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✫

✩

✪

SDD, Attribute Grammar and SDT
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✫

✩

✪

Translation

• So far we have talked about parsing of a

language. But our main goal is translation.

• Semantic actions to translate the source

language to target language often go

hand-in-hand with parsing. It is called

syntax-directed translation.
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✫

✩

✪

Translation

• To perform semantic actions along with

parsing (reduction for example), we may

associate computation with the production

rules. Computed values are propagated as

attributes of non-terminals.

• Otherwise the parse tree may be built

explicitly and semantic actions are

performed while traversing the tree.
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✫

✩

✪

Example

Consider the following production rule of the

classic expression grammar: E → E1 + T a.

We consider three different translations:

• implementation of a simple calculator,

• conversion of an infix expression to a postfix

expression,

• general purpose code generation.
aWe have used subscript to differentiate between two instances of E.
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✫

✩

✪

Example: Calculator

We have already seen that the only attribute of
E and T are values corresponding to the
sub-trees of E and T . Let us call the attribute
to be val.
The semantic action associated with the given
production rule is,
E → E1 + T {E·val = E1·val + T ·val}a.

aIn bison this gets translated to $$ = $1 + $3.
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✫

✩

✪

Note

The action may take place when E1 + T is
reduced to E. The computed value is saved as
the attribute of E. There is no other side-effect.
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✫

✩

✪

Note

But in the calculator if we want to keep a
provision of storing a value as a named object
(variable), we need a symbol table where the
variable names and their values are stored.
In this case the semantic action of
ES → id := E will changes the state of
computation (side effect) by entering the E·val
in the symbol table corresponding to id.name.
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✫

✩

✪

Example: Infix to Postfix Conversion

The problem is to convert an infix arithmetic
expression to a postfix expression. Both input
and output are strings of characters.
So the attribute of each non-terminal can be a
string of characters (char *). Let the name of
the field be exp. The semantic action associated
with the production rule is as follows:
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✫

✩

✪

Example: Infix to Postfix

E → E1 + T

{

E.exp=(char*)malloc(strlen(E1.exp)+

strlen(T.exp)+4);

strcpy(E.exp, E1.exp); strcat(E.exp, " ");

strcat(E.exp, T.exp);

strcat(E.exp, " + ");

free(E1.exp); free(T.exp);

}

Again there is no side-effect
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✫

✩

✪

Example: Code Generation

We assume that the computed values
corresponding to the expressions E1 and T are
stored in temporary locationsa.
The main attribute of a non-terminal in this
case is the address or index of the locationb in
the symbol table.

aCompiler defines temporary variables or virtual registers for this purpose

and enters them in the symbol table.
bNote that the location has not yet been bound to memory or physical register.

The address may be an index of the symbol table.
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✫

✩

✪

Example: Code Generation

E → E1 + T

{

E.loc = newLoc();

codeGen(assignPlus, E.loc, E1.loc, T.loc);

}

where assignPlusa means
E.loc = E1.loc + T.loc.

aThis is an example of an intermediate code generated from the source lan-

guage expression.
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✫

✩

✪

Note

This action has a side-effect as it makes an
entry of the new location in the symbol table.
It also adds the corresponding intermediate
code in the code stream.
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✫

✩

✪

Associating Information

We associate information to language
constructs by attaching attributes to the
grammar symbols. Computation of these
attributes are associated with the production
rules in the form of semantic rules.
Initial attribute values are supplied by the
scanner.
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✫

✩

✪

Definition

A syntax-directed definition is a context-free
grammar where attributes are associated with
the grammar symbols and semantic rules for
computing the attributes are associated with
the production rules. These grammars are also
called attribute grammars when the definition
does not have any side-effect. There is no strict
order of evaluation of the attributes, but there
should not be any circularity.
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✫

✩

✪

Definition

A syntax-directed translation is an executable
specification of SDD. Fragments of programs
are associated to different points in the
production rules. The order of execution is
important in this case.
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✫

✩

✪

Example

A → {Action1} B {Action2} C {Action3}

Action1: takes place before parsing of the
input corresponding to the non-terminal B.
Action2: takes place after consuming the input
for B, but before consuming the input for C.
Action3: takes place at the time of reduction of
BC to A or after consuming the input
corresponding to BC.
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✫

✩

✪

Note

• Embedded action may create some problem

in parser generator like Bison.

