
BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 1✬

✫

✩

✪

Intermediate Representations

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 2✬

✫

✩

✪

Front End & Back End

• The portion of the compiler that does

scanning, parsing and static semantic

analysis is called the front-end.

• The translation and code generation portion

of it is called the back-end.

• The front-end depends mainly on the source

language and the back-end depends on the

target architecture.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 3✬

✫

✩

✪

Intermediate Representation

• A compiler transforms the source program to

an intermediate form that is mostly

independent of the source language and the

machine architecture.

• This approach isolates the front-end and the

back-enda.
aEvery source language has its front end and every target language has its

back end.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 4✬

✫

✩

✪

Note

• More than one intermediate representations

may be used for different levels of code

improvement.

• A high level intermediate form preserves

source language structure. Code

improvements on loop can be done on it.

• A low level intermediate form is closer to

target architecture.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 5✬

✫

✩

✪

Tree Representations

• Parse tree is a representation of complete

derivation of the input.

• It has intermediate nodes labeled with

non-terminals of derivation.

• This is used (often implicitly) for parsing

and attribute synthesis.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 6✬

✫

✩

✪

Tree Representations

• A syntax tree is very similar to a parse tree

where extraneous nodes are removed.

• It is a good representation that is close to

the source-language as it preserves the

structure of source constructs.

• It is very useful in applications like

source-to-source translation, or

syntax-directed editor etc.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 7✬

✫

✩

✪

Directed Acyclic Graph (DAG)

• A directed acyclic graph (DAG) is an

improvement over a syntax tree, where

duplications of subtrees such as common

subexpressions are identified and shared.

• This helps to identify common

sub-expressions, so that the cost of

evaluation can be reduced.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 8✬

✫

✩

✪

Syntax Tree: a*a+a*b+a*b+a*a

a a a b a b a a

* * * *

+

+

+

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 9✬

✫

✩

✪

DAG: a*a+a*b+a*b+a*a

a b

* *

+

+

+

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 10✬

✫

✩

✪

Note

• There are six occurrences of ‘a’ and two

occurrences of ‘b’ in the expression.

• In the DAG ‘a’ has two parents to indicate

two occurrences of it in two different

sub-expressions.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 11✬

✫

✩

✪

Note

• Similarly, ‘b’ has one parent to indicate its

occurrence in one sub-expression.

• The internal nodes representing ‘a*a’ and

‘a*b’ also has two parents each indicating

their two occurrences.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 12✬

✫

✩

✪

Low-Level Tree

• The tree and DAG we have discussed so far

are closer to the source code.

• But they do not have the low-level details of

different variables e.g. their locations, types,

addressing modes, initial values etc.

• A low-level tree may contain these

information for code generation and

improvement.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 13✬

✫

✩

✪

Low-Level Tree

• Location of a variable may be specified by a

memory address stored in a register and a

displacement.

• There may be one or more levels of address

indirection.

• An occurrence of a variable may refer to

l-value or r-value.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 14✬

✫

✩

✪

Trees: a = 2 * b

=

*a

2
b

=

+

base (rbp) disp (−12)

*

val (2) @

base (rbp) disp (−16)Low−level Syntax Tree

High−level Syntax Tree

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 15✬

✫

✩

✪

Graph Representations

• There are different types of graph

representations used to represent and

analyze properties of a program.

• A control-flow grapha models the flow of

control between the basic blocksb.
aAfterward we shall define them formally.
bMaximal length sequence of single entry-point branch-free code.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 16✬

✫

✩

✪

Control-Flow Graph

0 input n

1 f=1

2 i=1

3 while i <= n

4 f=f*i

5 i=i+1

6 output f

Entry

Exit

input n
f=1
i=1

while i<=n

f=f*i
i=i+1 output f

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 17✬

✫

✩

✪

Graph Representations

• A data-dependence graph captures the

definition or creation of a new data and its

usage. There is are edges from the definition

of a data to different points of its use.

