
Compiler Design 1✬

✫

✩

✪

Intermediate Representations

Lect 10 Goutam Biswas

Compiler Design 2✬

✫

✩

✪

Front End & Back End

The portion of the compiler that does scanning,
parsing and static semantic analysis is called
the front-end.
The translation and code generation portion of
it is called the back-end.
The front-end depends mainly on the source
language and the back-end depends on the
target architecture.

Lect 10 Goutam Biswas

Compiler Design 3✬

✫

✩

✪

Intermediate Representation

A compiler transforms the source program to
an intermediate form that is mostly
independent of the source language and the
machine architecture. This approach isolates
the front-end and the back-enda.

aEvery source language has its front end and every target language has its

back end.

Lect 10 Goutam Biswas

Compiler Design 4✬

✫

✩

✪

Note

In a commercial compiler more than one
intermediate representations may be used at
different levels for code improvement. In a high
level intermediate form the language structure
is preserved and improvement can be done on
it. Whereas a low level intermediate form is
suitable for code improvement for the target
architecture.

Lect 10 Goutam Biswas

Compiler Design 5✬

✫

✩

✪

Note

A syntax tree is very similar to a parse tree
where extraneous nodes are removed. It is a
good representation closer to the
source-language and is used in applications like
source-to-source translation, syntax-directed
editor etc.

Lect 10 Goutam Biswas

Compiler Design 6✬

✫

✩

✪

Tree and DAG

A directed acyclic graph (DAG) representation
is an improvement over a syntax tree, where
subtree duplications such as common
subexpressions are identified and shared.

Lect 10 Goutam Biswas

Compiler Design 7✬

✫

✩

✪

Syntax Tree: a*a+a*b+a*b+a*a

a a a b a b a a

* * * *

+

+

+

Lect 10 Goutam Biswas

Compiler Design 8✬

✫

✩

✪

DAG: a*a+a*b+a*b+a*a

a b

* *

+

+

+

Lect 10 Goutam Biswas

Compiler Design 9✬

✫

✩

✪

Note

There are six occurrences of ‘a’ and two
occurrences of ‘b’ in the expression.
In the DAG ‘a’ has two parents to indicate two
occurrences of it in two different
sub-expressions. Similarly, ‘b’ has one parent to
indicate its occurrence in one sub-expression.
The internal nodes representing ‘a*a’ and ‘a*b’
also has two parents each indicating their two
occurrences.

Lect 10 Goutam Biswas

Compiler Design 10✬

✫

✩

✪

SDT for Tree and DAG

We have the classic expression grammar G.
Following are syntax directed translations to
construct expression tree and DAG.

Lect 10 Goutam Biswas

Compiler Design 11✬

✫

✩

✪

SDT for Tree

F → id

{

index = searchInsertSymTab(id.name) ;

F.node = mkLeaf(index);

}

E → E1 + T
{ E.node = mkNode(’+’, E1.node, T.node);}

Lect 10 Goutam Biswas

Compiler Design 12✬

✫

✩

✪

SDT for DAG

F → id

{

(index, new) = searchInsertSymTab(id.name) ;

if(new == NEW) {

F.node = mkLeaf(index);

symTab[index].leaf = F.node;

}

else F.node = symTab[index].leaf;

}

Lect 10 Goutam Biswas

Compiler Design 13✬

✫

✩

✪

SDT for DAG

E → E1 + T

{

node = searchNode(’+’,E1.node,T.node);

if(node <> NULL)

E.node = mkNode(’+’,E1.node,T.node);

else E.node = node;

}

Lect 10 Goutam Biswas

Compiler Design 14✬

✫

✩

✪

Nodes

It is necessary to organized the nodes in such a
way that they can be searched efficiently and
shared. Often nodes are stored in an array of
records with a few fields.
The first field corresponds to a token or an
operator corresponding to the node. Other
fields correspond to the attributes in case of a
leaf node, and indices of its children in case of
an internal node.
The index of a node is known as its value
number.

