
BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 1✬

✫

✩

✪

LEX/Flex Scanner Generator

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 2✬

✫

✩

✪

flex - Fast Lexical Analyzer Generator

We can use flexa to automatically generate the
lexical analyzer/scanner for the lexical atoms of
a language.

aThe original version was known as lex.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 3✬

✫

✩

✪

Input

• The input to the flex program (known as flex

compiler) is a set of patterns or specification

of the tokens of the source language.

• Actions corresponding to different matches is

also specified.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 4✬

✫

✩

✪

Input

• A pattern for every token class is specified as

an extended regular expression.

• Corresponding action is a piece of C or C++

code.

• The specification can be written in a file (by

default it is stdin).

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 5✬

✫

✩

✪

Output

• The flex software compiles the specification

(regular expression) to a DFA like object.

• It is implements as a C or C++ program

with the action codes corresponding to

different patterns embedded in it.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 6✬

✫

✩

✪

Output

• The output of flex is a C file lex.yy.c with

the main function int yylex(void)a.

• This function, when called, returns a token.

• Attribute information of a token is available

through the global variable yylval.

aIt is possible to generate c++ file lex.yy.cc with the option %option c++

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 7✬

✫

✩

✪

flex Specification

The flex specification is a collection of regular

expressions and the corresponding actions as C

(C++) code. It has three parts:

Definitions
%%
Rules
%%
User code

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 8✬

✫

✩

✪

flex Specification

• The definition has two parts. The portion

within the pair of special parentheses %{ and

%} is copied verbatim in lex.yy.c.

• Similarly the user code is also copied.

• The other part of the definition contains

regular name definitions, start conditions

and other options.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 9✬

✫

✩

✪

flex Specification

• The rules are specified as <pattern>

<action> pairs.

• The patterns are extended regular

expressions corresponding to different tokens.

• Corresponding actions are given as C or

C++ code. An action is taken at the end of

the match of a pattern.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 10✬

✫

✩

✪

An Example: lex.l

/*

* A scanner for a toy language lex.l

*/

%{ // Copied verbatim

#include <string.h>

#include <stdlib.h>

#include "y.tab.h" // tokens are defined

int line_count = 1; yylType yylval;

%}

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 11✬

✫

✩

✪

%option noyywrap

%x CMNT INSTR

DELIM ([\t])

WHITESPACES ({DELIM}+)

P_DIG ([1-9])

DIG (0|{P_DIG})

NN_INT (0|{P_DIG}{DIG}*)

LOWER ([a-z])

LETTER ({LOWER}|[:upper:])

IDENTIFIER (({LETTER}({LETTER}|{DIG})*)|(_+({LETTER}|{DIG})+

%%

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 12✬

✫

✩

✪

"/*" {BEGIN CMNT;}

<CMNT>. {;}

<CMNT>\n {++line_count;}

<CMNT>"*/" {BEGIN INITIAL;}

\n {

++line_count;

return (int)’\n’;

}

"\"".*"\"" {

yylval.string=(char *)malloc((yyleng+1)*(sizeof(char)));

strncpy(yylval.string, yytext+1, yyleng-2);

yylval.string[yyleng-2]=’\0’;

return STRNG;

}

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 13✬

✫

✩

✪

{WHITESPACES} { ; }

if {return IF;}

else {return ELSE; }

while { return WHILE; }

for { return FOR; }

int { return INT; }

\({ return (int)’(’; }

\) { return (int)’)’; }

\{ { return (int)’{’; }

\} { return (int)’}’; }

; { return (int)’;’; }

, { return (int)’,’; }

= { return (int)’=’; }

"<" { return (int)’<’; }

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 14✬

✫

✩

✪

"<=" { return LEQ; }

"&" { return (int)’&’; }

"+" {

yylval.integer = (int)’+’;

return BIN_OP;

}

"-" {

yylval.integer = (int)’-’;

return BIN_OP;

}

"*" {

yylval.integer = (int)’*’;

return BIN_OP;

}

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 15✬

✫

✩

✪

"/" {

yylval.integer = (int)’/’;

return BIN_OP;

}

{IDENTIFIER} {

yylval.string=(char *)malloc((yyleng+1)*(sizeof(char)));

strncpy(yylval.string, yytext, yyleng);

yylval.string[yyleng]=’\0’;

return ID;

}

{NN_INT} {

yylval.integer = atoi(yytext);

return NUM;

}

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 16✬

✫

✩

✪

. { printf("Invalid symbol %s at line %d\n",

yytext, line_count); }

%%

/* The function yywrap() */

//int yywrap(){return 1;}

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 17✬

✫

✩

✪

y.tab.h

#ifndef _Y_TAB_H

#define _Y_TAB_H

#define IF 300

#define ELSE 301

#define WHILE 302

#define FOR 303

#define INT 304

#define ID 306

#define NUM 307

#define STRNG 308

#define BIN_OP 310

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 18✬

✫

✩

✪

#define LEQ 312

int yylex(void);

typedef union {

char *string;

int integer;

