BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 1

4 N

Data-Flow Analysis I

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 2

4 N
Data-Flow Analysis I

e A collection of methods that extract

information about the flow of data along the

paths of execution of a program.

e As an example two identical (textually)
subexpression may or may not evaluate to

the same value on different execution paths.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 3

4 N\
Data-Flow Analysis I

e If the definition of a variable is not used

subsequently, it may be eliminated as a dead
code. So it 1s necessary to detect whether a

variable 1s live at some point.

e There are other important questions e.g.
loop-invariant detection, identification of

induction variables etc.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 4

‘Same, Different or Dead'

Bl B2
c=at+b } {

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 5

4 N

e The expression a+b in 51 and 53 may not

evaluate to the same value?.

e The statements x = a+b in B3 is a dead
code if x is not used any where down the

path of execution of the program.

2Note the advantage of SSA in this connection.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 6

/ Execution States and State Transformation' \

e A state of a program consists of values in

different variables and the content of all
activation records in the stack.
e A statement changes the program state.
State before: --- i:5 ---
i=1+1

State after: --- 1:6 - --

e Itach state on the control path is a program

\ point (p).)

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 7

4 N\
Data-Flow Analysis I

e It is necessary to considers all possible

sequences of states and their transtormations
through different paths in the control flow
oraph of the program.

e Different information is extracted depending

on the type of data-flow analysis.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 8

4 N\
Data-Flow Analysis I

e Some analysis are along the direction of the

control-flow known as a forward analysis.

e Some are in the reverse direction of

control-flow, known as a backward analysis.

e Some analysis are on the existence of a

property on a path, some are on all possible

paths.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 9

/ ‘State Sequence and Program Point' \

e Within a basic block, the state after a
statement ¢ 1s the state before the statement
1+ 17

e In a forward flow problem, the state before
the first statement of a basic block B, is a
combination of the states after the last

statements of its predecessor blocks.

@The computation of states may be in the forward or in the backward direc-

" /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

-

‘State Sequence and Program Point'

e In a backward flow problem, the state after
the last statement of a basic block B, is
some combination of the states before the

first statements of its successor blocks.

e In forward flow the block B transforms its
mput state to output state. In backward

flow it 1s the reverse.

N\

~

/

10

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 11

/ Execution Path ' \

e A sequence of states or program points

satisfying the previous conditions is an

execution path.

e There is no upper bound on the number of

execution paths.

e A data-flow analysis abstracts out a required

finite set of facts from the unbounded

number of execution sequences.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 12

4 N

‘Flow Graph and Execution Paths'

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 13

b = getint() d2
if(a > b) goto B4

\

~

9 bp=als5
10 putlnt(b)

d4
Bl

EXIT

Y

_

/

Lect XIII: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 14

a N
‘ Data-Flow Values '

e A data-flow value is associated to every

program point of the execution sequence.

e Such a value is an abstraction of the set of

program states.

e The domain of the data-flow values depends

on the goal of the analysis.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 15

4 N
‘ Data-Flow Values '

e As an example, in reaching definition

analysis, we wish to know the subsets of

definitions that reach a program point p.

e In a live-variable analysis given a variable x
and a program point p, we wish to know
whether the value of £ will be used in some
path starting at p.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 16

4 N
‘ Data-Flow Values '

e Let the data-flow values before and after a
statement s be I N|[s|] and OUTs]

respectively.

e A data-flow problem is to find a solution of
IN|[s] and OUT[s| for all states s, under a

set of constraints.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 17

‘ Constraints on Data-Flow Values'

e There are two types of constraints.

e One is based on the semantics of statements.
It is called a transter function fs of the

statement s.

e The other one depends on the control-flow
within basic blocks and across basic block

boundaries.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 18

/ ‘ Transfer Functions ' \

e There are two types of transfer functions.

e [f the information flows forward along the
execution path, then for a statement s and a

forward transfer function f,,

OUT|s] = fs(IN]s]).

e If the information flows backward, then for a

statement s and a backward transfer

function f,, IN|[s] = f,(OUT|s]).

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 19

4 N

‘ Control-Flow Constraints '

e Let the sequence of statements within a
basic block (B) be s1, 89, , Sp.

e IN|[s;ii1] =0UT]s;], 1<i<n-—1fora

forward flow.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 20

‘ Control-Flow Constraints '

e Data-flow within a block is easy to evaluate.