Lect 10 Goutam Biswas

Compiler Design 15✬

✫

✩

✪

DAG and Its Nodes

a b

* *

+

+

+ ID(a)
ID(b)

SymTab
1

* 1 1
1

2

2

3
4
5 +

*
43

+
+6

7
4 5
3 6

Lect 10 Goutam Biswas

Compiler Design 16✬

✫

✩

✪

Note

Searching for a node in a flat array is not
efficient and the nodes may be arranged as a
hash table.

Lect 10 Goutam Biswas

Compiler Design 17✬

✫

✩

✪

Linear Intermediate Representation

Both the high-level source code and the target
assembly codes are linear in their text. The
internal representation may also be linear.
But then a linear intermediate form should
include conditional branches and jumps to
control the flow.

Lect 10 Goutam Biswas

Compiler Design 18✬

✫

✩

✪

Linear Intermediate Representation

Linear intermediate code, like the assembly
language code, may be one-address, suitable for
an accumulator architecture, two-address,
suitable for a register architecture with limited
number of registers where one operand is
destroyed, or three-address for modern
architectures.
In fact it may also be zero-address for a stack
machine. We shall only talk about the
three-address codes.

Lect 10 Goutam Biswas

Compiler Design 19✬

✫

✩

✪

Three-Address Instruction/Code

It is a sequence of instructions of following
forms:
1. a = b # copy
2. a = b op c # binary operation
3. a[i] = b # array write
4. a = b[i] # array read
5. goto L # jump
6. if a==true goto L # branch
7. if a==false goto L

Lect 10 Goutam Biswas

Compiler Design 20✬

✫

✩

✪

Three-Address Instruction/Code

8. a = op b # unary operation
9. if a relop b goto L # relOp and branch
10. param a # parameter passing
11. call p, n # function call
12. a = call p, n # function returns a value
13. *a = b # indirect assignment
There may be a few more.

Lect 10 Goutam Biswas

Compiler Design 21✬

✫

✩

✪

Three-Address Instruction/Code

1. a corresponds to a source program variable
or compiler defined temporary, and b
corresponds to either a variable, or a
temporary, or a constant.
2. a is similar; b, c are similar to ‘b’ in 1. op is
a binary operator.
3. a is the array name and i is the byte offset.
b is similar.
4. Similar.

Lect 10 Goutam Biswas

Compiler Design 22✬

✫

✩

✪

Three-Address Instruction/Code

5. L is a label
6. If a is true, jump to label L.
7. If a is false, jump to label L.
8. op is a unary operator.
9. relop is a relational operator.
10. Passing the parameter a.
11. Calling the function p, that takes n
operators.
12. The return value is stored in a.
13. Indirection.

Lect 10 Goutam Biswas

Compiler Design 23✬

✫

✩

✪

Three-Address Code: Example

a b

* *

+

+

+

t1 = a * a
t2 = a * b
t3 = t1 + t2
t4 = t3 + t2
t5 = t1 + t4

t5

t4

t1

t3

t2

Lect 10 Goutam Biswas

Compiler Design 24✬

✫

✩

✪

GCC Intermediate Codes

The GCC compiler uses three intermediate

representations:

1. GENERIC - it is a language independent

tree representation of the entire function.

2. GIMPLE - is a three-address representation

generated from GENERIC.

3. RTL - a low-level representation known as

register transfer language.

Lect 10 Goutam Biswas

Compiler Design 25✬

✫

✩

✪

A Example

Consider the following C function.

double CtoF(double cel) {

return cel * 9 / 5.0 + 32 ;

}

Lect 10 Goutam Biswas

Compiler Design 26✬

✫

✩

✪

Readable GIMPLE Code

$ cc -Wall -fdump-tree-gimple -S ctof.c

CtoF (double cel) {

double D.1248;

double D.1249;

double D.1250;

D.1249 = cel * 9.0e+0;

D.1250 = D.1249 / 5.0e+0;

D.1248 = D.1250 + 3.2e+1;

return D.1248;