• Call graph is used for inter-procedural

analysis of code. There is an edge from each

instance of call to the procedure.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 18✬

✫

✩

✪

Data-Dependence Graph

0 input n

1 f=1

2 i=1

3 while i <= n

4 f=f*i

5 i=i+1

6 output f

0 1 2

3 4

5

6

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 19✬

✫

✩

✪

SDT for Tree and DAG

• Following are syntax directed translations to

construct expression tree and DAG from the

classic expression grammar G.

• We are not considering the error handling

where the variable is undefined.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 20✬

✫

✩

✪

SDT for Tree

F → id

{

index = searchInsertSymTab(id.name) ;

F.node = mkLeaf(index);

}

E → E1 + T
{ E.node = mkNode(’+’, E1.node, T.node);}

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 21✬

✫

✩

✪

SDT for DAG

F → id

{

(index, new) = searchInsertSymTab(id.name) ;

if(new == NEW) {

F.node = mkLeaf(index);

symTab[index].leaf = F.node;

}

else F.node = symTab[index].leaf;

}

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 22✬

✫

✩

✪

SDT for DAG

E → E1 + T

{

node = searchNode(’+’,E1.node,T.node);

if(node == NULL)

E.node = mkNode(’+’,E1.node,T.node);

else E.node = node;

}

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 23✬

✫

✩

✪

Nodes

• Nodes are organized in such a way that they

can be searched efficiently and shared.

• Often nodes are stored in an array of records

with a few fields.

• The first field corresponds to a token or an

operator.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 24✬

✫

✩

✪

Nodes

• Other fields correspond to attributes for a

leaf node, or indices of its children in case of

internal node.

• The index of a node is known as its value

number.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 25✬

✫

✩

✪

DAG and Its Nodes

a b

* *

+

+

+ ID(a)
ID(b)

SymTab

* 1 1
1 2

+
*

43

+
+

3 6

(1) (2)

(3) (4)

(5)

5 4

(6)
(7)

7
6
5
4
3
2
1

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 26✬

✫

✩

✪

Note

Searching for a node in a flat array is not
efficient so nodes may be arranged as a hash
table.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 27✬

✫

✩

✪

Linear Intermediate Representation

• Both the high-level source code and the

target assembly codes are linear in their text.

• The intermediate representation may also be

linear sequence of codes. with conditional

branches and jumps to control the flow of

computation.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 28✬

✫

✩

✪

Linear Intermediate Representation

• A linear intermediate code may have one

operand addressa, two-addressb, or

three-address like RISC architectures.

• In fact it may also be zero-addressc. But we

shall only talk about the three-address codes.

aSuitable for an accumulator architecture.
bSuitable for a register architecture with limited number of registers.
cLike a stack machine.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 29✬

✫

✩

✪

Three-Address Instruction/Code

It is a sequence of instructions of following
forms:
1. a = b # copy
2. a = b op c # binary operation
3. a[i] = b # array write
4. a = b[i] # array read
5. goto L # jump
6. if a==true goto L # branch
7. if a==false goto L

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 30✬

✫

✩

✪

Three-Address Instruction/Code

8. a = op b # unary operation
9. if a relop b goto L # relOp and branch
10. param a # parameter passing
11. call p, n # function call
12. a = call p, n # function returns a value
13. *a = b # indirect assignment
There may be a few more.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 31✬

✫

✩

✪

Three-Address Instruction/Code

1. ‘a’ corresponds to a source program variable

or compiler defined temporary, and ‘b’

corresponds to either a variable, or a

temporary, or a constant.

2. ‘a’ is similar; b, c are similar to ‘b’ in 1. op

is a binary operator.

3. ‘a’ is the array name and ‘i’ is the byte

offset. ‘b’ is similar.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 32✬

✫

✩

✪

Three-Address Instruction/Code

4. Similar.

5. L is a label

6. If ‘a’ is true, jump to label L.

7. If ‘a’ is false, jump to label L.

8. op is a unary operator.

9. relop is a relational operator.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 33✬

✫

✩

✪

Three-Address Instruction/Code

10. Passing the parameter ‘a’.

11. Calling the function ‘p’, that takes n

parameters.

