
Compiler Design 1✬

✫

✩

✪

Semantic Actions and 3-Address Code Generation

Code Gen Example Goutam Biswas

Compiler Design 2✬

✫

✩

✪

Introduction

We start with different constructs of the given
grammar (laboratory assignment-5) and discuss
semantic actions and intermediate code
generation. First we consider simple variable
declaration.

Code Gen Example Goutam Biswas

Compiler Design 3✬

✫

✩

✪

Grammar of Simple Variable Declaration

decl → def typeList end

typeList → typeList ; varList : type

→ varList : type

varList → var , varList

→ var

type → INT | FLOAT

var → ID

Code Gen Example Goutam Biswas

Compiler Design 4✬

✫

✩

✪

Synthesized Attributes

• Both var and varList have synthesized

attribute locLst, a list of locations of the

symbol table where identifiers are inserted

and their type and other information are to

be updated.

• The non-terminal type remembers the type

of the list of variables in its synthesized

attribute type.type.

Code Gen Example Goutam Biswas

Compiler Design 5✬

✫

✩

✪

Note

• In our simple case it is just int and float.

• But it can be multi-dimensional array of any

base type e.g. int a[3][4][5], 3-element

array of 4-element array of 5-element array

of integers, or it can be a structure with

different types of fields.

• If the whole type information is available, its

size etc. can be calculated.

Code Gen Example Goutam Biswas

Compiler Design 6✬

✫

✩

✪

Important Functions

• searchInsert(symTab, lexme, err): it searches

the current symbol table with the second

parameter.

• In a normal situation there should not be

any entry of the lexme. It is inserted in the

table and the index is returned.

Code Gen Example Goutam Biswas

Compiler Design 7✬

✫

✩

✪

Important Functions

• If the lexme is found in the table (already

inserted), it is an error condition.

• The type of the identifier is still unknown.

• mkLocLst(loc): makes a list of symbol-table

location specified by loc and returns the

single element list.

Code Gen Example Goutam Biswas

Compiler Design 8✬

✫

✩

✪

Important Functions

• catLocLst(l1,l2): concatenates two lists of

symbol-table locations and returns the

concatenated list.

• updateType(l, type): updates type of the

symbol-table locations from the list l using

type.

Code Gen Example Goutam Biswas

Compiler Design 9✬

✫

✩

✪

Semantic Actions and Code Generation

var → ID

{temp = searchInsert(symTab, ID.lexme, err)

var.locLst = mkLocLst(temp)}

type → INT {type.type = INT}

type → FLOAT {type.type = FLOAT}

Code Gen Example Goutam Biswas

Compiler Design 10✬

✫

✩

✪

Semantic Actions and Code Generation

varList → var , varList1

{varList.locLst = catLocLst(var.locLst,

varList1.locLst)}

varList → var

{varList.locLst = var.locLst}

typeList → varList : type

{updateType(varLst.locLst, type.type)}

Code Gen Example Goutam Biswas

Compiler Design 11✬

✫

✩

✪

Expression Grammar

• Our next consideration is the expression

grammar.

• We shall consider a small portion of it

without involving array etc.

Code Gen Example Goutam Biswas

Compiler Design 12✬

✫

✩

✪

Part of Expression Grammar

exp → exp + exp

→ ID

→ IC

→ FC

We assume that ID is a simple scalar variable,
IC is an integer constant and FC is a
floating-point constant.

Code Gen Example Goutam Biswas

Compiler Design 13✬

✫

✩

✪

Synthesized Attributes

• An expression exp has the attribute exp.loc

which is an index to the symbol table.

• The symbol table entry corresponding to

exp.loc may be a program defined variable or

a compiler generated variable.

Code Gen Example Goutam Biswas

Compiler Design 14✬

✫

✩

✪

Important Functions

• searchInsert(symTab, lexme, err): is as we

have already defined.

• But in this case, if the lexme corresponds to

a program variable and it is not found in the

symbol-table, it is an error. Necessary

actions are to be taken.

Code Gen Example Goutam Biswas

Compiler Design 15✬

✫

✩

✪

Important Functions

• The function newTemp() generates a

compiler defined variable name. Its value is

determined by the type of the expression

being evaluated.

Code Gen Example Goutam Biswas

Compiler Design 16✬

✫

✩

✪

Semantic Actions and Code Generation

exp → ID

{exp.loc = searchInsert(symTab, ID.lexme, err) }

exp → IC

{exp.loc =

searchInsert(symTab, newTemp(), err)

updateType(mkLocLst(exp.loc), INT)}

Code Gen Example Goutam Biswas

Compiler Design 17✬

✫

✩

✪

Semantic Actions and Code Generation

exp → FC

{exp.loc =

searchInsert(symTab, newTemp(), FLOAT, err)

updateType(mkLocLst(exp.loc), FLOAT)}

Code Gen Example Goutam Biswas

Compiler Design 18✬

✫

✩

✪

Semantic Actions and Code Generation

exp → exp1 + exp2

{if type(exp1.loc) = INT and

type(exp2.loc) = INT then

exp.loc = searchInsert(symTab, newTemp(), err)

updateType(mkLocLst(exp.loc), INT)

codeGen(assIntPlus, exp1.loc, exp2.loc, exp.loc)

Code Gen Example Goutam Biswas

Compiler Design 19✬

✫

✩

✪

Semantic Actions and Code Generation

if type(symTab,exp1.loc) = FLOAT

type(symTab, exp2.loc) = FLOAT then

exp.loc = searchInsert(symTab, newTemp(), err)

updateType(mkLocLst(exp.loc), FLOAT)

codeGen(assFltPlus, exp1.loc, exp2.loc, exp.loc)

