
BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 1✬

✫

✩

✪

Data-Flow Analysis

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 2✬

✫

✩

✪

Data-Flow Analysis

• A collection of methods that extract

information about the flow of data along the

paths of execution of a program.

• As an example two identical (textually)

subexpression may or may not evaluate to

the same value on different execution paths.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 3✬

✫

✩

✪

Data-Flow Analysis

• If the definition of a variable is not used

subsequently, it may be eliminated as a dead

code. So it is necessary to detect whether a

variable is live at some point.

• There are other important questions e.g.

loop-invariant detection, identification of

induction variables etc.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 4✬

✫

✩

✪

Same, Different or Dead

c = a+b

x = a+b

B1 B2

B3

y = 10*c

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 5✬

✫

✩

✪

Why?

• The expression a+b in B1 and B3 may not

evaluate to the same valuea.

• The statements x = a+b in B3 is a dead

code if x is not used any where down the

path of execution of the program.

aNote the advantage of SSA in this connection.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 6✬

✫

✩

✪

Execution States and State Transformation

• A state of a program consists of values in

different variables and the content of all

activation records in the stack.

• A statement changes the program state.

State before: · · · i:5 · · ·

i = i + 1

State after: · · · i:6 · · ·

• Each state on the control path is a program

point (p).

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 7✬

✫

✩

✪

Data-Flow Analysis

• It is necessary to considers all possible

sequences of states and their transformations

through different paths in the control flow

graph of the program.

• Different information is extracted depending

on the type of data-flow analysis.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 8✬

✫

✩

✪

Data-Flow Analysis

• Some analysis are along the direction of the

control-flow known as a forward analysis.

• Some are in the reverse direction of

control-flow, known as a backward analysis.

• Some analysis are on the existence of a

property on a path, some are on all possible

paths.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 9✬

✫

✩

✪

State Sequence and Program Point

• Within a basic block, the state after a

statement i is the state before the statement

i+ 1a

• In a forward flow problem, the state before

the first statement of a basic block B, is a

combination of the states after the last

statements of its predecessor blocks.
aThe computation of states may be in the forward or in the backward direc-

tions.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 10✬

✫

✩

✪

State Sequence and Program Point

• In a backward flow problem, the state after

the last statement of a basic block B, is

some combination of the states before the

first statements of its successor blocks.

• In forward flow the block B transforms its

input state to output state. In backward

flow it is the reverse.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 11✬

✫

✩

✪

Execution Path

• A sequence of states or program points

satisfying the previous conditions is an

execution path.

• There is no upper bound on the number of

execution paths.

• A data-flow analysis abstracts out a required

finite set of facts from the unbounded

number of execution sequences.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 12✬

✫

✩

✪

Flow Graph and Execution Paths

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 13✬

✫

✩

✪

goto B2

B1

B2

B3 B4

1

2
d1

b = a/5
putInt(b)

a = 100

if(a > b) goto B4
b = getInt()

a = b

3
4
5

6
7
8

9

10

d2

d3 d4

ENTRY

EXIT

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 14✬

✫

✩

✪

Data-Flow Values

• A data-flow value is associated to every

program point of the execution sequence.

• Such a value is an abstraction of the set of

program states.

• The domain of the data-flow values depends

on the goal of the analysis.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 15✬

✫

✩

✪

Data-Flow Values

• As an example, in reaching definition

analysis, we wish to know the subsets of

definitions that reach a program point p.

• In a live-variable analysis given a variable x

and a program point p, we wish to know

whether the value of x will be used in some

path starting at p.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 16✬

✫

✩

✪

Data-Flow Values

• Let the data-flow values before and after a

statement s be IN [s] and OUT [s]

respectively.

• A data-flow problem is to find a solution of

IN [s] and OUT [s] for all states s, under a

set of constraints.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 17✬

✫

✩

✪

Constraints on Data-Flow Values

• There are two types of constraints.

• One is based on the semantics of statements.

It is called a transfer function fs of the

statement s.

• The other one depends on the control-flow

within basic blocks and across basic block

boundaries.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 18✬

✫

✩

✪

Transfer Functions

• There are two types of transfer functions.

• If the information flows forward along the

execution path, then for a statement s and a

forward transfer function fs,

OUT [s] = fs(IN [s]).

• If the information flows backward, then for a

statement s and a backward transfer

function fs, IN [s] = fs(OUT [s]).

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 19✬

✫

✩

✪

Control-Flow Constraints

• Let the sequence of statements within a

basic block (B) be s1, s2, · · · , sn.

• IN [si+1] = OUT [si], 1 ≤ i < n− 1 for a

forward flow.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 20✬

✫

✩

✪

Control-Flow Constraints

• Data-flow within a block is easy to evaluate.