12. The return value is stored in ‘a’.

13. Indirection.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 34✬

✫

✩

✪

Three-Address Code: an Example

t1 = a * a
t2 = a * b
t3 = t1 + t2
t4 = t3 + t2
t5 = t1 + t4

a b

* *

+

+

+t5

t4

t1

t3

t2

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 35✬

✫

✩

✪

GCC Intermediate Codes

The GCC compiler uses three intermediate

representations:

1. GENERIC - it is a language independent

tree representation of the entire function.

2. GIMPLE - is a three-address representation

generated from GENERIC.

3. RTL - a low-level representation known as

register transfer language.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 36✬

✫

✩

✪

A Example

Consider the following C function.

double CtoF(double cel) {

return cel * 9 / 5.0 + 32 ;

}

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 37✬

✫

✩

✪

Readable GIMPLE Code

$ cc -Wall -fdump-tree-gimple -S CtoF.c

CtoF (double cel)

{

double D.1914;

_1 = cel * 9.0e+0;

_2 = _1 / 5.0e+0;

D.1914 = _2 + 3.2e+1;

return D.1914;

}

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 38✬

✫

✩

✪

Raw GIMPLE Code

$ cc -Wall -fdump-tree-gimple-raw -S CtoF.c

CtoF (double cel)

gimple_bind <

double D.1914;

gimple_assign <mult_expr, _1, cel, 9.0e+0, NULL>

gimple_assign <rdiv_expr, _2, _1, 5.0e+0, NULL>

gimple_assign <plus_expr, D.1914, _2, 3.2e+1, NULL>

gimple_return <D.1914>

>

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 39✬

✫

✩

✪

C program with if

#include <stdio.h>

int main() // code4.c

{

int l, m ;

scanf("%d", &l);

if(l < 10) m = 5*l;

else m = l + 10;

printf("l: %d, m: %d\n", l, m);

return 0;

}

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 40✬

✫

✩

✪

Gimple code

cc -Wall -fdump-tree-gimple -S code4.c

Output: code4.c.004t.gimple

main ()

{

int D.2386;

{

int l;

int m;

try

{

scanf ("%d", &l);

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 41✬

✫

✩

✪

l.0_1 = l;

if (l.0_1 <= 9) goto <D.2383>; else goto <D.2384>;

<D.2383>:

l.1_2 = l;

m = l.1_2 * 5;

goto <D.2385>;

<D.2384>:

l.2_3 = l;

m = l.2_3 + 10;

<D.2385>:

l.3_4 = l;

printf ("l: %d, m: %d\n", l.3_4, m);

D.2386 = 0;

return D.2386;

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 42✬

✫

✩

✪

}

finally

{

l = {CLOBBER};

}

}

D.2386 = 0;

return D.2386;

}

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 43✬

✫

✩

✪

C program with for

#include <stdio.h>

int main() // code5.c

{

int n, i, sum=0 ;

scanf("%d", &n);

for(i=1; i<=n; ++i) sum = sum+i;

printf("sum: %d\n", sum);

return 0;

}

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 44✬

✫

✩

✪

Gimple code

cc -Wall -fdump-tree-gimple -S code5.c

Output: code5.c.004t.gimple

main ()

{

int D.2387;

{

int n;

int i;

int sum;

try

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 45✬

✫

✩

✪

{

sum = 0;

scanf ("%d", &n);

i = 1;

goto <D.2384>;

<D.2383>:

sum = sum + i;

i = i + 1;

<D.2384>:

n.0_1 = n;

if (i <= n.0_1) goto <D.2383>; else goto <D.2385>;

<D.2385>:

printf ("sum: %d\n", sum);

D.2387 = 0;

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 46✬

✫

✩

✪

return D.2387;

}

finally

{

n = {CLOBBER};

}

}

D.2387 = 0;

return D.2387;

}

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 47✬

✫

✩

✪

Representation of Three-Address Code

• Any three address code has two essential

components: operator and operand.

• There can be at most three operands and

one operator.