Code Gen Example Goutam Biswas

Compiler Design 20✬

✫

✩

✪

Semantic Actions and Code Generation

if type(symTab,exp1.loc) = INT

type(symTab, exp2.loc) = FLOAT then

temp = searchInsert(symTab, newTemp(),err)

updateType(mkLocLst(temp),FLOAT)

codeGen(assignIntToFlt, exp1.loc, temp)

exp.loc = searchInsert(symTab, newTemp(),err

updateType(mkLocLst(exp.loc),FLOAT)

codeGen(assFltPlus, temp, exp2.loc, exp.loc)

Code Gen Example Goutam Biswas

Compiler Design 21✬

✫

✩

✪

Semantic Actions and Code Generation

if type(symTab,exp1.loc) = FLOAT

type(symTab, exp2.loc) = INT then

temp = searchInsert(symTab, newTemp(),err)

updateType(mkLocLst(temp),FLOAT)

codeGen(assignIntToFlt, exp2.loc, temp)

exp.loc = searchInsert(symTab, newTemp(),err

updateType(mkLocLst(exp.loc),FLOAT)

codeGen(assFltPlus, exp1.loc, temp, exp.loc) }

Code Gen Example Goutam Biswas

Compiler Design 22✬

✫

✩

✪

Grammar for Statements

Our next considerations are statements. We
start with simple assignment statement.

Code Gen Example Goutam Biswas

Compiler Design 23✬

✫

✩

✪

Grammar Simple Assignment Statement

assignmentStmt → ID := exp

We assume that ID is a simple scalar variable.

Code Gen Example Goutam Biswas

Compiler Design 24✬

✫

✩

✪

Semantic Actions and Code Generation

assignmentStmt

→ ID := exp

{temp = searchInsert(symTab, ID.lexme, err)

if type(temp) = NOTDEF then

ERROR

if (type(temp) = INT and type(exp.loc) = INT) or

(type(temp) = FLOAT and type(exp.loc) = FLOAT)

then

codeGen(assign, exp.loc, temp)

Code Gen Example Goutam Biswas

Compiler Design 25✬

✫

✩

✪

Semantic Actions and Code Generation

if (type(temp) = INT and type(exp.loc) = FLOAT) then

codeGen(assignFltToInt, exp.loc, temp)

if (type(temp) = FLOAT and type(exp.loc) = INT) then

codeGen(assignIntToFlt, exp.loc, temp) }

Code Gen Example Goutam Biswas

Compiler Design 26✬

✫

✩

✪

Flow-of-Control Statements

Our next consideration is flow-of-control
statements. Here we use a technique known as
backpatching to fill the jump/branch addresses.

Code Gen Example Goutam Biswas

Compiler Design 27✬

✫

✩

✪

Backpatching in Flow-of-Control Statements

• Boolean expressions and flow-of-control

statements require branch instructions.

• Often the branch target is unknown when

the 3-address code for branch instructions

are generated.

• One solution is to pass the label of the

branch target as inherited attribute.

Code Gen Example Goutam Biswas

Compiler Design 28✬

✫

✩

✪

Backpatching in Flow-of-Control Statements

• As the target instruction has not yet been

generated, it is necessary to bind the label

afterward.

• Backpatching is an alternate approach where

the targets of codes corresponding to

branch/jump instructions are kept unfilled.

• List of these unfilled codes are passed as

synthesized attributes.

Code Gen Example Goutam Biswas

Compiler Design 29✬

✫

✩

✪

Backpatching in Flow-of-Control Statements

• Holes in these 3-address codes will be filled

(backpatched) when the target label is

generated.

• This does not require a second pass of

associating labels to the targets.

• We modify our grammar of Boolean

expression and flow-of-control statements as

follows.

Code Gen Example Goutam Biswas

Compiler Design 30✬

✫

✩

✪

Modified Grammar of Boolean Expression

bExp → bExp or mR bExp

→ bExp and mR bExp

→ not bExp

→ (bExp)

→ exp relOP exp

mR → ε (new Marker non-terminal)

Code Gen Example Goutam Biswas

Compiler Design 31✬

✫

✩

✪

Synthesized Attributes

• The non-terminal bExp has two synthesized

attributes trueLst and falseLst.

• bExp.trueLst is the list of 3-address codes

(indices) corresponding to jumps/branches

that will be taken when the expression

corresponding to bExp evaluates to true.

Code Gen Example Goutam Biswas

Compiler Design 32✬

✫

✩

✪

Synthesized Attributes

• Similarly bExp.falseLst is the list of code

indices from where jump/branches are taken

when bExp evaluates to false.

• The bExp.trueLst will be backpatched by

the index of the 3-address code where the

control will be transferred when bExp

evaluates to true.

• Similar is the case for bExp.falseLst.

Code Gen Example Goutam Biswas

Compiler Design 33✬

✫

✩

✪

Sequence Number of an Instructions

• There is a sequence number or index of every

instruction. These indices are used as labels.

• Following are a few useful functions for

semantics actions.

Code Gen Example Goutam Biswas

Compiler Design 34✬

✫

✩

✪

Important Functions

• mkLst(i): makes a single element list with

the code index i and returns the pointer of

the list.

• catLst(l1,l2): two lists pointed by l1 and l2

are concatenated and returned as a list.

Code Gen Example Goutam Biswas

Compiler Design 35✬

✫

✩

✪

Important Functions

• fill(l, i): the unfilled targets of each

jump/branch instruction indexed by the

elements of the list l are filled/backpatched

by the index i of the target instruction.

• The global variable nextInd has the sequence

number(index) of next 3-address code to be

generated.

