
Compiler Design 1✬

✫

✩

✪

Code Generation: An Example

Code Gen Example Goutam Biswas

Compiler Design 2✬

✫

✩

✪

A Program

• Consider the following program written

according to the grammar given in the

laboratory assignment-5. Its semantics is as

usual.

• We shall generate intermediate 3-address

code and GNU x86-64 assembly language

target code for this program.

Code Gen Example Goutam Biswas

Compiler Design 3✬

✫

✩

✪

A Program

global

def

n, i, sum : int

end

print "Enter a positive integer: " ;

read %d n;

sum := 0;

i := 0;

while i <= n:

Code Gen Example Goutam Biswas

Compiler Design 4✬

✫

✩

✪

sum := sum + i;

i := i + 1

end;

print %d sum

end

Code Gen Example Goutam Biswas

Compiler Design 5✬

✫

✩

✪

Initialization of Data Structures

• The first construct that

will be reduced is the declList of the program.

prog → GLOBAL declList stmtListO END

• But it is necessary to perform actions like

initialization of symbol table etc. before

that.

Code Gen Example Goutam Biswas

Compiler Design 6✬

✫

✩

✪

Initialization of Data Structures

• We may put a new non-terminal between

GLOBAL and declList.

• The grammar looks like

prog → GLOBAL m1 declList stmtListO END

m1 → ε

• Actions for initialization are associated with

the rule m1 → ε.

Code Gen Example Goutam Biswas

Compiler Design 7✬

✫

✩

✪

In Bison

• Bison compiler allows mid-rule action. As an

example between GLOBAL and declList in

the previous case.

• The compiler introduces a new non-terminal

like m1 producing ε.

• But there is a danger of transforming the

grammar to non-LALR.

Code Gen Example Goutam Biswas

Compiler Design 8✬

✫

✩

✪

Variable Declaration

The right-most derivation of the variable
declaration is as follows:

declList

⇒rm decl declList

⇒rm decl

⇒rm DEF typeList END

⇒rm DEF varList COLON type END

⇒rm DEF varList COLON INT END

Code Gen Example Goutam Biswas

Compiler Design 9✬

✫

✩

✪

Variable Declaration

⇒rm DEF var COMMA varList COLON INT END

⇒rm DEF var COMMA var COMMA varList

COLON INT END

⇒
∗

rm
DEF var COMMA var COMMA var

COLON INT END

⇒
∗

rm
DEF ID COMMA ID COMMA ID

COLON INT END

Code Gen Example Goutam Biswas

Compiler Design 10✬

✫

✩

✪

Variable Declaration: Parse Tree

Code Gen Example Goutam Biswas

Compiler Design 11✬

✫

✩

✪

decl

def
end

typeList

varList :
type

int
varList

varList

,

,

var

var

var

ID

ID

ID

n

i

sum

Code Gen Example Goutam Biswas

Compiler Design 12✬

✫

✩

✪

Attributes and Semantic Actions

What are the attributes of different
non-terminals and what are the semantic
actions during reduction?

Code Gen Example Goutam Biswas

Compiler Design 13✬

✫

✩

✪

Variable Declaration: Note

• Every time an ID is reduced to var, the

corresponding lexme is inserted in the

current symbol-table, and the symbol-table

index is stored as an attribute of vara.

• The non-terminal varList has a list of

symbol-table indices corresponding to the

vars underlying it.

aThere may be other attributes of var.

Code Gen Example Goutam Biswas

Compiler Design 14✬

✫

✩

✪

Variable Declaration: Note

• A reduction to typeList updates the symbol

table entries with type and other

information.