• Bison replaces the embedded action in a

production rule by an ε-production and

associates the embedded action with the new

rule.
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✫

✩

✪

Note

• But this may change the nature of the

grammar. As an example, the grammar

S → A|B,A → aba,B → abb is LALR. But if

an embedded action is introduced as shown,

S → A|B,A → a {action} ba,B → abb.

Bison modifies the grammar to

S → A|B,A → aMba,B → abb,M →

ε {action} , and the grammar is no longer

LALR.
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✫

✩

✪

General Approach for SDT

Construct the complete parse tree. Compute
the attributes of non-terminals by traversing
the tree. Explicit construction of a tree is costly
in terms of time and space.
There are SDDs that do not require explicit
construction of the parse tree. We shall
consider two of them - S-attributed and
L-attributed definitions.
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✫

✩

✪

A Complete Example

Consider the following grammar (augmented) of

binary strings:
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✫

✩

✪

0 : S′ → N$

1 : N → S L

2 : S → +

3 : S → −

4 : L → L B

5 : L → B

6 : B → 0

7 : B → 1
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✫

✩

✪

Note

• We wish to translate a signed binary string

to a signed decimal string.

• We first construct the LR(0) automaton of

the grammar and find that the grammar is

SLR.

• We associate attributes to the non-terminals.

Lect 9 Goutam Biswas



Compiler Design 23✬

✫

✩

✪

LR(0) Automaton

q0 : S′ → •N$ N → •SL S → •+

S → •−

q1 : S′ → N • $

q2 : N → S • L L → •LB L → •B

B → •0 B → •1

q3 : S → +•

q4 : S → −•

q5 : N → SL• L → L •B B → •0

B → •1
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✫

✩

✪

LR(0) Automaton

q6 : L → B•

q7 : B → 0•

q8 : B → 1•

q9 : L → LB•
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✫

✩

✪

SLR Parsing Table

S Action Goto

+ − 0 1 $ N S L B

0 s3 s4 1 2

1 Acc

2 s7 s8 5 6

3 r6 r6

4 r7 r7

5 s7 s8 r1 9
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✫

✩

✪

SLR Parsing Table

S Action Goto

+ − 0 1 $ N S L B

6 r5 r5 r5

7 r6 r6 r6

8 r7 r7 r7
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✫

✩

✪

Attributes of Non-Terminals

Following are the attributes of different

non-terminals:

Non-terminal Attribute Type

N val int

S sign char

L val int

B val int
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✫

✩

✪

Definition or Action

0 : S′ → N Accept

1 : N → SL if (S.sign == ’-’) N.val= - L.val;

else N.val = L.val;

2 : S → + S.sign = ’+’;

3 : S → − S.sign = ’-’;

4 : L → L1B L.val = 2*L1.val+B.val;

5 : L → B L.val = B.val;

6 : B → 0 B.val = 0;

7 : B → 1 B.val = 1;
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Parsing $0 +101$ shift

Value $

Parsing $03 101$ reduce

Value $+

Parsing $02 101$ shift

Value $S S.sign=’+’

Parsing $028 01$ reduce

Value $S1
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Parsing $026 01$ reduce

Value $SB B.val = 1

Parsing $025 01$ shift

Value $SL L.val = B.val

Parsing $0257 1$ reduce

Value $SL0

Parsing $0259 1$ reduce

Value $SLB B.val = 0
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Parsing $025 1$ shift