Code Gen Example Goutam Biswas

Compiler Design 36✬

✫

✩

✪

Semantic Actions and Code Generation

• The non-terminal mR has a synthesized

attribute nextInd, the current value of the

variable nextInd.

•
mR → ε

{mR.nextInd = nextInd}

Code Gen Example Goutam Biswas

Compiler Design 37✬

✫

✩

✪

An Alternative

• As an alternative the non-terminal mR has a

synthesized attribute label. The reduction of

mR generates a new label, attaches it to the

next 3-address code and saves it in mR.label.

•

mR → ε

{mR.label = newlabel()}

{codeGen(label, mR.label)}

Code Gen Example Goutam Biswas

Compiler Design 38✬

✫

✩

✪

Semantic Actions and Code Generation

bExp → exp1 relOP exp2

{bExp.trueLst = mkLst(nextInd)

bExp.falseLst = mkLst(nextInd+1)

codeGen(‘if relOP’, exp1.loc,

exp2.loc, ‘goto’ · · ·)

codeGen(‘goto’ · · ·)

nextInd = nextInd+2 }

Code Gen Example Goutam Biswas

Compiler Design 39✬

✫

✩

✪

Semantic Actions and Code Generation

bExp → bExp1 or mR bExp2

{fill(bExp1.falseLst,mR.nextInd)

bExp.trueLst = catList(bExp1.trueLst,

bExp2.trueLst)

bExp.falseLst = bExp2.falseLst }

Code Gen Example Goutam Biswas

Compiler Design 40✬

✫

✩

✪

Semantic Actions and Code Generation

bExp → bExp1 and mR bExp2

{fill(bExp1.trueLst,mR.nextInd)

bExp.falseLst = catList(bExp1.falseLst,

bExp2.falseLst)

bExp.trueLst = bExp2.trueLst }

Code Gen Example Goutam Biswas

Compiler Design 41✬

✫

✩

✪

Semantic Actions and Code Generation

bExp → not bExp1

{bExp.falseLst = bExp1.trueLst

bExp.trueLst = bExp1.falseLst }

Code Gen Example Goutam Biswas

Compiler Design 42✬

✫

✩

✪

Semantic Actions and Code Generation

bExp → (bExp1)

{bExp.falseLst = bExp1.falseLst

bExp.trueLst = bExp1.trueLst }

Code Gen Example Goutam Biswas

Compiler Design 43✬

✫

✩

✪

Example

Consider the Boolean expression

x <= y or not a > b + c and p = q

Code Gen Example Goutam Biswas

Compiler Design 44✬

✫

✩

✪

Boolean Expression: Parse Tree

bExp

bExp bExpmR

exp

or

relOp exp ε

ID ID

x y

<=

bExp and mR bExp

not bExp

exp relOp exp

ID

a

>
exp + exp

ID ID

b c

exp relOp exp

ID=ID

p q

ε

1

2 3

4
5

6

1 2

3 4

5 6

7
8

1

21

2

3

Code Gen Example Goutam Biswas

Compiler Design 45✬

✫

✩

✪

Example

• Let the next index of the 3-address code

(nextInd) sequence be 100.

• The 3-address codes corresponding to bExp2

in readable form is

100 if x <= y goto · · ·

101 goto · · ·

• bExp2.TrueLst = {100} and bExp2.FalseLst

= {101} and nextInd: 102.

Code Gen Example Goutam Biswas

Compiler Design 46✬

✫

✩

✪

Example

• Next reduction is mR1 → ε. The attribute

mR1.nextInd ← nextInd: 102.

• Next 3-address code is due to exp4.

102 $i ← b + c

• Then the code corresponding to bExp6 is

103 if a > $i goto · · ·

104 goto · · ·

Code Gen Example Goutam Biswas

Compiler Design 47✬

✫

✩

✪

Example

• bExp6.TrueLst = {103} and bExp6.FalseLst

= {104} and nextInd: 105.

• The not operator flips the lists.

bExp4.TrueLst = {104} and bExp4.FalseLst

= {103}.

• Next reduction is mR2 → ε. The attribute

mR2.nextInd ← nextInd: 105.

Code Gen Example Goutam Biswas

Compiler Design 48✬

✫

✩

✪

Example

• Next 3-address codes are corresponding to

bExp5:

105 if p = q goto · · ·

106 goto · · ·

• bExp5.TrueLst = {105} and bExp5.FalseLst

= {106} and nextInd: 107.

• At reduction of bExp3 the bExp4.trueLst is

backpatched by mR2.nextInd = 105.

Code Gen Example Goutam Biswas

Compiler Design 49✬

✫

✩

✪

Example

• The code after the first backpatching:

100 if x <= y goto · · ·

101 goto · · ·

102 $i ← b + c

103 if a > $i goto · · ·

104 goto 105

105 if p = q goto · · ·

106 goto · · ·

Code Gen Example Goutam Biswas

Compiler Design 50✬

✫

✩

✪

Example

• bExp3.TrueLst = bExp5.TrueLst: {105} and

bExp3.FalseLst = (bExp4.FalseLst ∪

bExp5.FalseLst): {103, 106}.

• At reduction of bExp1 the bExp2.falseLst is

backpatched by mR1.nextInd = 102.

• bExp1.TrueLst = {100, 105} and

bExp1.FalseLst = {103, 106}.