• The operands are of three types, a name

from the source program, a temporary name

generated by the compiler or a constanta.
aThere are different types of constants used in a programming language.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 48✬

✫

✩

✪

Representation of Three-Address Code

• There is another category of name, a label in

the sequence of three-address codes.

• A three-address code sequence may be

represented as a list or array of structures.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 49✬

✫

✩

✪

Quadruple

• A quadruple is the most obvious first choicea.

• It has an operator, one or two operands, and

the target field.

• Following are a few examples of quadruple

representations of three-address codes.

aIt looks like a RISC instruction at the intermediate level.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 50✬

✫

✩

✪

Example

Operation Op1 Op2 Target

copy b a

add b c a

writeArray b i a

readArray b i a

jmp L

The variable names are pointers to symbol
table.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 51✬

✫

✩

✪

Example

Operation Op1 Op2 Target

ifTrue a L

ifFalse a L

minus b a

address b a

indirCopy b a

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 52✬

✫

✩

✪

Example

Operation Op1 Op2 Target

lessEq a b L

param a

call p n

copyIndir b a

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 53✬

✫

✩

✪

Triple

• A triple is a more compact representation of

a three-address code.

• It does not have an explicit target field in

the record.

• When a triple u uses the value produced by

another triple d, then u refers to the value

number (index) of d.

• Following is an example:

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 54✬

✫

✩

✪

Example

t1 = a * a

t2 = a * b

t3 = t1 + t2

t4 = t3 + t2

t5 = t1 + t4

Op Op1 Op2

0 mult a a

1 mult a b

2 add (0) (1)

3 add (2) (1)

4 add (0) (3)

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 55✬

✫

✩

✪

Note

An operand field in a triple can hold a
constant, an index of the symbol table or a
value number or index of another triple.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 56✬

✫

✩

✪

Indirect Triple

• It may be necessary to reorder instructions

for the improvement of execution.

• Reordering is easy with a quad

representation, but is problematic with triple

representation as it uses absolute index of a

triple.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 57✬

✫

✩

✪

Indirect Triple

• Indirect triples are used as a solution, where

the ordering is maintained by a list of

pointers (index) to the array of triples.

• Physically the triples are in their natural

translation order.

• But the execution order is maintained by an

array of pointers (index) pointing to the

array of triples.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 58✬

✫

✩

✪

Example

Exec. Order

0 (0)

1 (2)

2 (1)

3 (3)

· · · · · ·

Op Op1 Op2

0 mult a b

1 add (0) c

2 add a b

3 add (1) (2)

· · · · · ·

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 59✬

✫

✩

✪

Static Single-Assignment (SSA) Form

• This representation is similar to

three-address code with two main differences.

• Every definitiona has a distinct name

(virtual register).

• Each use of a value refers to a particular

definition.
aAssignment of value to a variable (user defined or compiler defined) e.g. t7

= a + t3.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 60✬

✫

✩

✪

Static Single-Assignment (SSA) Form

• Each variable is assigned exactly once. If the

same user variable is defined on more than

one control pathsa, they are renamed using

appropriate subscripts.

• When more than one control-flow paths join,

a φ-function is used to combine them for use.

aConditional statements.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 61✬

✫

✩

✪

Static Single-Assignment (SSA) Form

• The value of a variable does not change at

different points of its use.

• Dataflow path is simple, directly from the

definition to the use.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 62✬

✫

✩

✪

Static Single-Assignment (SSA) Form

• At a join point where more than one control

pathe meets the φ-function selects its

argumenta depending on the flow of control.

• The φ-functions are eliminated before the

code generation.

aOne argument for each incoming edge.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 63✬

✫

✩

✪

Static Single-Assignment (SSA) Form

• There are variations of SSA forms, but in all
of them the value of a variable is
independent of the place of use.

x = 1; x1 = 1;

a = x + 1 a = x1 + 1

non-SSA: x = 2 SSA: x2 = 2

b = x + 1 b = x2 + 1

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 64✬

✫

✩

✪

SSA and Constant Propagation

• Constant Propagation is simple in SSA form.