It is more complicated at the block boundary

due to different nature of information flow.

• Given a block B we define IN [B] and

OUT [B] as the data-flow values immediately

before and after the block B.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 21✬

✫

✩

✪

Control-Flow Constraints

• IN [B] = IN [s1], OUT [B] = OUT [sn].

• For a forward flow OUT [B] = fB(IN [B]),

where fB = fsn ◦ · · · ◦ fs2 ◦ fs1.

• For a backward flow IN [B] = fB(OUT [B]),

where fB = f1 ◦ f2 ◦ · · · ◦ fn−1 ◦ fn.

• At the beginning and at the end of the block

relations are as follows:

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 22✬

✫

✩

✪

Control-Flow Constraints

• For a forward-flow:

IN [B] =
∨

C∈pred(B)

OUT [C],

OUT [B] = fB(IN [B]).

• For backward-data flow:

IN [B] = fB(OUT [B]),

OUT [B] =
∨

C∈succ(B)

IN [C]

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 23✬

✫

✩

✪

Note

• The meet operator, ‘
∨
’, depends on the type

of analysis. It may be a ’
⋃
’ if the claim is

existential e.g. there exists a path from the

definition d to the program point p.

• It may be an ‘
⋂
’ if the claim is universal e.g.

an expression a*b is available at a program

point p if it is evaluated on every path from

ENTRY → p without redefining a and b in

between.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 24✬

✫

✩

✪

Reaching Definition

• Let d : x = 10 be a definition of x and p be

a program point just before a = 2*x.

• If d is the only definition of x that reaches p,

then x is a constant at a = 2*x.

• If no definition of x reaches p, then it is

undefined at p.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 25✬

✫

✩

✪

Reaching Definition

• A definition d reaches a point p, if there is a

path from d → p on which d is not killed.

• For simplicity we assume that there is no

alias of x.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 26✬

✫

✩

✪

An Example

Entry

d1: i = m−1
d2: j = n
d3: a = u1

d4: i = i+1
d5: j = j−1

d6: a = u2

d7: i = u3

Exit

B1

B2

B3

B4

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 27✬

✫

✩

✪

Reaching Definitions: B2

• d1, d2, d3 reaches B2.

• d7 reach the beginning of B2. It kills d4,

prevents it to reach B2.

• d5 reaches B2.

• d6 also reaches B2.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 28✬

✫

✩

✪

Transfer Functions

• We start with a single statement:

d: u = v + w, where ‘+’ may be taken as a

generic binary operator.

• Let x be the set of definitions that reaches

the statement.

• The definition d kills all other definitions of

u in the program. Killed definitions of u

forms the set killd.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 29✬

✫

✩

✪

Transfer Functions

• It generates the new definition d of u,

gend = {d}.

• The transfer function of d: u = v + w, fd,

computes the the definitions that reach after

it: fd(x) = gend ∪ (x \ killd).

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 30✬

✫

✩

✪

Function Composition

If f1(x) = gen1 ∪ (x \ kill1) and

f2(x) = gen2 ∪ (x \ kill2), then

f2(f1(x)) = gen2 ∪ ((gen1 ∪ x \ kill1) \ kill2)

= gen2 ∪ (gen1 \ kill2) ∪ ((x \ kill1) \ kill2)

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 31✬

✫

✩

✪

Function Composition

If a block B has n statements with transfer

functions fi(x) = geni ∪ (x \ killi), then the

transfer function for the block can be written as

fB(x) = genB ∪ (x \ killB), where

genB = genn ∪ (genn−1 \ killn) ∪

(genn−2 \ killn−1 \ killn) ∪ · · · ∪

(gen1 \ kill2 \ kill3 \ · · · \ killn)

killB = kill1 ∪ kill2 ∪ · · · ∪ killn

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 32✬

✫

✩

✪

Reaching Definitions: an Example

Entry

d1: i = m−1
d2: j = n
d3: a = u1

d4: i = i+1
d5: j = j−1

d6: a = u2

d7: i = u3

Exit

B1

B2

B3

B4

kill(B1): {d4, d5, d6, d7}

gen(B1): {d1, d2, d3}

gen(B2): {d4, d5}

kill(B2): {d1, d2, d7}

gen(B3): {d6}

kill(B3): {d3}

gen(B4): {d7}

kill(B4): {d1, d4}

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 33✬

✫

✩

✪

Control Flow Constraints

• A definition reaches at the first statement of

block B only through some path of its

predecessor blocks.

• So the meet operator is union over all

predecessors blocks of B.

IN [B] =
⋃

P∈pred(B)

OUT [P ].