} yylType;

#endif

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 19✬

✫

✩

✪

myLex.c

#include <stdio.h>

#include <stdlib.h>

#include "y.tab.h"

extern yylType yylval;

extern int yylex();

int main() // myLex.c

{

int s;

while((s=yylex()))

switch(s) {

case ’\n’: printf("\n");

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 20✬

✫

✩

✪

break;

case ’(’ : printf("<(> ");

break;

case ’)’ : printf("<)> ");

break;

case ’{’ : printf("<{> ");

break;

case ’}’ : printf("<}> ");

break;

case ’;’ : printf("<;> ");

break;

case ’,’ : printf("<,> ");

break;

case ’=’ : printf("<=> ");

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 21✬

✫

✩

✪

break;

case ’<’ : printf("<<> ");

break;

case ’&’ : printf("<&> ");

break;

case LEQ : printf("<<=> ");

break;

case BIN_OP : printf("<BIN_OP, %c> ",

(char) yylval.integer);

break;

case IF : printf("<if> ");

break;

case ELSE : printf("<else> ");

break;

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 22✬

✫

✩

✪

case WHILE : printf("<while> ");

break;

case FOR : printf("<for> ");

break;

case INT : printf("<int> ");

break;

case ID : printf("<ID, %s> ", yylval.string);

free (yylval.string);

break;

case NUM : printf("<NUM, %d> ",yylval.integer);

break;

case STRNG : printf("<STRNG, %s> ",

yylval.string);

free (yylval.string) ;

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 23✬

✫

✩

✪

break;

default: ;

}

return 0;

}

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 24✬

✫

✩

✪

input

/* Scanner input */

int main()

{

int n, fact, i;

scanf("%d", &n);

fact=1; @

for(i=1; i<=n; ++i) fact = fact*i;

printf("%d! = %d\n", n, fact);

return 0;

} /* End */

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 25✬

✫

✩

✪

How to Compile?

$ flex lex.l ⇒ lex.yy.c
$ cc -Wall -c lex.yy.cc ⇒ lex.yy.o
$ cc -Wall -c myLex.c ⇒ myLex.o
$ cc myLex.o lex.yy.o ⇒ a.out
$./a.out < input > out
$

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 26✬

✫

✩

✪

A Simple Makefile

objfiles = myLex.o lex.yy.o

a.out : $(objfiles)

cc $(objfiles)

myLex.o : myLex.c

cc -c -Wall myLex.c

lex.yy.c : lex.l y.tab.h

flex lex.l

lex.yy.o :

clean :

rm a.out lex.yy.c $(objfiles)

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 27✬

✫

✩

✪

Output

<int> <ID, main> <(> <)>

<{>

<int> <ID, n> <,> <ID, fact> <,> <ID, i> <;>

<ID, scanf> <(> <STRNG, %d> <,> <&> <ID, n> <)> <;>

<ID, fact> <=> <NUM, 1> <;> Invalid symbol @ at line 6

<for> <(> <ID, i> <=> <NUM, 1> <;> <ID, i> <<=><ID, n> <;>

<ID, printf> <(> <STRNG, %d! = %d\n> <,> <ID, n> <,> <ID, fact>

<ID, return> <NUM, 0> <;>

<}>

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 28✬

✫

✩

✪

Note

There is a problem with the rule for comment.

It will give wrong result for the following

comment (input4)

/* There is a string "within */ this

comment" and it will not work */

Try with the rule in lex4.l

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 29✬

✫

✩

✪

Note

When the function yylex() is called, it reads
data from the input file (by default it is stdin)
and returns a token. At the end-of-file (EOF)
the function returns zero (0).

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 30✬

✫

✩

✪

Input/Output File Names

The name of the input file to the scanner can
be specified through the global file pointer
(FILE *) yyin i.e.
yyin = fopen("flex.spec", "r");.
Similarly, the output file of the scannera can
also be supplied through the file pointer yyout
i.e.
yyout = fopen("lex.out", "w");.

aNote that it will affect the output of ECHO and not change the output of

printf() etc.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 31✬

✫

✩

✪

Pattern and Action

A pattern must start from the first column of

the line and the action must start from the

same line. Action corresponding to a pattern

may be empty.

The special parenthesis %{ and %} of the
definition part should also start from the first
column.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 32✬

✫

✩

✪

Matching Rules

If more than one pattern matches, then the
longest match is taken. If both matches are of
same length, then the earlier rule will take
precedence. In our example
if, else, while, for, int are specified
above the identifier. If we change the order, the
keywords will not be identified separately.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 33✬

✫

✩

✪

Matching Rules

In our example ‘++’, is treated as two symbols
‘+’ and ‘+’. But if there is a rule for ‘++’, a
single token can be generated.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 34✬

✫

✩

✪

Lexeme

If there is a match with the input text, the

matched lexeme is pointed by the char pointer

yytext (global) and its length is available in

the variable yyleng.