Code Gen Example Goutam Biswas

Compiler Design 51✬

✫

✩

✪

Example

• Modified code is

100 if x <= y goto · · ·

101 goto 102

102 $i ← b + c

103 if a > $i goto · · ·

104 goto 105

105 if p = q goto · · ·

106 goto · · ·

Code Gen Example Goutam Biswas

Compiler Design 52✬

✫

✩

✪

Example: Note

It is clear that codes in sequence numbers 101
and 104 are useless. We replace them by
no-operations (nop)

Code Gen Example Goutam Biswas

Compiler Design 53✬

✫

✩

✪

Example

• The modified code is

100 if x <= y goto · · ·

101 nop

102 $i ← b + c

103 if a > $i goto · · ·

104 nop

105 if p = q goto · · ·

106 goto · · ·

Code Gen Example Goutam Biswas

Compiler Design 54✬

✫

✩

✪

Statements and Backpatching

We use backpatching for assignment statement,
sequence of statements and flow-of-control
statements. So the grammar is modified with
marker non-terminalsa

aOne should be careful about doing that as in some cases the modified gram-

mar may cease to be LALR.

Code Gen Example Goutam Biswas

Compiler Design 55✬

✫

✩

✪

Modified Grammar of Statements

stmtList → stmtList mR ; stmt | stmt

stmt → assignmentStmt

→ if bExp mR : stmtList kR elsePart end

→ while mR bExp mR : stmtList end

elsePart → else mR stmtList | ε

mR → ε

kR → ε

Code Gen Example Goutam Biswas

Compiler Design 56✬

✫

✩

✪

Synthesized Attribute of a Statement

Every statement (stmt and stmtList) has a
synthesized attribute nextLst. This is the list of
indices of jump and branch instructions
(unfilled) within the statement that transfer
control to the 3-address instruction following
the statement, the next-statement or
continuation.

Code Gen Example Goutam Biswas

Compiler Design 57✬

✫

✩

✪

Backpatching: Statement List

stmtList → stmtList1 mR ; stmt

{fill(stmt1.nextLst, mR.nextInd)

stmtList.nextLst = stmt.nextLst}

stmtList → stmt

{stmtList.nextLst = stmt.nextLst}

Code Gen Example Goutam Biswas

Compiler Design 58✬

✫

✩

✪

Backpatching: Assignment Statement and Marker

stmt → assignmentStmt

{stmt.nextLst = nil}

kR → ε

{kR.nextLst = mkLst(nextInd)

codeGen(‘goto’ · · ·)

nextInd = nextInd+1}

Code Gen Example Goutam Biswas

Compiler Design 59✬

✫

✩

✪

Backpatching: if-Statement

stmt → if bExp mR : stmtList kR elsePart end

{fill(bExp.trueLst, mR.nextInd)

if(elsePart.nextInd == −1)

stmt.nextLst = catLst(bExp.falseLst,

stmtList.nextLst)

else

fill(bExp.falseLst, elsePart.nextInd)

stmt.nextLst = catLst(stmtList.nextLst,

catLst(kR.nextLst, elsePart.nextLst))}

Code Gen Example Goutam Biswas

Compiler Design 60✬

✫

✩

✪

Backpatching: else Part

elsePart → else mR stmtList

{elsePart.nextInd = mR.nextInd

elsePart.nextLst = stmtList.nextLst }

elsePart → ε

{elsePart.nextInd = -1

elsePart.nextLst = nil }

Code Gen Example Goutam Biswas

Compiler Design 61✬

✫

✩

✪

Example

Consider the if-statement with the same
boolean expression taken earlier as an example.
if x <= y or not a > b + c and p = q:

x := 5*y
else

a := a - p
end

Code Gen Example Goutam Biswas

Compiler Design 62✬

✫

✩

✪

if-statement: Parse Tree

bExp mR

ε

:1 kR

ε

elsePart
endif

else mR2 2

assignmentStmt2

1

assignmentStmt1

ID

x

exp1

IDIC

5

*

1

21

Y

ID3

a

:= := exp2

ID ID

a

−

p

ε

4 5

stmtList stmtList

ifStmt

Code Gen Example Goutam Biswas

Compiler Design 63✬

✫

✩

✪

Example

We already know that the code corresponding
to bExp is as follows:
100 if x <= y goto · · ·
101 nop
102 $i ← b + c
103 if a > $i goto · · ·
104 nop
105 if p = q goto · · ·
106 goto · · ·
bExp.TrueLst = {100, 105} and bExp.FalseLst
= {103, 106} and nextInd: 107.

Code Gen Example Goutam Biswas

Compiler Design 64✬

✫

✩

✪

Example

• Next reduction is mR1 → ε. The attribute

mR1.nextInd ← nextInd: 107.

• The code corresponding to stmtList1 is

107 $(i+1) = 5 * y

108 x = $(i+1)

• The reduction of kR1 → ε generates the code

109 goto · · ·

Its attribute is kR.nextLst = {109}

Code Gen Example Goutam Biswas

Compiler Design 65✬

✫

✩

✪

Example

• The reduction of mR2 → ε synthesize the

attribute mR2.nextInd ← 110.

• The code corresponding to stmtList2 is

110 $(i+2) = a + p

111 a = $(i+2)

• Reduction to elsePart copies stmtNextLst2 =

nil to elsePart.nextLst.

Code Gen Example Goutam Biswas

Compiler Design 66✬

✫

✩

✪

Example

The sequence of code and synthesized data at
this point of compilation are
100 if x <= y goto · · ·
101 nop
102 $i ← b + c
103 if a > $i goto · · ·
104 nop
105 if p = q goto · · ·
106 goto · · ·
107 $(i+1) = 5 * y
108 x = $(i+1)
109 goto · · ·
110 $(i+2) = a + p
111 a = $(i+2)

Code Gen Example Goutam Biswas

Compiler Design 67✬

✫

✩

✪

Example

• bExp.TrueLst = {100, 105} and

bExp.FalseLst = {103, 106}.

• mR1.nextInd = 107.

• kR.nextLst = {109}

• elsePart.nextInd = mR2.nextInd = 110.