}

Lect 10 Goutam Biswas

Compiler Design 27✬

✫

✩

✪

Raw GIMPLE Code

$ cc -Wall -fdump-tree-gimple-raw -S ctof.c

CtoF (double cel)

gimple_bind <

double D.1588;

double D.1589;

double D.1590;

gimple_assign <mult_expr, D.1589, cel, 9.0e+0>

gimple_assign <rdiv_expr, D.1590, D.1589, 5.0e+0>

gimple_assign <plus_expr, D.1588, D.1590, 3.2e+1>

gimple_return <D.1588>

>

Lect 10 Goutam Biswas

Compiler Design 28✬

✫

✩

✪

C program with if

#include <stdio.h>

int main() // cCode4.c

{

int l, m ;

scanf("%d", &l);

if(l < 10) m = 5*l;

else m = l + 10;

printf("l: %d, m: %d\n", l, m);

return 0;

}

Lect 10 Goutam Biswas

Compiler Design 29✬

✫

✩

✪

Gimple code

cc -Wall -fdump-tree-gimple -S cCode4.c

Output: cCode4.c.004t.gimple

main ()

{

const char * restrict D.2046;

int l.0;

int l.1;

int l.2;

int l.3;

const char * restrict D.2054;

int D.2055;

int l;

Lect 10 Goutam Biswas

Compiler Design 30✬

✫

✩

✪

int m;

D.2046 = (const char * restrict) &"%d"[0];

scanf (D.2046, &l);

l.0 = l;

if (l.0 <= 9) goto <D.2048>; else goto <D.2049>;

<D.2048>:

l.1 = l;

m = l.1 * 5;

goto <D.2051>;

<D.2049>:

l.2 = l;

m = l.2 + 10;

<D.2051>:

Lect 10 Goutam Biswas

Compiler Design 31✬

✫

✩

✪

l.3 = l;

D.2054 = (const char * restrict) &"l: %d, m: %d\n"[0];

printf (D.2054, l.3, m);

D.2055 = 0;

return D.2055;

}

Lect 10 Goutam Biswas

Compiler Design 32✬

✫

✩

✪

C program with for

#include <stdio.h>

int main() // cCode5.c

{

int n, i, sum=0 ;

scanf("%d", &n);

for(i=1; i<=n; ++i) sum = sum+i;

printf("sum: %d\n", sum);

return 0;

}

Lect 10 Goutam Biswas

Compiler Design 33✬

✫

✩

✪

Gimple code

cc -Wall -fdump-tree-gimple -S cCode5.c

Output: cCode5.c.004t.gimple

main ()

{

const char * restrict D.2050;

int n.0;

const char * restrict D.2052;

int D.2053;

int n;

int i;

int sum;

Lect 10 Goutam Biswas

Compiler Design 34✬

✫

✩

✪

sum = 0;

D.2050 = (const char * restrict) &"%d"[0];

scanf (D.2050, &n);

i = 1;

goto <D.2047>;

<D.2046>:

sum = sum + i;

i = i + 1;

<D.2047>:

n.0 = n;

if (i <= n.0) goto <D.2046>; else goto <D.2048>;

<D.2048>:

D.2052 = (const char * restrict) &"sum: %d\n"[0];

printf (D.2052, sum);

Lect 10 Goutam Biswas

Compiler Design 35✬

✫

✩

✪

D.2053 = 0;

return D.2053;

}

Lect 10 Goutam Biswas

Compiler Design 36✬

✫

✩

✪

Representation of Three-Address Code

Any three address code has two essential
components: operator and operand. There may
be at most three operands and only one
operator. The operands are of three types,
name from the source program, temporary
name generated by a compiler or a constanta.
There is another category of name, a label in
the sequence of three-address codes.
A three-address code sequence may be
represented as a list or array of structures.

aThere are different types of constants used in a programming language.

Lect 10 Goutam Biswas

Compiler Design 37✬

✫

✩

✪

Quadruple

A quadruple is the most obvious first choicea. It
has an operator, one or two operands, and the
target field. Following are a few examples of
quadruple representations of three-address
codes.

aIt looks like a RISC instruction at the intermediate level.

Lect 10 Goutam Biswas

Compiler Design 38✬

✫

✩

✪

Example

Operation Op1 Op2 Target

copy b a

add b c a

writeArray b i a

readArray b i a

jmp L

The variable names are pointers to symbol
table.