It is more complicated at the block boundary

due to different nature of information flow.

e Given a block B we define IN|B] and
OUT|B] as the data-flow values immediately
before and after the block B.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 21

‘ Control-Flow Constraints '

o IN[B] = IN[s1], OUT|B] = OUT]s,,].

e For a forward flow OUT|B| = fg(IN|B]),
where fp = fs, 00 fs, 0[5

e For a backward flow IN|B] = fg(OUT|B])),
where fp = fio fa0---0 f, 10 fu

e At the beginning and at the end of the block

relations are as follows:

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 22

/ ‘ Control-Flow Constraints ' \

e kFor a
INBl= \/ ouT[c],
cepred(B)
OUT(B] = f(IN[B)).
e For

IN[B] = fp(OUT|B]),
OUT[B]= \/ IN[C]

CeSUCC(B)

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 23

4 N

e The meet operator, ‘\/’, depends on the type
of analysis. It may be a ’()’ if the claim is
existential e.g. there exists a path from the

definition d to the program point p.

e It may be an ‘() if the claim is universal e.g.
an expression axb is available at a program
point p if it is evaluated on every path from
ENTRY — p without redefining a and b in

\ between. /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 24

4 N
Reaching Definition I

10 be a definition of x and p be

e [et d: x

a program point just before a = 2*x.

e If d is the only definition of x that reaches p,

then x 1s a constant at a = 2x*x.

e If no definition of x reaches p, then it is

undefined at p.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

25

-~

N\

path from d — p on which d is not killed.

alias of x.

Reaching Definition I

e A definition d reaches a point p, if there is a

e For simplicity we assume that there is no

~

/

Lect XIII: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 26

/ An Example I \

dl:i=m-1
d2:j=n Bl
L d3:a=ul

d4:i=i+l
d5:j=j-1

B2

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 27

‘Reaching Definitions: B, I

e dy,dsy, ds reaches 1.

e (7 reach the beginning of By. It kills dy,

prevents it to reach Bs.
e d5 reaches B>.

e (s also reaches Bs.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 28

/ ‘ Transfer Functions ' \

e We start with a single statement:

d: u = v + w, where '+’ may be taken as a

generic binary operator.

e L.et £ be the set of definitions that reaches

the statement.

e The definition d kills all other definitions of
u in the program. Killed definitions of u
forms the set kill,.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 29

-~

N\

‘ Transfer Functions '

e It generates the new definition d of u,

geng = {d}.

e The transfer function of d:

computes the the definitions that reach after

it: fg(z) = geny U (x \ killy).

~

u=V+W7fd7

/

Lect XIII: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 30

‘ Function Composition I

If fi(x) =gen; U (x\ kill;) and

fo(x) = geny, U (z \ killy), then

fo(fi(x)) = geny, U ((gen; Uz \ killy) \ kills)
= gen, U (gen, \ killy) U ((z \ killy) \ kill)

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

31

-

N\

gCllp

killz

functions f;(z) = gen, U (x \

transfer function for the bloc]

‘ Function Composition I

If a block B has n statements with transter

-

kill;), then the

fe(x) = geng U (z \ killg), where

gen, U (gen, ; \ kill,) U
(gen,, , \ kill, ; \ kill,) U - -- U
(gen, \ killy \ killy \ - - - \ kill,)
kill; U killo U - - - U kill,,

K can be written as

~

/

Lect XIII: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

32

dl:i=m-1
d2:j=n Bl
d3:a=ul

-

Reaching Definitions: an Examplel

gen(B1): {d1, d2, d3}
kill(B1): {d4, d5, d6, d7}

gen(B2): {d4, d5}
kill(B2): {d1, d2, d7}

gen(B3): {d6}
kill(B3): {d3}

gen(B4): {d7}
kill(B4): {d1, d4}

/

Lect XIII: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 33

K ‘Control Flow Constraints'

e A definition reaches at the first statement of

block B only through some path of its

predecessor blocks.

e So the meet operator is union over all

predecessors blocks of B.

INBl= |] ouTrp]

Pepred(B)

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

/ ‘Reaching Definition: Iterative Algorithm'

e Every control-flow graph (CFG) has two
empty basic blocks, ENTRY and EXIT.

e The ENTRY block is the starting point of
the graph.

e The EXIT block is where all exit out of the
ograph go.

e The OUT|ENTRY| = () for the reaching

k definition problem.