• stmtList1.nextLst = elsePart.nextLst = nil

Code Gen Example Goutam Biswas

Compiler Design 68✬

✫

✩

✪

Example

During the reduction to ifStmt following actions

are taken.

• Backpatch bExp.TrueLst with mR1.nextInd.

• Backpatch bExp.FalseLst with

elsePart.nextInd.

• ifStmt.nextLst = kR.nextLst as

stmtList1.nextLst = elsePart.nextLst = nil.

Code Gen Example Goutam Biswas

Compiler Design 69✬

✫

✩

✪

Example

Final sequence of code is
100 if x <= y goto 107
101 nop
102 $i ← b + c
103 if a > $i goto 110
104 nop
105 if p = q goto 107
106 goto 110
107 $(i+1) = 5 * y
108 x = $(i+1)
109 goto · · ·
110 $(i+2) = a + p
111 a = $(i+2)

Code Gen Example Goutam Biswas

Compiler Design 70✬

✫

✩

✪

Backpatching: while Statement

stmt → while mR1 bExp mR2 : stmtList end

{fill(stmtList.nextLst, mR1.nextInd)

fill(bExp.trueLst, mR2.nextInd)

stmt.nextLst = bExp.falseLst

codeGen(‘goto’, mR1.nextInd) }

Code Gen Example Goutam Biswas

Compiler Design 71✬

✫

✩

✪

Loop Statement Grammar

The grammar rule for our loopStmt is as
follows:

loopStmt → from ID := exp1 to exp2 stepPart

: stmtListO end

stepPart → step exp3 | ε

Code Gen Example Goutam Biswas

Compiler Design 72✬

✫

✩

✪

Loop Statement

For simplicity we assume that ID is a scalar
variable. We also assume, again to make life
simple, that type of all expressions are integers.
The informal semantics of this deterministic
loopa is as follows:

aUnlike the for-loop of C/C++.

Code Gen Example Goutam Biswas

Compiler Design 73✬

✫

✩

✪

Semantics of Loop Statement

• ID will be assigned the value of exp1.

• The number of iterations of the loop is

determined at the beginning. Compiler

defines a loop count variable lC. Its value is

evaluated as

lC = (exp2 − exp1)/exp3 + 1

Code Gen Example Goutam Biswas

Compiler Design 74✬

✫

✩

✪

Semantics of Loop Statement

• The body of the loop, stmtListO, is

computed if lc ≥ 0.

• After every iteration ID is incremented by

exp3, the loop count lC is decremented by 1,

and the control is transferred to the

beginning of the test for lC.

• The default value of exp3 is 1.

Code Gen Example Goutam Biswas

Compiler Design 75✬

✫

✩

✪

Stages of Semantic Actions

• Initialization of ID requires evaluation of

exp1.

• Computation and initialization of lC requires

evaluation up to exp3.

• Both initializations are before iterations.

But test of lc ≥ 0 and decrement of lCis part

of each iteration.

In view of these, we modify the grammar as
follows:

Code Gen Example Goutam Biswas

Compiler Design 76✬

✫

✩

✪

Modified Loop Statement

loopStmt → from loopCount lM : mR

stmtListO end

loopCount → ID := exp1 to exp2 stepPart

stepPart → step exp

stepPart → ε

mR → ε

lM → ε

Code Gen Example Goutam Biswas

Compiler Design 77✬

✫

✩

✪

Semantic Actions for stepPart

• The non-terminal stepPart should save the

symbol table entry of the internal variable of

step exp.

• If exp is absent, we use an indicator −1.

stepPart → step exp {stepPart.loc = exp.loc}

stepPart → ε {stepPart.loc = −1}

Code Gen Example Goutam Biswas

Compiler Design 78✬

✫

✩

✪

Synthesized Attributes of loopCount

The non-terminal loopCount saves the following

information in its synthesized attributes.

• Location of ID - loopCount.id

• Location of the iteration count of the loop -

loopCount.count

• Location of the iteration step (or −1) -

loopCount.step

Code Gen Example Goutam Biswas

Compiler Design 79✬

✫

✩

✪

Semantic Actions for loopCount

loopCount

→ ID := exp1 to exp2 stepPart

{temp = searchInsert(symTab, ID.lexme, err)

codeGen(assign, exp1.loc, temp)

temp1 = searchInsert(symTab, newtemp(), err)

updateType(temp1, INT)

codeGen(assignSubInt, exp2.loc, exp1.loc, temp1)

temp2 = searchInsert(symTab, newtemp(), err)

updateType(temp2, INT)

Code Gen Example Goutam Biswas

Compiler Design 80✬

✫

✩

✪

Semantic Actions for loopCount

if (stepPart.loc = -1) then

codeGen(assignInt, temp1, temp2)

else

codeGen(assignDivInt, temp1, stepPart.loc, temp2)

temp3 = searchInsert(symTab, newtemp(), err)

updateType(temp3, INT)

codeGen(assignAddIntConst, temp2, 1, temp3)

Code Gen Example Goutam Biswas

Compiler Design 81✬

✫

✩

✪

Semantic Actions for loopCount

loopCount.id = temp

loopCount.count = temp3

loopCount.step = stepPart.loc}

Code Gen Example Goutam Biswas

Compiler Design 82✬

✫

✩

✪

Synthesized Attributes of lM

• The non-terminal lM generates code to decide

whether to enter in the loop or exit. So it has two

synthesized attributes, lM.trueLst and lM.falseLst to

be backpatched later.

• It also remembers the index of the first instruction of

the test code. This index will be used to backpatch

the nextLst of stmtListO.