Lect 10 Goutam Biswas

Compiler Design 39✬

✫

✩

✪

Example

Operation Op1 Op2 Target

ifTrue a L

ifFalse a L

minus b a

address b a

indirCopy b a

Lect 10 Goutam Biswas

Compiler Design 40✬

✫

✩

✪

Example

Operation Op1 Op2 Target

lessEq a b L

param a

call p n

copyIndir b a

Lect 10 Goutam Biswas

Compiler Design 41✬

✫

✩

✪

Triple

A triple is a more compact representation of a
three-address code. It does not have an explicit
target field in the record. When a triple uses
the value produced by another triple, the
user-triple refers to the definition-triple by its
index. Following is an example:

Lect 10 Goutam Biswas

Compiler Design 42✬

✫

✩

✪

Example

t1 = a * a

t2 = a * b

t3 = t1 + t2

t4 = t3 + t2

t5 = t1 + t4

Op Op1 Op2

0 mult a a

1 mult a b

2 add (0) (1)

3 add (2) (1)

4 add (0) (3)

Lect 10 Goutam Biswas

Compiler Design 43✬

✫

✩

✪

Note

An operand field in a triple can hold a
constant, an index of the symbol table or an
index of its own.

Lect 10 Goutam Biswas

Compiler Design 44✬

✫

✩

✪

Indirect Triple

• It may be necessary to reorder instructions

for the improvement of code.

• Reordering is easy with a quad

representation, but is problematic with triple

representation as it uses absolute index of a

triple.

Lect 10 Goutam Biswas

Compiler Design 45✬

✫

✩

✪

Indirect Triple

• As a solution indirect triples are used, where

the ordering is maintained by a list of

pointers (index) to the array of triples.

• The triples are in their natural translation

order and can be accessed by their indexes.

But the execution order is maintained by an

array of pointers (index) to the array of

triples.

Lect 10 Goutam Biswas

Compiler Design 46✬

✫

✩

✪

Example

Exec. Order

0 (0)

1 (2)

2 (1)

3 (3)

· · · · · ·

Op Op1 Op2

0 mult a b

1 add (0) c

2 add a b

3 add (1) (2)

· · · · · ·

Lect 10 Goutam Biswas

Compiler Design 47✬

✫

✩

✪

Static Single-Assignment (SSA) Form

• This representation is similar to

three-address code with two main differences.

• Every assignment uses different variable

(virtual register) name. This helps certain

code improvement.

It tries to encode the definitiona and use of a

name. Each name is defined only once and

so it is called static single-assignment.
aHere a definition means an assignment of value to a variable.

Lect 10 Goutam Biswas

Compiler Design 48✬

✫

✩

✪

Static Single-Assignment (SSA) Form

• In a conditional statement if the same user

variable is defined on more than one control

paths, they are renamed as distinct variables

with appropriate subscripts.

• Finally when the paths join, a φ-function is

used to combine the variables. The

φ-function selects the value of its arguments

depending on the flow-path.

Lect 10 Goutam Biswas

Compiler Design 49✬

✫

✩

✪

Example

Consider the following C code:

for(f=i=1; i<=n; ++i) f = f*i;

The corresponding three-address codes and
SSA codes are as follows.

Lect 10 Goutam Biswas

Compiler Design 50✬

✫

✩

✪

Three-Address & SSA Codes

i = 1 i0 = 1
f = 1 f0 = 1

L2: if i>n goto - if i0 > n goto L1
L2: i1 = φ(i0, i2)

f1 = φ(f0, f2)
f = f*i f2 = f1*i1
i = i + 1 i2 = i1 + 1
goto L2 if i2 <= n goto L2

L1: i3 = φ(i0, i2)
f3 = φ(f0, f2)

Lect 10 Goutam Biswas

Compiler Design 51✬

✫

✩

✪

Basic Block

A basic block is the longest sequence of

three-address codes with the following

properties.

• The control flows to the block only through

the first three-address codea.

• The control flows out of the block only

through the last three-address codeb.
aThere is no label in the middle of the code.
bNo three-address code other than the last one can be branch or jump.

Lect 10 Goutam Biswas

Compiler Design 52✬

✫

✩

✪

Basic Block

• The first instruction of a basic block is called

the leader of the block.