Value $SL L.val = 2*L1.val + B.val

Parsing $0258 $ reduce

Value $SL1

Parsing $0259 $ reduce

Value $SLB B.val=1

Parsing $025 $ reduce

Value $SL L.val = 2*L1.val + B.val
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Parsing $01 $ Accept

Value $N N.val = +L.val
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✫

✩

✪

Decorated Parse Tree

N

B

B

B

1

0

1

S

+

B.val=1

B.val=1

B.val=0
L3L3.val=B.val

L2
L2.val=2*L3.val+B.val

L1 L1.val=2*L1.val + B.val

N.val=L1.val
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✫

✩

✪

Synthesized Attribute

• In this example the value of an attribute of a

non-terminal is either coming from the

scannera or it is computed from the

attributes of its children.

• This type of attribute is known as a

synthesized attribute.

aAttribute of a terminal comes from the scanner.
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✫

✩

✪

S-Attributed

• An attributed grammar is called

S-attributed if every attribute is synthesized.

• Attributes in such a grammar can be easily

computed during a bottom-up parsing.
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✫

✩

✪

Note

Attribute of a non-terminal depends on the
nature of translation. But it may also depend
on the nature of the grammar.
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✫

✩

✪

Exercise

Following grammar of 2’s complement numerals

is to be translated to a signed decimal integer.

1 : N → L

2 : L → L B

3 : L → B

4 : B → 0

5 : B → 1
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✫

✩

✪

Exercise

Associate attributes to the non-terminals and
give rules for semantic actions. Write bison
specification for the grammar.
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✫

✩

✪

Example

Consider a right-recursive grammar of signed

binary strings:
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✫

✩

✪

0 : S′ → N

1 : N → S L

2 : S → +

3 : S → −

4 : L → B L

5 : L → B

6 : B → 0

7 : B → 1
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✫

✩

✪

Attributes of Non-Terminals

We need a new attribute of L to remember the bit

position:

Non-terminal Attribute Type

N val int

S sign char

L val int

pos int

B val int
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✫

✩

✪

Action for Rules

0 : S′ → N Accept

1 : N → SL if (S.sign == ’-’) N.val=- L.val;

else N.val = L.val;

2 : S → + S.sign = ’+’;

3 : S → − S.sign = ’-’;

4 : L → BL1 if(B.val)

L.val=pow(2,L1.pos)+L1.val;

else L.val=L1.val;

L.pos=L1.pos+1;
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✫

✩

✪

Actions for Production Rules

5 : L → B L.val = B.val; L.pos = 1

6 : B → 0 B.val = 0;

7 : B → 1 B.val = 1;

Lect 9 Goutam Biswas



Compiler Design 44✬

✫

✩

✪

Example

Consider the following grammar for variable

declaration:

1 : D → T L ;

2 : T → int

3 : T → double

4 : L → L , id

5 : L → id
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✫

✩

✪

Parse Tree

The parse tree for the string double id, id; is
as follows:
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✫

✩

✪

D

T L

Ldouble

id

,

;

id
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✫

✩

✪

Note

When an id is reduced to the non-terminal L,
it is inserted in the symbol table along with its
type informationa. The type information is not
available from any subtree rooted at L. It has
to be inherited from T via the root D.

aThe type information is important for space allocation, representation, op-

erations, correctness and other purposes.
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✫

✩

✪

SDDefinition

1 : D → TL; L.type = T.type

2 : T → int T.type = INT

3 : T → double T.type = DOUBLE

4 : L → L1, id L1.type = L.type

addSym(id.name, L.type)

5 : L → id addSym(id.name, L.type)
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✫

✩

✪

Inherited Attribute

Let B be a non-terminal at a parse tree node
N . Let M be the parent of N . An inherited
attribute B.i is defined by the semantic rule
associated with the production rule of M
(parent).
Inherited attribute at the node N is defined in
terms of M , N and N ’s siblings.
In the previous example the non-terminal L gets
the attribute from T as an inherited attribute.
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✫

✩

✪

S-Attributed Definitions

An SDD is S-attributed if every attribute is

synthesized. The attribute grammar may be

called S-attributed grammar.