Code Gen Example Goutam Biswas

Compiler Design 83✬

✫

✩

✪

Semantic Actions for lM

lM → ε

{lM.nextInd = nextInd

lM.trueLst = mkLst(nextInd)

lM.falseLst = mkLst(nextInd+1)

codeGen(ifGEZero, loopCount.count, -)

codeGen(’goto’, -)

nextInd = nextInd+2}

Code Gen Example Goutam Biswas

Compiler Design 84✬

✫

✩

✪

Note

When the reduction of lM → ε takes place, the
non-terminal loopCount is available immediately below it
in the value stack. So loopCount.count can be accessed.

Code Gen Example Goutam Biswas

Compiler Design 85✬

✫

✩

✪

Semantic Actions for loopStmt

loopStmt → from loopCount lM : mR stmtListO end

{codeGen(assignPlusInt, loopCount.id,

loopCount.step, loopCount.id)

codeGen(assignAddIntConst, loopCount.count, -1,

loopCount.count)

codeGen(’goto’, lM.nextInd)

fill(lM.trueLst, mR.nextInd)

fill(stmtListO.nextLst, lM.nextInd)

loopStmt.nextLst = lM.falseLst }

Code Gen Example Goutam Biswas

Compiler Design 86✬

✫

✩

✪

exitLoop Statement

• Our exit is similar to break is C language.

• We only consider necessary semantic actions

and translation of exit in the context of a

while-statement.

• We define an exit-list (extLst=Nil) after

entering a while-loop.

Code Gen Example Goutam Biswas

Compiler Design 87✬

✫

✩

✪

exitLoop Statement

• At every exit, an unfilled ‘goto -’ code is

generated and its index is inserted in the

exit-list.

• During the final reduction of the

stmt → while · · · , the exit-list is merged

with the stmt.nextLst.

Code Gen Example Goutam Biswas

Compiler Design 88✬

✫

✩

✪

Modified Grammar of while

Grammar After First Modification

stmt → while mR bExp mR : stmtList end

mR → ε

Grammar After Second Modification

stmt → while eR bExp mR : stmtList end

mR → ε

eR → ε

Code Gen Example Goutam Biswas

Compiler Design 89✬

✫

✩

✪

Semantic Actions for eR

eR → ε

{ eR.nextInd = nextInd

extLst = Nil}

Code Gen Example Goutam Biswas

Compiler Design 90✬

✫

✩

✪

Semantic Actions for eR

stmt → EXITLOOP

{ extLst = catLst(extLst, mkLst(nextInd))

codeGen(’goto’, -)

nextInd = nextInd + 1}

Code Gen Example Goutam Biswas

Compiler Design 91✬

✫

✩

✪

Backpatching Modified: while Statement

stmt → while eR bExp mR : stmtList end

{fill(stmtList.nextLst, eR.nextInd)

fill(bExp.trueLst, mR.nextInd)

stmt.nextLst = catLst(bExp.falseLst,

extLst)

codeGen(‘goto’, eR.nextInd) }

Code Gen Example Goutam Biswas

Compiler Design 92✬

✫

✩

✪

Note

• The exit-list can be maintained as a special

label (say exit) in the symbol table.

• Nesting of loop will complicate the situation.

In that case we use a stack to push exit-list

headers of outer loops.

Code Gen Example Goutam Biswas

Compiler Design 93✬

✫

✩

✪

Note

• If a loop creates a local environment, the

outer symbol-tables are pushed in a stack. If

the exit-list is maintained on a symbol-table,

it will automatically be stacked.

Code Gen Example Goutam Biswas

Compiler Design 94✬

✫

✩

✪

Grammar of Array Declaration

decl → def typeList end

typeList → typeList ; varList : type

→ varList : type

varList → var , varList

→ var

type → INT | FLOAT

Code Gen Example Goutam Biswas

Compiler Design 95✬

✫

✩

✪

Grammar of Array Declaration

var → ID sizeListO

sizeListO → sizeList

sizeList → sizeList [INT CONST]

→ [INT CONST]

Code Gen Example Goutam Biswas

Compiler Design 96✬

✫

✩

✪

Array Declaration

A typical array deceleration is as follows:
def
· · ·
x[3][4][5] : int ;
· · ·

end

Code Gen Example Goutam Biswas

Compiler Design 97✬

✫

✩

✪

Array Declaration: Parse Tree

decl

def
end

typeList

varList :
type

varList,var

ID

x

sizeListO

sizeList

sizeList

sizeList

int

sizeList

IC

3

[]

[IC

4

]

[IC]

5

Code Gen Example Goutam Biswas

Compiler Design 98✬

✫

✩

✪

Information in Symbol Table

• Array int x[3][4][5] may be viewed as

follows:

• A 3-element array of 4-element array of

5-element array of base type int.

• Important information are base type, range

of each dimension and the total size in bytes.

Code Gen Example Goutam Biswas

Compiler Design 99✬

✫

✩

✪

Note

• In some programming languages the upper

and lower bounds of each dimension can be

specified.

• More information such as lower bound and

upper bound of of indices is necessary to

save in such a situation.

Code Gen Example Goutam Biswas

Compiler Design 100✬

✫

✩

✪

Synthesis of Attributes and Semantic Actions

• The non-terminal sizeList and sizeListO

maintains the list of sizes (dimSzLst).

• This list may be put in the symbol table

during the reduction of

var → ID sizeListO.

• The base type and displacement (depends on

the total size) are updated during the

reduction typeList → varList : type.