• If a variable is defined to be a constant (x =

5), all its use (y = x+y) can be replaced by

the constant (y=2+y) as there is always a

direct dataflow path from definition to use.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 65✬

✫

✩

✪

SSA and Constant Propagation

• If the use is after a join, the φ-function will

take care.

• This may reduce the size of definition-use

chains.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 66✬

✫

✩

✪

Example

Consider the following C code:

input n

f = 1

i = 1

while i <= n

f=f*i

i=i+1

output f

The corresponding three-address codes and SSA codes
are as follows.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 67✬

✫

✩

✪

Three-Address & SSA Codes

input n input n
f = 1 f0 = 1
i = 1 i0 = 1

L2: if i>n goto L1 L2: i1 = φ(i0, i2)
f1 = φ(f0, f2)
if i1 > n goto L1

f = f*i f2 = f1*i1
i = i + 1 i2 = i1 + 1
goto L2 goto L2

L1: L1: i3 = φ(i0, i2)
f3 = φ(f0, f2)

output f output f3

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 68✬

✫

✩

✪

Note

• φ-functions selects the value depending on

the control-path.

• When the control flows to L2 from the top,

the φ-function selects i0 and f0.

• But when the control is transferred from the

goto L2, it selects i2 and f2.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 69✬

✫

✩

✪

Note

• We have not talked about the algorithm for

insertion of φ-functions at the beginning of

basic blocks and renaming of incoming

variables.

• We also have not talked about how to

remove them after the code improvement.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 70✬

✫

✩

✪

Note

• At the beginning of every basic block all

φ-functions present are executed

concurrently before any other statements.

• New codes are introduced on different

control paths.

• i1 ← i0, f1 ← f0 on control path from

top to L2. But i1 ← i2, f1 ← f2 on

control path from goto L2.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 71✬

✫

✩

✪

Note

• Any number of control paths may merge at

the beginning of a basic block. A typical

example is the join point of a switch-case

statement.

• So the φ-function does not fit in the

3-address code model, and it is necessary to

create provision to store arbitrary number of

arguments of a φ-function.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 72✬

✫

✩

✪

Basic Block

A basic block is the longest sequence of

three-address codes with the following

properties.

• The control flows to the block only through

the first three-address codea.

• The control flows out of the block only

through the last three-address codeb.
aThere is no label in the middle of the code.
bNo three-address code other than the last one can be branch or jump.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 73✬

✫

✩

✪

Basic Block

• The first instruction of a basic block is called

the leader of the block.

• Decomposing a sequence of 3-address codes

in a set of basic blocks and construction of

control flow grapha helps code generation

and code improvement.

aWe shall discuss.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 74✬

✫

✩

✪

Partitioning into Basic Blocks

The sequence of 3-address codes is partitioned

into basic blocks by identifying the leaders.

• The first instruction of the sequence is a

leader.

• The target of any jump or branch

instruction is a leader.

• An instruction following a jump or branch

instruction is a leader.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 75✬

✫

✩

✪

Example

1: L2: v1 = i 13: L4:v1 = i
2: v2 = j 14 v2 = j
3: if v1>v2 goto L3
4: v1 = j 15 if v1<>v2
5: v2 = i goto L2
6: v1 = v1 - v2
7: j = v1
8: goto L4
9: L3: v1 = i
10: v2 = j
11: v1 = v1 - v2
12: i = v1

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 76✬

✫

✩

✪

Leaders in the Example

3-address instructions at index 1, 4, 9, 13 are
leaders. The basic blocks are the following.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 77✬

✫

✩

✪

Basic Block - b1

1: L2: v1 = i

2: v2 = j

3: if v1>v2 goto L3

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 78✬

✫

✩

✪

Basic Block - b2

4: v1 = j

5: v2 = i

6: v1 = v1 - v2

7: j = v1

8: goto L4

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 79✬

✫

✩

✪

Basic Block - b3

9: L3: v1 = i

10: v2 = j

11: v1 = v1 - v2

12: i = v1

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 80✬

✫

✩

✪

Basic Block - b4

13: L4:v1 = i

14 v2 = j

15 if v1<>v2 goto L2

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 81✬

✫

✩

✪

Control-Flow Graph

A control-flow graph is a directed graph
G = (V,E), where the nodes are the basic
blocks and the edges correspond to the flow of
control from one basic block to another. As an
example the edge eij = (vi, vj) corresponds to
the transfer of flow from the basic block vi to
the basic block vj.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 82✬