This definition can be implemented in a
LR-parser as the reduction traverse the
parse-tree in postorder.
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✫

✩

✪

L-Attributed Definitions

An SDD is called L-attributed (‘L’ for left) if

each attribute is either

• synthesized, or

• inherited with the following restrictions: if

A → α1α2 · · ·αn be a production rule, and

αk has an inherited attribute ‘a’ computed in

this rule, then the computation may involve
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✫

✩

✪

L-Attributed Grammar

• inherited attribute of A (parent), or

• attributes (inherited or synthesized) of

α1, α2, · · · , αk−1 (symbols to the left of αk),

• attributes of αk, provided no dependency

cyclea is formed.

aA → B { A.s = B.i;B.i = A.s+ k }.
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✫

✩

✪

Rules

The type definition mentioned earlier is L-attributed.

1 : D → TL; L.type = T.type

2 : T → int T.type = INT

3 : T → double T.type = DOUBLE

4 : L → L1, id L1.type = L.type

addSym(id.name, L.type)

5 : L → id addSym(id.name, L.type)
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✫

✩

✪

Note

The question is how to propagate the type
information in a parser generated by bison?
The non-terminal T gets the value of
synthesized type attribute when a T -production
rule is reduced.
But that cannot be propagated as an attribute
of the non-terminal L as this non-terminal is
not present in the stack.
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✫

✩

✪

Solution I

A very ad hoc solution is to use a global

variable to hold the type value.

T → int type = INT

T → double type = DOUBLE

L → L1, id addSym(id.name, type)

L → id addSym(id.name, type)
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✫

✩

✪

Solution II

We introduce a different attribute of L, a list of
symbol table entries corresponding to different
identifiers, and initialize their types at the end.
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✫

✩

✪

1 : D → TL; initType(L.list, T.type)

2 : T → int T.type = INT

3 : T → double T.type = DOUBLE

4 : L → L1, id L.list = L 1.list +

mklist(addSym(id.name))

5 : L → id L.list =

mklist(addSym(id.name))

Read ‘+’ as append in the list.
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✫

✩

✪

Solution III

We can device another solution from the value
stack. For that we consider the states of LR(0)
automaton of the grammar.
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✫

✩

✪

LR(0) Automaton

q0 : S → •D D → •TL; T → •int

T → •double

q1 : S → D•

q2 : D → T • L L → •L, id L → •id

q3 : T → int•

q4 : S → double•

q5 : D → TL•; L → L•, id

q6 : L → id•
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✫

✩

✪

LR(0) Automaton

q7 : L → L, •id

q8 : L → L, id•

q9 : D → TL; •
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Par $0 int id, id;$ shift

Val $

Par $03 id, id;$ reduce

Val $int

Par $02 id, id;$ shift

Val $T T.type=INT

Par $026 , id;$ reduce

Val $T id
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Par $025 , id;$ reduce

Val $T L addSym(id.name,L.type)

How does L gets the type information. Note that in

bison L ≡ $$ and id ≡ $1. But the type information is

available in T in the stack, below the handle.

Type Stack → Input→ Action/Value

Par $0257 id;$ shift

Val $T L ,
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Par $02578 ;$ reduce

Val $T L , id

Par $025 ;$

Val $T L addSym(id.name,L.type)

Again the type information is available just below the
handle.