Code Gen Example Goutam Biswas

Compiler Design 101✬

✫

✩

✪

Array Declaration: Decorated Parse Tree

sizeList

sizeList

sizeList

IC

3

[]

[IC

4

]

[IC]

typeList

varList

,var

ID

x

sizeListO

sizeList

: type

varList int sizeList.dimSzLst={3}

sizeList.dimSzLst={3,4}

sizeList.dimSzLst={3,4,5}

5

sizeList.dimSzLst={3,4,5}

sizeListO.dimSzLst={3,4,5}

Code Gen Example Goutam Biswas

Compiler Design 102✬

✫

✩

✪

Array Expression and Assignment

• An array element may be present in an

expression or a value may be assigned to an

array element.

x[e1][e2] := exp

a := · · · x[e1][e2] · · ·

• In both the cases it is necessary to compute

the offset of the element from the base of the

array.

Code Gen Example Goutam Biswas

Compiler Design 103✬

✫

✩

✪

Offset Computation: an Example

• We consider a 3-D array of base type int:

x[3][5][7] : int.

• The array is stored in the memory in

row-major order.

• Let the address of the x[0][0][0] (starting

address) be xa; and the size of int be w.

• The address of x[i][j][k] is

xa + (((i× 5 + j)× 7) + k)× w

Code Gen Example Goutam Biswas

Compiler Design 104✬

✫

✩

✪

Note

Essential information to compute the offset of
x[i][j][k] are starting address xa, values of
three indices i, j, k, the sizes of the second and
the third dimensions, 5, 7 respectively, and size
of the base type.

Code Gen Example Goutam Biswas

Compiler Design 105✬

✫

✩

✪

Offset Computation: an Example

• If the array is stored in column-major order,

the address of x[i][j][k] is

xa + (((k × 5 + j)× 3) + i)× w. Here the

sizes of the first and the second dimensions

are useful for offset computation.

• In both the cases we assume that when the

range of a dimension [n] is specified, the

indices are 0, · · · , n− 1.

Code Gen Example Goutam Biswas

Compiler Design 106✬

✫

✩

✪

Offset Computation: an Example

• In some languages the ranges of indices of

different dimensions are given explicitly, e.g.

int x[1-3][2-5][3-7], where possible

values of first indices are 1,2,3; second indices

are 2,3,4,5; and third indices are 3,4,5,6,7.

• In row-major storage the address of

x[i][j][k] is xa + ((((i− 1)× (5− 2 + 1) +

(j − 2))× (7− 3 + 1)) + (k − 3))× w, where

xa is the address of x[1][2][3].

Code Gen Example Goutam Biswas

Compiler Design 107✬

✫

✩

✪

Offset Computation: an Example

• Let s2 = 5− 2 + 1 and s3 = 7− 3 + 1 be the

sizes of second and third dimensions.

• The expression can be rewritten as

xa − ((((1× s2 + 2)× s3) + 3)× w) + ((((i×

s2 + j)× s3) + k)× w).

• The first two terms are independent of

(i, j, k). In a nested loop they can be

computed outside it.

Code Gen Example Goutam Biswas

Compiler Design 108✬

✫

✩

✪

Grammar of Array in Expression and Assignment

id → ID indexListO

indexListO → indexList

indexListO → ε

indexList → indexList [exp]

indexList → [exp]

Code Gen Example Goutam Biswas

Compiler Design 109✬

✫

✩

✪

Array in Expression: Parse Tree

exp

id

ID

x

indexListO

indexList

indexList [exp]

indexList [exp

[exp]

1

2

3

3

2]

1

Code Gen Example Goutam Biswas

Compiler Design 110✬

✫

✩

✪

Note

• Each expression has an attribute exp.loc, an

index of the symbol table corresponding to a

variable.

• The symbol-table entry of the array

identifier has the sizes of different

dimensions. But it is not available during

the reduction of [exp] to indexList or

indexList [exp] to indexLista

aThough it is available immediately below the handle in the stack.

Code Gen Example Goutam Biswas

Compiler Design 111✬

✫

✩

✪

Synthesized Attributes and Semantic Actions

• Both indexList and indexListO has

synthesized attributes locLst that carries list

of symbol-table indices corresponding to the

expressions.

• The computation of offset takes place during

the reduction of ID indexListO to id.

• The non-terminal id may have two

attributes, id.base and id.offset.

Code Gen Example Goutam Biswas

Compiler Design 112✬

✫

✩

✪

Code Generation

• Let array deceleration be

x[r1][r2] · · · [rk]:int.

• Let the use of an array in an expression is

x[exp1][exp2] · · · [expk]

• Let the base address of the array be xb.

• Let the width of the base type be w.

Code Gen Example Goutam Biswas

Compiler Design 113✬

✫

✩

✪

Code Generation

Note that
indexListO.locLst = {exp1.loc, · · · , expk.loc}.
The address computation of the array element
and the semantic actions corresponding to the
reduction
id → ID indexListO
is as follows:
temp1 = searchInsert(symTab, newTemp(), err)
updateType(mkLocLst(temp1), ADDR)
codeGen(assign, exp1.loc, temp1)
$j+1 = exp1.loc

Code Gen Example Goutam Biswas

Compiler Design 114✬

✫

✩

✪

Code Generation

for i = 1 to k − 1 do

temp2 = searchInsert(symTab, newTemp(), err)

updateType(mkLocLst(temp2), ADDR)

codeGen(assAddrMultConst, temp1, ri+1, temp2)

$j+2i = $j+2i−1 × ri+1

temp1 = searchInsert(symTab, newTemp(), err)

updateType(mkLocLst(temp1), ADDR)

codeGen(assAddrAdd, temp2, expi+1, temp1)