• Decomposing a sequence of 3-address codes

in a set of basic blocks and construction of

control flow grapha helps code generation

and code improvement.

aWe shall discuss.

Lect 10 Goutam Biswas

Compiler Design 53✬

✫

✩

✪

Partitioning into Basic Blocks

The sequence of 3-address codes is partitioned

into basic blocks by identifying the leaders.

• The first instruction of the sequence is a

leader.

• The target of any jump or branch

instruction is a leader.

• An instruction following a jump or branch

instruction is a leader.

Lect 10 Goutam Biswas

Compiler Design 54✬

✫

✩

✪

Example

1: L2: v1 = i 13: L4:v1 = i
2: v2 = j 14 v2 = j
3: if v1>v2 goto L3
4: v1 = j 15 if v1<>v2
5: v2 = i goto L2
6: v1 = v1 - v2
7: j = v1
8: goto L4
9: L3: v1 = i
10: v2 = j
11: v1 = v1 - v2
12: i = v1

Lect 10 Goutam Biswas

Compiler Design 55✬

✫

✩

✪

Leaders in the Example

3-address instructions at index 1, 4, 9, 13 are
leaders. The basic blocks are the following.

Lect 10 Goutam Biswas

Compiler Design 56✬

✫

✩

✪

Basic Block - b1

1: L2: v1 = i

2: v2 = j

3: if v1>v2 goto L3

Lect 10 Goutam Biswas

Compiler Design 57✬

✫

✩

✪

Basic Block - b2

4: v1 = j

5: v2 = i

6: v1 = v1 - v2

7: j = v1

8: goto L4

Lect 10 Goutam Biswas

Compiler Design 58✬

✫

✩

✪

Basic Block - b3

9: L3: v1 = i

10: v2 = j

11: v1 = v1 - v2

12: i = v1

Lect 10 Goutam Biswas

Compiler Design 59✬

✫

✩

✪

Basic Block - b4

13: L4:v1 = i

14 v2 = j

15 if v1<>v2 goto L2

Lect 10 Goutam Biswas

Compiler Design 60✬

✫

✩

✪

Control-Flow Graph

A control-flow graph is a directed graph
G = (V,E), where the nodes are the basic
blocks and the edges correspond to the flow of
control from one basic block to another. As an
example the edge eij = (vi, vj) corresponds to
the transfer of flow from the basic block vi to
the basic block vj.

Lect 10 Goutam Biswas

Compiler Design 61✬

✫

✩

✪

Control-Flow Graph

Lect 10 Goutam Biswas

Compiler Design 62✬

✫

✩

✪

L3: v1=i
 v2=j
 v1=v1−v2
 i = v1

v2 = j
if v1>v2 goto L3

L4: v1=i
 v2=j
 if v1 <> v2 goto L2

b3:

b4:

L2: v1 = i

b1:

v1=j
v2=i
v1=v1−v2
j=v1
goto L4

b2:

Lect 10 Goutam Biswas

Compiler Design 63✬

✫

✩

✪

Note

A basic block is used for improvement of code
within the block (local optimization). Our
assumption is, once the control enters a basic
block, it flows sequentially and eventually
reaches the end of the blocka.

aThis may not be true always. An internal exception e.g. divide-by-zero or

unaligned memory access may cause the control to leave the block.

Lect 10 Goutam Biswas

Compiler Design 64✬

✫

✩

✪

DAG of a Basic Block

• A basic block can be represented by a

directed acyclic graph (DAG) which may be

useful for some local optimization.

• Each variable entering the basic block with

some initial value is represented by a node.

• For each statement in the block we associate

a node. There are edges from the statement

node to the last definition of its operands.

Lect 10 Goutam Biswas

Compiler Design 65✬

✫

✩

✪

DAG of a Basic Block

• If N is a node corresponding to the

3-address instruction s, the operator of s

should be a label of N .

• If a node N corresponds to the last

definition of variables in the block, then

these variables are also attached to N .

Lect 10 Goutam Biswas

Compiler Design 66✬

✫

✩

✪

DAG of b2

j0 i0
v1 v2

− v1J

Lect 10 Goutam Biswas