~

/

34

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 35

‘Reaching Definition: Iterative Algorithm'

e For all basic blocks B other than ,

OUT|B| = geng U (IN|B] \ killg)

INBl=] our[p].
pepred(B)

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 36

/ ‘Reaching Definition: Iterative Algorithm' \

e These equations can be solved by the

following algorithm.

e The output of the algorithm is the least

fixed-point of the equations.

e The solutions of IN|B] and OUT|B]
produced by the algorithm is contained

(subset) in any other solutions of the

equations.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 37

4 N
Algorithm I

OUT|ENTRY| =1
for each basic block B # ENTRY , OUT|B| 1
while (OUT|B| for any B changes) do
for (each B # ENTRY)
IN|B] = UPepred(B) OUT|P
OUT|B] = gengp U (IN|B] \ killp)

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

S Ot = W N =

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 38

4 N

e Subset of definitions are represented as
bit-vectors: the it bit of byby - - - b,

corresponds to the ' definition d;.

e The set union is a bitwise OR operation.

e The set difference A\ B = AN B, is bitwise
AND of A with the complement of B.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 39

/ The Example I \

e There are seven definitions in our example,
{dh d27 S 7d7}°
e At the beginning and at the end of each

block we associate a 7-bit vector, 010y - - - by.
e The bit b;, 1 =1,---,7 of a vector V, of a
program point p is ‘1’, it the definition d;

reaches p.

e Otherwise b; = 0.
_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 40

4 N\
The Example I

e The vector of OUT|ENTRY| is always zero,

no definition reaches that point.

e Initially all OUT|B] vectors are zero.

e We iterate through the data till we reach the
fixed-point.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

41

The Examplel
Block(B) | OUT[B], | IN[B]; | OUT[BI;
By | 0000 000 | 0000 000 | 1110 000
By | 0000 000 | 1110 000 | 0011 100
By | 0000 000 | 0011 100 | 0001 110
B, | 0000 000 | 0011 110 | 0010 111
EXIT | 0000 000 | 0010 111 | 0010 111

~

/

Lect XIII: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

42

~
AnExampleI

Block(B) | OUT[B), | IN[B], | OUT[B]
By | 1110 000 | 0000 000 | 1110 000
B, | 0011100 | 1110 111 | 0011 110
By | 0001 110 | 0011 110 | 0001 110
B, | 0010 111 | 0011 110 | 0010 111
EXIT | 0010 111 | 0010 111 | 0010 111

%

Lect XIII: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

43

g An Examplel A
Block(B) | OUT|B|y | IN|B]3 | OUT|B|3
B 1110 000 | 0000 000 | 1110 000
By 0011 110 | 1110 111 | 0011 110
B3 0001 110 | 0011 110 | 0001 110
By 0010 111 | 0011 110 | 0010 111
EXIT | 0010 111 | 0010 111 | 0010 111
\The algorithm terminates after the 3"¢ pass. /

Lect XIII: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 44

/ Reaching Definitions: an Examplel \

e No definition reaches at the beginning of B5;.

e dy,dy,ds,ds, dg, d; reaches at the beginning
of BQ.

® (3, d4,ds, ds reaches at the beginning of Bs.
e ds3, ds,ds, dg reaches at the beginning of By.

e ds, ds, dg, d7 reaches at the beginning of
EXIT.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 45

Live Variable Analysis'

e GGiven a program point p and a variable x, we

wish to know whether the value of x at p will

be used in some execution path starting at p.

e If the value of x is used, then x is live at p,

otherwise, x is dead at p.

e This requires an analysis in the direction

opposite to the flow of control.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 46

‘Register Allocation within Basic Block'

e If a value computed in a register is dead at
the end of the block, it need not be stored in

the memory.

e When all registers are in use, and there is a
demand for another register, a register

containing dead value can be reused.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

47

/ ‘ Definition '
In a basic block B.

e A variable v is a member of the set defp

is defined in B before any use of it in B.

e The variables in detp are dead and the

\B.

e A variable u 1s a member of the set usep if it

is used in B before any definition of it in B.

variables in usep are live at the beginning of

~

if 1t

/

Lect XIII: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 48

a N
‘ Definition I

Following equations relate the live variables
IN|B] and OUT|B|.