✫

✩

✪

Control-Flow Graph

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 83✬

✫

✩

✪

L3: v1=i
 v2=j
 v1=v1−v2
 i = v1

v2 = j
if v1>v2 goto L3

L4: v1=i
 v2=j
 if v1 <> v2 goto L2

b3:

b4:

L2: v1 = i

b1:

v1=j
v2=i
v1=v1−v2
j=v1
goto L4

b2:

Exit

Entry

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 84✬

✫

✩

✪

A Few Definitions

• A basic block A of a CFG dominates a basic

block B if all paths from the entry node of

the CFG to B passes through the block A.

We may write A dom B or A ≥ B.

The relation is a partial ordering: A ≥ A

and transitive.

• A strictly domintes B, A sdom B or A > B,

if A ≥ B but A 6= B.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 85✬

✫

✩

✪

An Example

Entry

Exit

1

2
3

4

5 6 7 8 9

10 11 12

13

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 86✬

✫

✩

✪

An Example

• The set of nodes dominted by node-3 are

{3, 6, 7, 11}.

• The set of nodes strictly dominted by node-3

are {6, 7, 11}.

• node 1 dominates every node.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 87✬

✫

✩

✪

A Few Definitions

• A node I is the immediate dominator of

node B. If for all strictly dominator nodes A

of B, A strictly dominates I. learly node B

cannot be its immediate dominator.

• A dominator tree has every nodes of the

CFG. There is an edge from node A to node

B, if A is the immediate dominator of B.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 88✬

✫

✩

✪

Dominator Tree: an Example

1

2
3

4

5 6 7 8 9

10 11 12

13

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 89✬

✫

✩

✪

A Few Definitions

The dominance frontier of a block A, DF (A), is
the set of blocks that are successessors of blocks
dominated by A, but are not strictly dominated
by A.

DF (A) = {C : B → C & B ∈ Dom(A) & C 6∈ SDom(A)}.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 90✬

✫

✩

✪

Dominance Frontier: an Example

N 1 2 3 4 5 6

DF (N) ∅ {10} {3, 10, 12, 13} {12} {5, 10} {10, 11}

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 91✬

✫

✩

✪

Note

A basic block is used for improvement of code
within the block (local optimization). Our
assumption is, once the control enters a basic
block, it flows sequentially and eventually
reaches the end of the blocka.

aThis may not be true always. An internal exception e.g. divide-by-zero or

unaligned memory access may cause the control to leave the block.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 92✬

✫

✩

✪

DAG of a Basic Block

• A basic block can be represented by a

directed acyclic graph (DAG) which may be

useful for some local optimization.

• Each variable entering the basic block with

some initial value is represented by a node.

• For each statement in the block we associate

a node. There are edges from the statement

node to the last definition of its operands.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 93✬

✫

✩

✪

DAG of a Basic Block

• If N is a node corresponding to the

3-address instruction s, the operator of s

should be a label of N .

• If a node N corresponds to the last

definition of variables in the block, then

these variables are also attached to N .

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 94✬

✫

✩

✪

DAG of b2

j0 i0

v2

− v1J

v1

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 95✬

✫

✩

✪

Common Subexpressions

• V 1 and J stands for the same subexpression

when the control comes out of block b2.

• The variable V 1 is not live on exit from the

block.

• There is no need to keep V 1.

Lect X: COM 5202: Compiler Construction Goutam Biswas

BS-MS & MS-PhD in Maths and Computing: SMCS (IACS) 96✬

✫

✩

✪

Exercise

Construct a DAG for the following basic block.

a = b + c

b = a - d

c = b + c

d = a - d

Show common subexpressions.

Lect X: COM 5202: Compiler Construction Goutam Biswas