Lect 9 Goutam Biswas



Compiler Design 64✬

✫

✩

✪

Note

In Bison the attribute below the handle can be
accessed. In this case the non-terminal T
corresponds to $0 and its type attribute is
$0.type.
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✫

✩

✪

Note

Often a natural grammar is transformed to
facilitate some type of parsing, and the parse
tree does not match with the abstract syntax
tree of the language.
As an example the left recursion is removed for
LL(1) parsing. How does the original
S-attributed grammar gets modified after the
removal of left-recursion? We consider the
following example.
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✫

✩

✪

S-Attributed Expression Grammar

S → E$ { print E.val }

E → E1 + T { E.val = E1.val + T.val}

E → T { E.val = T.val}

T → T1 ∗ F { T.val = T1.val * F.val}

T → F { T.val = F.val}

F → (F ) { F.val = E.val}

F → ic { F.val = ic.val}
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✫

✩

✪

Equivalent LL(1) Grammar

S → E$

E → TE ′

E ′ → +TE ′

E ′ → ε

T → FT ′

T ′ → ∗FT ′

T ′ → ε

F → (E)

F → ic
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✫

✩

✪

Decorated Parse Tree of 2 + 3 + 4

E0

E1
T1+

E2
T2 F1

ic

ic

3

ic

4

T3

F3

F2

ic.val=2

ic.val=3

ic.val=4

F3.s = 2

T3.s = 2

E2.s = 2

F2.s = 3

F1.s = 4

T1.s = 4
E1.s = E2.s+ T2.s

E0.s = E1.s+ T1.s

2

T2.s = 3

+
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✫

✩

✪

Parse Tree of LL(1) Grammar

E0

E
′

1T3

F3

ic

2

ic.val=2

F3.s = 2

T3.s = 2

+ E
′

2

icic.val=3

3

F2.s = 3

T2.s = 3

+

ic

4

ic.val=4

T1.s = 4

ε

T1

F1

T2

F2

F1.s = 4

E
′

3
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✫

✩

✪

Note

• Two arguments of ‘+’ are in different

subtrees. It is necessary to pass the value of

T3.s to the subtree of E ′
1.

• It is also necessary for left-associativity of

‘+’, to propagate the computed value down

the tree say from E ′
1 to E ′

2.

• We achieve this by inherited attributes E ′.i

and T ′.i of the non-terminals E ′ and T ′.
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✫

✩

✪

Parse Tree of LL(1) Grammar

E0

E
′

1T3

F3

ic

2

ic.val=2

F3.s = 2

T3.s = 2

+ E
′

2

icic.val=3

3

F2.s = 3

T2.s = 3

+

ic

4

ic.val=4

T1.s = 4

ε

T1

F1

T2

F2

F1.s = 4

E
′

3 E
′

3.i = E
′

2.i+ T1.s

E
′

2.i = E
′

1.i+ T2.s

E
′

1.i = T3.s
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✫

✩

✪

Note

But it is also necessary to propagate the
computed value towards the root. This is done
through the synthesized attributes of E ′ and T ′

- E ′.s, T ′.s.
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✫

✩

✪

Decorated Parse Tree of LL(1) Grammar

E0

E
′

1T3

F3

ic

2

ic.val=2

F3.s = 2

T3.s = 2

+ E
′

2

icic.val=3

3

F2.s = 3

T2.s = 3

+

ic

4

ic.val=4

T1.s = 4

ε

T1

F1

T2

F2

F1.s = 4

E
′

3 E
′

3.i = E
′

2.i+ T1.s

E
′

2.i = E
′

1.i+ T2.s

E
′

3.s = E
′

3.i

E
′

2.s = E
′

3.s

E
′

1.s = E
′

2.s

E
′

0.s = E
′

1.s

E
′

1.i = T3.s
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✫

✩

✪

L-Attributed LL(1) Expression Grammar

E → T { E’.ival = T.sval } E ′

{ E.sval = E’.sval }

E ′ → +T { E1’.ival = E’.ival + T.sval } E ′
1

{ E’.sval = E1’.sval }

E ′ → ε { E’.sval = E’.ival }
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✫

✩

✪

L-Attributed LL(1) Expression Grammar

T → F { T’.ival = F.sval } T ′

{ T.sval = T’.sval }

T ′ → ∗F { T1’.ival = T’.ival * F.sval } T ′
1

{ T’.sval = T1’.sval }

T ′ → ε { T’.sval = T’.ival }
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✫