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 34✬

✫

✩

✪

Reaching Definition: Iterative Algorithm

• Every control-flow graph (CFG) has two

empty basic blocks, ENTRY and EXIT.

• The ENTRY block is the starting point of

the graph.

• The EXIT block is where all exit out of the

graph go.

• The OUT [ENTRY ] = ∅ for the reaching

definition problem.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 35✬

✫

✩

✪

Reaching Definition: Iterative Algorithm

• For all basic blocks B other than ENTRY,

OUT [B] = genB ∪ (IN [B] \ killB)

IN [B] =
⋃

P∈pred(B)

OUT [P ].

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 36✬

✫

✩

✪

Reaching Definition: Iterative Algorithm

• These equations can be solved by the

following algorithm.

• The output of the algorithm is the least

fixed-point of the equations.

• The solutions of IN [B] and OUT [B]

produced by the algorithm is contained

(subset) in any other solutions of the

equations.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 37✬

✫

✩

✪

Algorithm

1 OUT [ENTRY ] = ∅

2 for each basic block B 6= ENTRY , OUT [B] = ∅

3 while (OUT [B] for any B changes) do

4 for (each B 6= ENTRY)

5 IN [B] =
⋃

P∈pred(B)
OUT [P ]

6 OUT [B] = genB ∪ (IN [B] \ killB)

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 38✬

✫

✩

✪

Note

• Subset of definitions are represented as

bit-vectors: the ith bit of b1b2 · · · bn

corresponds to the ith definition di.

• The set union is a bitwise OR operation.

• The set difference A \B = A ∩B, is bitwise

AND of A with the complement of B.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 39✬

✫

✩

✪

The Example

• There are seven definitions in our example,

{d1, d2, · · · , d7}.

• At the beginning and at the end of each

block we associate a 7-bit vector, b1b2 · · · b7.

• The bit bi, i = 1, · · · , 7 of a vector Vp of a

program point p is ‘1’, if the definition di

reaches p.

• Otherwise bi = 0.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 40✬

✫

✩

✪

The Example

• The vector of OUT[ENTRY] is always zero,

no definition reaches that point.

• Initially all OUT[B] vectors are zero.

• We iterate through the data till we reach the

fixed-point.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 41✬

✫

✩

✪

The Example

Block(B) OUT[B]0 IN[B]1 OUT[B]1

B1 0000 000 0000 000 1110 000

B2 0000 000 1110 000 0011 100

B3 0000 000 0011 100 0001 110

B4 0000 000 0011 110 0010 111

EXIT 0000 000 0010 111 0010 111

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 42✬

✫

✩

✪

An Example

Block(B) OUT[B]1 IN[B]2 OUT[B]2

B1 1110 000 0000 000 1110 000

B2 0011 100 1110 111 0011 110

B3 0001 110 0011 110 0001 110

B4 0010 111 0011 110 0010 111

EXIT 0010 111 0010 111 0010 111

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 43✬

✫

✩

✪

An Example

Block(B) OUT[B]2 IN[B]3 OUT[B]3

B1 1110 000 0000 000 1110 000

B2 0011 110 1110 111 0011 110

B3 0001 110 0011 110 0001 110

B4 0010 111 0011 110 0010 111

EXIT 0010 111 0010 111 0010 111

The algorithm terminates after the 3rd pass.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 44✬

✫

✩

✪

Reaching Definitions: an Example

• No definition reaches at the beginning of B1.

• d1, d2, d3, d5, d6, d7 reaches at the beginning

of B2.

• d3, d4, d5, d6 reaches at the beginning of B3.

• d3, d4, d5, d6 reaches at the beginning of B4.

• d3, d5, d6, d7 reaches at the beginning of

EXIT.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 45✬

✫

✩

✪

Live Variable Analysis

• Given a program point p and a variable x, we

wish to know whether the value of x at p will

be used in some execution path starting at p.

• If the value of x is used, then x is live at p,

otherwise, x is dead at p.

• This requires an analysis in the direction

opposite to the flow of control.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 46✬

✫

✩

✪

Register Allocation within Basic Block

• If a value computed in a register is dead at

the end of the block, it need not be stored in

the memory.

• When all registers are in use, and there is a

demand for another register, a register

containing dead value can be reused.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 47✬

✫

✩

✪

Definition

In a basic block B.

• A variable v is a member of the set defB if it

is defined in B before any use of it in B.

• A variable u is a member of the set useB if it

is used in B before any definition of it in B.

• The variables in defB are dead and the

variables in useB are live at the beginning of

B.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 48✬

✫

✩

✪

Definition

Following equations relate the live variables

IN [B] and OUT [B].

IN [B] = useB ∪ (OUT [B] \ defB).

OUT [B] =
⋃

S∈succ(B)

IN [S].