$j+2i+1 = $j+2i + expi+1

Code Gen Example Goutam Biswas

Compiler Design 115✬

✫

✩

✪

Code Generation

temp2 = searchInsert(symTab, newTemp(), err)
updateType(mkLocLst(temp1), ADDR)
codeGen(assAddrMultConst, temp1, w, temp2)
$j+2k = $j+2k−1 × w

id.base = searchInsert(symTab,ID.lexme,err).sTab.offset
id.offset = temp2

Code Gen Example Goutam Biswas

Compiler Design 116✬

✫

✩

✪

Code Generation

The 3-address code corresponding to exp → id is,
temp = searchInsert(symTab, newTemp(), err)
updateType(mkLocLst(temp1), ADDR)
codeGen(assAddrAddConst, id.base, id.offset, temp)
$j+2k+1 = $j+2k + xb

temp1 = searchInsert(symTab, newTemp(), err)
updateType(mkLocLst(temp1), TYPE)
codeGen(assignIndirFrm, temp, temp1)
$j+2k+2 = *$j+2ki+1

Code Gen Example Goutam Biswas

Compiler Design 117✬

✫

✩

✪

Array in Assignment: Parse Tree

assignmentStmt

exp:=dotId

id

ID

x

indexListO

indexList

indexList [exp]

indexList [exp

[exp]

1

2

3

3

2]

1

4

Code Gen Example Goutam Biswas

Compiler Design 118✬

✫

✩

✪

Synthesized Attributes and Semantic Actions

• The semantic actions upto id are identical.

• The non-terminal dotId will have attributes

of id i.e. dotId.base and dotId.offset.

• The value of dotId.base + dotId.offset is

computed. The location corresponding to

this address is indirectly assigned exp.loc.

Code Gen Example Goutam Biswas

Compiler Design 119✬

✫

✩

✪

Code Generation

temp = searchInsert(symTab, newTemp(), err)

updateType(mkLocLst(temp), ADDR)

codeGen(assAddrPlus, dotId.base, dotId.offset, temp)

codeGen(assIndirTo, exp4.loc, temp)

Code Gen Example Goutam Biswas

Compiler Design 120✬

✫

✩

✪

Grammar of Function Declaration

decl → fun funDef end

funDef → funID fparamListO -> type

funBody

funID → ID

fparamListO → fparamList

fparamListO → ε

Code Gen Example Goutam Biswas

Compiler Design 121✬

✫

✩

✪

Grammar of Function Declaration

fparamList → fparamList ; pList : type

fparamList → pList : type

pList → pList , idP

pList → idP

idP → ID sizeListO

funBody → declList stmtListO

Code Gen Example Goutam Biswas

Compiler Design 122✬

✫

✩

✪

Note

• We may rewrite the rule

funDef → funID fparamListO -> type funBody as

funDef → funHeader funBody

funHeader → funID fparamListO -> type

• The name of the function and its type

information, an ordered list of return type

and types of formal parameters, can be

inserted in the current symbol table during

the reduction to funHeader.

Code Gen Example Goutam Biswas

Compiler Design 123✬

✫

✩

✪

Note

• It is necessary to save the current symbol

table (ct) (pointer to it) in a stack and

create a new symbol table (nt) for the new

environment of the function.

• There is a link from the the function name

entry in ct to the new table nt.

Code Gen Example Goutam Biswas

Compiler Design 124✬

✫

✩

✪

Note

• It is also necessary to insert the formal

parameter names and their types in the new

symbol-table (nt) as they will be used as

variables during the translation of the

function body.

Code Gen Example Goutam Biswas

Compiler Design 125✬

✫

✩

✪

Grammar of Function Call

callStmt → (ID : actParamListO)

exp → (ID : actParamListO)

actParamList → actParamList , exp

actParamList → exp

Code Gen Example Goutam Biswas

Compiler Design 126✬

✫

✩

✪

Note

• Corresponding to every reduction to

actParamList the following three address

code may be generated.

codeGen(param, exp.loc)

• But we shall delay the generation of this

code due to several reasons.

Code Gen Example Goutam Biswas

Compiler Design 127✬

✫

✩

✪

Note

• It is necessary to check type equivalence of

actual and formal parameters. It may also

be necessary to write code for type

conversion. But none of these can be easily

done during the reduction to actParamLst.

• Moreover we want to group all actual

parameter codes together, without mixing

them with the code to evaluate expressions.

Code Gen Example Goutam Biswas

Compiler Design 128✬

✫

✩

✪

Note

• So we save the list of locations of exp’s as

synthesized attribute of actParamList.

• Finally during the reduction to exp or

callStmt, a sequence of

codeGen(param, exp.loc)

3-address codes are emitted.

Code Gen Example Goutam Biswas

Compiler Design 129✬

✫

✩

✪

Note

• Actual function call will be made during the

reduction to exp or the callStmt.

• The 3-address code in case of reduction to

callStmt is

codeGen(call, temp, count),

where temp is the symbol-table index

corresponding to the function name and

count is the number of actual parameters.

Code Gen Example Goutam Biswas

Compiler Design 130✬

✫

✩

✪

Note

• The 3-address code corresponding to the

reduction to exp is slightly different. A new

variable name is created and inserted in the

symbol table with its type information etc.

The code is

codeGen(assCall, temp, count, temp1),

where temp1 is the index of the symbol-table

corresponding to the new variable.

Code Gen Example Goutam Biswas

Compiler Design 131✬

✫

✩

✪

Parameter Passing

Our discussion on parameter passing assumes
call-by-value. We have not talked about
call-by-reference, call-by-name, call-by-need,
etc.

Code Gen Example Goutam Biswas

Compiler Design 132✬

✫

✩

✪

Code for Structure

We have not talked about code generation for
structure or record declaration and access.

Code Gen Example Goutam Biswas

Compiler Design 133✬

✫

✩

✪

Switch Statement

There is no switch statement in our language.
But what are the possible translation
mechanisms of such a statement?

Code Gen Example Goutam Biswas