✩

✪

L-Attributed LL(1) Expression Grammar

F → (E) { F.sval = E.sval }

F → ic { F.sval = ic.val }
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✫

✩

✪

LL(1) Parsing Table

Non Terminal

Term. + ∗ ( ) ic $

E E → TE
′

E → TE
′

T T → FT
′

T → FT
′

F F → (E) F → ic

E
′

E
′ → +TE

′
E

′ → ε E
′ → ε

T
′

T
′ → ε T

′ → ∗FT
′

T
′ → ε T

′ → ε
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✫

✩

✪

Example

Consider the leftmost derivation and the parse
tree decorated with attributes. corresponding
to the input 2 + 3 * 4.
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✫

✩

✪

Left-most Derivation

1 E 10 → ic + ic ∗ ic T ′E ′

2 → TE ′ 11 → ic + ic ∗ ic ε E ′

3 → FT ′E ′ 12 → ic + ic ∗ ic

4 → ic T ′E ′

5 → ic ε E ′

6 → ic + TE ′

7 → ic + FT ′E ′

8 → ic + ic T ′E ′

9 → ic + ic ∗ FT ′E ′
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✫

✩

✪

$ E

Parsing Stack 

$ E’ T

$ E’ T’ F

$ E’ T’

$ E’ T’ ic

$ E’

$ E’ T +

$ E’ T

Parsing Stack 

$ E’ T’ F

$ E’ T’ ic

$ E’ T’

$ E’ T’ F *

$ E’ T’ F

$ E’ T’ ic

$ E’ T’ 

$ E’

$

ic * ic $

Input

ic + ic * ic $

ic + ic * ic $

ic + ic * ic $

ic + ic * ic $

+ ic * ic $

+ ic * ic $

+ ic * ic $

ic * ic $

Input

* ic $

* ic $

ic $

ic $

ic $

$

$

$

Start

End
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✫

✩

✪

Decorated Parse Tree
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✫

✩

✪

+

E0

T1 E′

1

F1 T ′

1

T2
E′

2

T ′

2
F2

T ′

3F3

ic ∗

ic
ε

ε

2

3

4

icic.val=2

F1.s = 2

ε

T ′

1
.s = 2

T1.s = 2
E′

1
.i = 2

ic.val=3

F2.s = 3

ic.val=4

F2.s = 4

T ′

1
.i = 2

T ′

3
.s = 12

T ′

3
.i = 12

T ′

2
.s = 12

T2.s = 12
E′

2
.s = 14

E′

2
.i = 14

E0.s = 14

T ′

2
.i = 3

E′

1
.s = 14
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✫

✩

✪

Implementation of L-Attributed Translation

The important question is how to implement

L-attributed translation with the top-down

parsing. Following is a general scheme.

• A simple parser stack holds records

corresponding to terminals and

non-terminals.
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✫

✩

✪

Implementation of L-Attributed Translation

• But to implement L-attributed translations,

it should also hold records containing pointer

to action (code), synthesize attributes and

inherited attributes.

• For a non-terminal A, the inherited

attributes are kept in the record

corresponding to A itself.
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✫

✩

✪

Implementation of L-Attributed Translation

• The pointer to the code to evaluate the

inherited attributes of A are naturally kept

above the record of A.

• Synthesized attributes of A are kept below

the record of A and its inherited attribute.

This record may also contain pointer to

some code to copy the synthesized attributes

in records down the stack (below a fixed

depth).
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✫

✩

✪

An Example

Consider the following rule of the L-attributed

expression grammar:

E → T { E’.ival = T.sval } E ′

{ E.sval = E’.sval }

The stack contains following records before the
E is expanded.
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✫

✩

✪

Parsing Stack with Attribute Records

Parsing Stack 

$ E.sv=? E

Input

ic + ic * ic $
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✫

✩

✪

An Example

After the replacement of the non-terminal E,

the stack looks like:
Parsing Stack 

$ E.sv=? E’.sv=?

