspecified

Qansitions lead to the only non-final or dead state. /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 45

4 N

LR(0) Automaton

e For every X € > U N and for all states s

already constructed, we compute
Goto(s, X)* to build the automaton.

2This nothing but d(s, X).

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 46

4 N\
Example: States I

sg:| S — eP% P—>emLse
S1 - S " > Pe}
So: | P—>meLse L —eD L L — e

D — eV T — e T — ef
s3:| P—mlLese
Se:|L—>Del L — De L —eD L
L — oD D — eV : T — e1
T —ef

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

47

-~

States'
Sx D—TeV: V—>edV V — ed
S6 1T — 10
st | 1T — fo
S P—mlLsec
Sg L — D Le
Si0:| D —T Ve
si1:|V—>deV V — de V > edV
V — ed

N\

~

/

Lect VI: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 48

4 N

States I

S19 . P—>m1L sce
S13 - D%TV,Q
S14 - V—>dVe

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 49

4 N

‘ State Transitions '

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

50

-~

~

CS NS (Input)
m s e ; d i+ f|P L D V T
0] 2 1
2 6 7
3 8
4 6 7
5 11 10
8 12
10 13
11 11 14

N\

/

Lect VI: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 51

- R

e Kernel item:

{S"— oSS} U{A > aef: a#cl
e Non-kernel item: {A — ea} \ {S" — eS$}.

Every non-kernel item in a state comes from
the closure operation and can be generated
from the kernel items. So it is not necessary to
store them explicitly.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 52

4 N
Complete Item I

e An item of the form A — «e is known as a

complete item.

o If a state has a complete item A — «e, it
indicates that the parser has possibly seen a

handle and it may be reduced.

e But there may be other complications that

we shall discuss atterward.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 53

Structure of LR Parser'

e Livery LR-parser has a similar structure with

a core parsing progranmn.

e A stack to store the states of the DFA of

viable prefixes and a parsing table.

e The content of the table is different for

different types of LR parsers®.

@Depends on the type of DFA and other information.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

/ ‘Structure of LR Parsing Table'

e The parsing table has two parts, action and

goto.

e The action(i, a) is a function of two
parameters, ¢ is the current state ot the
DFA? and ‘a’ is the current token.

e The table is indexed by ‘¢’ and ‘a’. The

action stored in the table, are of four

different types.

\ @The current state is available at the top of the stack.

~

/

54

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 55

4 N
‘ Action-1 '

e action(?,a) = s;, push the state j in the

stack®. In the automaton d(i,a) = j.

e The parser has not yet found the handle and
augments the frontier by including a new

token (forms a leaf node).

2In fact the input token and the related attributes are also pushed in the same
or a different stack (value stack) for semantic actions. But that is not required

for acceptance of input.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 56

/ ‘ Action-2 ' \

e action(i,a) = rj, reduce the handle by the

rule number 5 : A — «a.

o If o« = ajan - - -y, then the top k states on
the stack $---qq;, ¢, - - - qi,, corresponding to
this a®, are popped out and d(q, A) =
goto(q, A) = p is pushed.

o Old stack: $---9qi,qi, -~ @i, (@i, = 1)
New stack: $---gp

\ *Action(q, a1) = q;,, -+, Action(q;, _,, k) = @i, - /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 57

/ Goto in the Table' \

e After a reduction (action 2) by the rule

A — «, the top-of-stack has the state q.

e The parser driver needs to find (g, A) =
goto(q, A) = p and push it on the stack.

e This information is stored in the goto
portion of the table. This is the

state-transition function restricted to the

non-terminals.
_ %

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 58

a N
Action-3 & 4'

e An LR-parser accepts the input at the

accept state when the eof ($) is reached.

e A parser rejects the input at a state where
the table entry is undefined on the current

token.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 59

4 N\
‘ Configuration I

e A configuration of an LR-parser is specified
by the content of the stack and the

remalning mput.

e An LR-parser starts with the initial state at
the top of the stack and the input. This is

the initial configuration:

($CIO, ai - Qjj41 " an$)-

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 60

4 N\
‘ Configuration I

e At any point of computation, the

top-of-stack contains the current state of the
DFA. A configuration is

($(J0%1 "oy, Al an$)-

e In terms of the sentential form it is

ST DR o TR/ FIRRNs I, §

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 61

Final Configurations I

e A final configuration is ($qoqy, $),

where Goto(qg, S) = ¢, and the token

stream 1s empty.

e An error configuration.:
($q0---q,a;a;11 - a,$), where Action(q, a,)
is not defined.

_ /

Lect VI: COM 5202: Compiler Construction Goutam Biswas