IN|B] =usep U (OUT|B] \ defp).
OUTBl= | J IN[S]

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

/

e Both reaching definition and live variable

analysis has union as the meet operator.

e The information is propagated through
paths, and we want to know whether any

path has the desired property.

then 1t must be live at the end of 5.

.

~

e If a variable is used by any successor S of B,

/

49

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 50

4 N

e In a backward-flow problem, we start from

the EXIT block. Nothing is live at exit. So
we initialize IN[EXIT| = 0.

e The roles of IN|B] and OUT|B| are

reversed.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 51

4 N
Algorithm I

IN[EXIT] = 0
for each basic block B # EXIT, IN|B] =0
while (I N|B] for any B changes) do
for (each B # EXIT)
OUT|B] = UsesuCC(B) IN[S]
IN|B] =useg U (OUT|B] \ defp)

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

S Ot = W N =

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 52

4 N

‘ Available Expressionl

An expression ax*b is available at a program
point p if every path from the ENTRY to p
evaluates axb. And in between an evaluation
and the point p, there is no modification of a or
b.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 53

‘ Available Expressionl

e A block kills an expression a*b if it modifies

a or b but subsequently does not recompute

axb.

e A block generates an expression axb if it
evaluates a*b, and subsequently does not

modifies a or b.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 54

(Global Common Subexpressions'

(u z*a} . (ﬂ z*a} o
/

ENC e J
\ \

fig-1 {tZ 2*aJ B3 fig—2 {tz 2*aJ B3

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 55

Available Expressionl

e 2*a is a common subexpression in B3 if 2*a

is available at the beginning ot the block.

e It will be available if a is not assigned a new
value in By or 2*a is recomputed after a is

assigned a value.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

4 N

Available Expression: Computation in a Block'

e At the beginning the set of common

expressions 1s empty.

e Let S be the set of available expressions at a
point p and ¢ is the next point after the

statement a = b+c.

e The set of common expressions at ¢ is

computed as follows.

_ /

56

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 57

/ Available Expression: Computation in a Block' \

e Add {b+c} to 5.

e Remove all expressions involving a from S.

e Add and Delete must be done in the given

order as b or ¢ may be same as a.

e Killed expressions are of the form b+c where
b or ¢ are defined in the block, but b+c is

not computed.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

58

-

An Example I

Statement | Available Expression Reason
0
a=D>b+c
b+ c
b=a-4d kills b + ¢
a-—-d
c =b+cC
a-d
d=a-d killsa - d
0

~

/

Lect XIII: COM 5202: Compiler Construction

Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 59

/ Available Expression: Data' \

e [U is the set of expressions appearing in the

right side of any 3-address code of a function.

e /N|B] is a subset of U available at the
beginning of a basic block 5.

e OU'T|B]| is the subset of U available after
the last statement of B.

e eGenpg and eKillp are the expressions

\ generated and killed in B.

/

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 60

4 N
‘ Data-Flow Equations I

e No available expression at ENTRY:
OUT[ENTRY]| = 0.

e For every basic block other than ENTRY,

INB]= () OUT[P].
pepred(B)

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 61

4 N
‘ Data-Flow Equations I

e An expression is available at the beginning

of B if it is available on every path to B. So

the meet operator is an intersection (‘(’).

OUT|B| = eGenp U (IN|B] \ eKillg).

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 62

4 N

e The behavior of the equations of available

expression and reaching definitions are

different due to different meet operator.

e The equations of reaching definitions
computes the least fixed point, but the
equations of available expression computes
the greatest fixed point.

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 63

4 N

e An empty set of available expressions as the
initial values of OUT'|B| for every block B

does not give us anything. The intersection

with the empty set is an empty set.

e We need to find the largest set of available

expressions at the beginning of each block

_ /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 64

4 N

e Starting from an empty set, the iterative
algorithm computes the set of definitions d

that have paths to the beginning of the
block B.

e On the contrary, available expression starts
with the assumption that all all expressions
are available at the beginning of the block

B, unless killed on any path of one of its

\ predecessor. /

Lect XIII: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS)

65

-~

Algorithm I

OUT[ENTRY] =

while (OUT|B| for any B changes) do
for (each B # ENTRY)
IN|B| = nPepred(B) OUT|B|

S Ot = W N =

N\

for each basic block B, B # ENTRY, OUT|E

OUT|B] = eGeng U (IN|B] \ eKillp)

~

e~
—_—

/

Lect XIII: COM 5202: Compiler Construction

Goutam Biswas