E.sv=E’.sv

E’ E’.iv=?

E’.iv=T.sv

T.sv=? T

Input

ic + ic * ic $
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✫

✩

✪

An Example

Parsing Stack 

$ E.sv=? E’.sv=?

E.sv=E’.sv

E’ E’.iv=?

E’.iv=T.sv

T.sv=? F.sv=? F

Input

ic + ic * ic $

Parsing Stack 

$ E.sv=? E’.sv=?

E.sv=E’.sv

E’ E’.iv=?

E’.iv=T.sv

T.sv=? F.sv=?

Input

ic + ic * ic $ic

2
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✫

✩

✪

An Example

Parsing Stack 

$ E.sv=? E’.sv=?

E.sv=E’.sv

E’ E’.iv=?

E’.iv=T.sv

F.sv=2T.sv=2

Input

+ ic * ic $

Parsing Stack 

$ E.sv=? E’.sv=?

E.sv=E’.sv

E’

Input

+ ic * ic $E’.iv=2

After three pops
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✫

✩

✪

Another Example

L-attributed grammars come naturally with

flow-control statements. Following is an

example with if-then-else statement.

IS → if BE then S1 else S2.
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✫

✩

✪

Attributes of Statement

• Every statement has a natural synthesized

attribute, S.code, holding the code

corresponding to S.

• Also a statement S has a continuation, the

next instruction to be executed after

execution of S. This may be handled as a

jump target (label). But this label is an

inherited attribute of S, S.next, propagated

in the subtree of S.
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✫

✩

✪

Attributes of Boolean Expression

• The boolean expression also has a

synthesized attribute BE.code.

• But it has two inherited attributes, BE.true,

a jump target (label) where the control is

transfered if the boolean expression is

evaluated to true. This is the beginning of

S1.

Similarly there is BE.false, a label at the

beginning of S2.
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✫

✩

✪

SDD for if-then-else

IS → if BE l1=newLabel(), l2=newLabel()

then S1 BE.true = l1, BE.false=l2

else S2. S1.next = S2.next = IS.next

IS.code = BE.code + l1’:’ +

S1.code + l2’:’ + S2.code
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✫

✩

✪

L-Attributed SDT for if-then-else

IS → if {l1=newLabel(),l2=newLabel()

BE.true = l1, BE.false=l2}

BE {S1.next = IS.next }

then S1 {S2.next = IS.next }

else S2.

{IS.code = BE.code + l1’:’ +

S1.code + l2’:’ + S2.code}
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✫

✩

✪

Note

Afterward we shall see how this is managed in
an actual implementation using back-patching.
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✫

✩

✪

SDD for Boolean Expression and

BE → BE1 and BE2 BE1.true=l=newLabel()

BE1.false = BE.false

BE2.true = BE.true

BE2.false = BE.false

BE.code = BE1.code +

l’:’ + BE2.code
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✫

✩

✪

L-Attributed SDT for Boolean Expression and
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✫

✩

✪

BE → { BE1.true=l=newLabel()

BE1.false = BE.false }

BE1 and

{ BE2.true = BE.true

BE2.false = BE.false }

BE2

{ BE.code = BE1.code +

l’:’ + BE2.code }
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✫

✩

✪

Note

Not all definitions can be implemented during
parsing. Consider the following definition to
convert infix-expression to prefix expression.
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✫

✩

✪

Rules

1 : E → { putchar(’+’); } E1 + T

2 : E → T

3 : T → { putchar(’*’); } T1 ∗ F

4 : T → F

5 : F → (E)

6 : F → ic {printf(" \%d ", ic.val);}
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✫

✩

✪

Note

It is not possible to activate any one of the putchar()
operations while parsing without seeing ‘+’ or ‘*’. But if
the whole parse tree is availablea New leaf nodes
corresponding to actions can be added to internal nodes.
Finally a preorder traversal in the modified tree will do
the job.

aThe whole parse tree is available only after the parsing is complete.
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