The yytext can be defined to be an array by
using %array in the definition section. The
array size will be determined by YYLMAX.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 35✬

✫

✩

✪

ECHO

The command ECHO copies the text of yytext
to the output stream of the scannera. The
default rule is to echo any unmatched character
to the output stream. (lex1.l)

aBy default it is stdout and it can be changed by the file pointer yyout.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 36✬

✫

✩

✪

yymore(), yyless(int)

• yymore(): the current lexeme remains in the

yytext. The next lexme is appended to it.

• yyless(n): the scanner puts back all but

the first n characters in the input buffer.

Next time they will be rescanned. Both

yytext and yyleng (n now) are properly

modified. (lex1.l)

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 37✬

✫

✩

✪

input(), unput(c)

input(): reads the next character from the
input stream.
unput(c): puts the character c back in the
input streama.

aflex manual: An important potential problem when using unput() is that

if you are using %pointer (the default), a call to unput() destroys the contents

of yytext, starting with its rightmost character and devouring one character to

the left with each call. If you need the value of yytext preserved after a call to

unput() (as in the above example), you must either first copy it elsewhere, or

build your scanner using %array instead.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 38✬

✫

✩

✪

Start Condition

There is a mechanism to put a conditional

guard for a rule. Let the condition for a rule be

<C>. It is written as

<C>P {action}

The scanner will try to match the input with

the pattern P, only if its start condition is C.

In the example we have three rules guarded by
the start condition <CMNT> used to remove the
comment of a C program without any action.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 39✬

✫

✩

✪

Start Condition

A start condition is activated by a BEGIN
action. In our example the start condition
begins (BEGIN CMNT) after the scanner sees the
starting of a comment (/*).

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 40✬

✫

✩

✪

Start Condition

The state of the scanner when no other start

condition is active is called INITIAL. All rules

without any start condition or with the start

condition <INITIAL> are active at this state.

The command BEGIN(0) or BEGIN(INITIAL)

brings the scanner from any other state to this

state.

In our example the scanner comes back to

INITIAL after consuming the comment.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 41✬

✫

✩

✪

Start Condition

Start conditions can be defined in the definition

part of the specification using %s or %x. The

start condition specified by %x is called an

exclusive start condition. When such a start is

active, only the rules guarded by it are

activated. On the other hand %s specifies a an

inclusive start condition.
In our example, only three rules are active after
the scanner sees the beginning of a comment
(/*).

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 42✬

✫

✩

✪

Start Condition

The scope of start conditions may be nested
and the start conditions can be stacked. Three
routines are of interest:
void yy_push_state(int new_state),
void yy_pop_state() and
int yy_top_state().

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 43✬

✫

✩

✪

yywrap()

Once the scanner receives the EOF indication

from the YY_INPUT macro (zero), the scanner

calls the function yywrap(). If there is no other

input file, the function returns true and the

function yylex() returns zero (0).

But if there is another input file, yywrap()
opens it, sets the file pointer yyin to it and
returns false. The scanner starts consuming
input from the new file.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 44✬

✫

✩

✪

%option noyywrap

This option in the definition makes scanner
behave as if yywrap() has returned true. No
yywrap() function is required.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 45✬

✫

✩

✪

Prototype of Scanner Function

The name and the parameters of the scanner
function can be changed by defin-
ing :YY_DECLmacro. As an example we may have
#define YY_DECL int scanner(vP) yylval *vP;

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 46✬

✫

✩

✪

Architecture of Flex Scanner

The flex compiler includes a fixed program in
its scanner. This program simulates the DFA.
It reads the input and simulates the state
transition using the state transition table
constructed from the flex specification. Other
parts of the scanner are as follows:

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 47✬

✫

✩

✪

Architecture of Flex Scanner

• The transition table, start state and the final

states - this comes from the construction of

the DFA.

• Declarations and functions given in the

definition and user code of the specification

file - these are copied verbatim.

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 48✬

✫

✩

✪

Architecture of Flex Scanner

• Actions specified in the rules corresponding

to different patterns are put in such a way

that the simulator can initiate them when a

pattern is matched (in the corresponding

final state).

Lect III: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 49✬

✫

✩

✪

Bibliography

References

[Flex1] https://westes.github.io/flex/manual/

[Flex2] https://epaperpress.com/lexandyacc/download/

flex.pdf

[Flex3] https://ftp.gnu.org/old-gnu/Manuals/flex-2.5.4/

html node/flex toc.html

Lect III: COM 5202: Compiler Construction Goutam Biswas