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 49✬

✫

✩

✪

Note

• Both reaching definition and live variable

analysis has union as the meet operator.

• The information is propagated through

paths, and we want to know whether any

path has the desired property.

• If a variable is used by any successor S of B,

then it must be live at the end of B.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 50✬

✫

✩

✪

Note

• In a backward-flow problem, we start from

the EXIT block. Nothing is live at exit. So

we initialize IN[EXIT] = ∅.

• The roles of IN [B] and OUT [B] are

reversed.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 51✬

✫

✩

✪

Algorithm

1 IN [EXIT ] = ∅

2 for each basic block B 6= EXIT , IN [B] = ∅

3 while (IN [B] for any B changes) do

4 for (each B 6= EXIT)

5 OUT [B] =
⋃

S∈succ(B) IN [S]

6 IN [B] = useB ∪ (OUT [B] \ defB)

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 52✬

✫

✩

✪

Available Expression

An expression a*b is available at a program
point p if every path from the ENTRY to p
evaluates a*b. And in between an evaluation
and the point p, there is no modification of a or
b.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 53✬

✫

✩

✪

Available Expression

• A block kills an expression a*b if it modifies

a or b but subsequently does not recompute

a*b.

• A block generates an expression a*b if it

evaluates a*b, and subsequently does not

modifies a or b.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 54✬

✫

✩

✪

Global Common Subexpressions

t1 = 2*a t1 = 2*a

t1 = 2*a
a =

t2 = 2*a t2 = 2*a

?

fig−1 fig−2

B1

B2

B3

B1

B2

B3

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 55✬

✫

✩

✪

Available Expression

• 2*a is a common subexpression in B3 if 2*a

is available at the beginning of the block.

• It will be available if a is not assigned a new

value in B2 or 2*a is recomputed after a is

assigned a value.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 56✬

✫

✩

✪

Available Expression: Computation in a Block

• At the beginning the set of common

expressions is empty.

• Let S be the set of available expressions at a

point p and q is the next point after the

statement a = b+c.

• The set of common expressions at q is

computed as follows.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 57✬

✫

✩

✪

Available Expression: Computation in a Block

• Add {b+c} to S.

• Remove all expressions involving a from S.

• Add and Delete must be done in the given

order as b or c may be same as a.

• Killed expressions are of the form b+c where

b or c are defined in the block, but b+c is

not computed.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 58✬

✫

✩

✪

An Example

Statement Available Expression Reason

∅

a = b + c

b + c

b = a - d kills b + c

a - d

c = b + c

a - d

d = a - d kills a - d

∅

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 59✬

✫

✩

✪

Available Expression: Data

• U is the set of expressions appearing in the

right side of any 3-address code of a function.

• IN [B] is a subset of U available at the

beginning of a basic block B.

• OUT [B] is the subset of U available after

the last statement of B.

• eGenB and eKillB are the expressions

generated and killed in B.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 60✬

✫

✩

✪

Data-Flow Equations

• No available expression at ENTRY:

OUT[ENTRY] = ∅.

• For every basic block other than ENTRY,

IN [B] =
⋂

P∈pred(B)

OUT [P ].

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 61✬

✫

✩

✪

Data-Flow Equations

• An expression is available at the beginning

of B if it is available on every path to B. So

the meet operator is an intersection (‘
⋂
’).

•

OUT [B] = eGenB ∪ (IN [B] \ eKillB) .

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 62✬

✫

✩

✪

Note

• The behavior of the equations of available

expression and reaching definitions are

different due to different meet operator.

• The equations of reaching definitions

computes the least fixed point, but the

equations of available expression computes

the greatest fixed point.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 63✬

✫

✩

✪

Note

• An empty set of available expressions as the

initial values of OUT [B] for every block B

does not give us anything. The intersection

with the empty set is an empty set.

• We need to find the largest set of available

expressions at the beginning of each block

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 64✬

✫

✩

✪

Note

• Starting from an empty set, the iterative

algorithm computes the set of definitions d

that have paths to the beginning of the

block B.

• On the contrary, available expression starts

with the assumption that all all expressions

are available at the beginning of the block

B, unless killed on any path of one of its

predecessor.

Lect XIII: COM 5202: Compiler Construction Goutam Biswas



BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 65✬

✫

✩

✪

Algorithm

1 OUT[ENTRY] = ∅

2 for each basic block B, B 6= ENTRY, OUT [B] = U

3 while (OUT [B] for any B changes) do

4 for (each B 6= ENTRY)

5 IN [B] =
⋂

P∈pred(B)
OUT [B]

6 OUT [B] = eGenB ∪ (IN [B] \ eKillB)

Lect XIII: COM 5202: Compiler Construction Goutam Biswas