• The symbol-table looks like as follows:

Code Gen Example Goutam Biswas

Compiler Design 15✬

✫

✩

✪

index lexme type offset

· · · · · · · · ·

85 sum INT −12

· · · · · · · · ·

105 i INT −8

· · · · · · · · ·

110 n INT −4

· · · · · · · · ·

Code Gen Example Goutam Biswas

Compiler Design 16✬

✫

✩

✪

Decorated Parse Tree

Code Gen Example Goutam Biswas

Compiler Design 17✬

✫

✩

✪

decl

def
end

typeList

varList :
type

int
varList

varList

,

,

var

var

var

ID

ID

ID

n

i

sum

var.loc = 110

var.loc = 105

var.loc = 85

varList.lst = {85}

varList.lst = {105, 85}

varList.lst = {110, 105, 85} type.type=INT

Code Gen Example Goutam Biswas

Compiler Design 18✬

✫

✩

✪

Rightmost Derivation: Statements

stmtListO

⇒rm stmtList

⇒rm stmtList SEMICOLON stmt

⇒rm stmtList SEMICOLON printStmt

⇒rm stmtList SEMICOLON PRINT FORMAT exp

⇒rm stmtList SEMICOLON PRINT FORMAT ID

Code Gen Example Goutam Biswas

Compiler Design 19✬

✫

✩

✪

Rightmost Derivation: Statements

⇒
∗

rm
stmt SEMICOLON · · · PRINT FORMAT ID

⇒rm printStmt SEMICOLON · · ·

PRINT FORMAT ID

⇒rm PRINT STRING SEMICOLON · · ·

PRINT FORMAT ID

Code Gen Example Goutam Biswas

Compiler Design 20✬

✫

✩

✪

Statement List: Parse Tree

Code Gen Example Goutam Biswas

Compiler Design 21✬

✫

✩

✪

stmtListO

stmt
;stmtList

stmt
;stmtList

stmt
;stmtList

stmt
;stmtList

stmt
;stmt

printStmt
readStmt

assignmentStmt

assignmentStmt

whileStmt

1

printStmt2

1

2

1
2

3

4

5

6
1

2

3

4

Code Gen Example Goutam Biswas

Compiler Design 22✬

✫

✩

✪

Print Statement1 and Read Statement: Parse Trees

printStmt

PRINT STRING

"Enter a positive integer"

readStmt

READ FORMAT
exp

ID

n

"%d"

Code Gen Example Goutam Biswas

Compiler Design 23✬

✫

✩

✪

Note

Both printStmt1 and readStmt has read-only
data. We may store them either in the
symbol-table or in a separate global data
structure. We choose the second option.

Code Gen Example Goutam Biswas

Compiler Design 24✬

✫

✩

✪

Global Data

Label RO/RW Type Size Data

0 .LRO0 RO STRING 27 ”Enter a

positive integer: ”

1 .LRO1 RO STRING 3 ”%d”

2 .LRO2 RO STRING 3 ”%d”

Code Gen Example Goutam Biswas

Compiler Design 25✬

✫

✩

✪

3-address Code

• We have talked about 3-address codes.

• We assume that the sequence of 3-address

codes are stored in a global array of

structures.

Code Gen Example Goutam Biswas

Compiler Design 26✬

✫

✩

✪

Print Statement1: 3-address code

• IO in most programming languages is done

by library function call but we have

hard-coded, it in our language.

• We use special 3-address codes for IO

instructions. That will be finally translated

to our library function calls (assignment 2)

or C library function calls.

Code Gen Example Goutam Biswas

Compiler Design 27✬

✫

✩

✪

Print Statement1: 3-address code

Command Index of Global Data Table

printStr 0

Code Gen Example Goutam Biswas

Compiler Design 28✬

✫

✩

✪

Read Statement: 3-address code

An integer data is read in an integer variable.

Command Index of Symbol Table

readInt 110

Code Gen Example Goutam Biswas

Compiler Design 29✬

✫

✩

✪

Sequence of 3-address Codes

Index Command Other Fields

i printStr 0

i+ 1 readInt 110

The index starts with i as there may be some
preamble code before this.

Code Gen Example Goutam Biswas

Compiler Design 30✬

✫

✩

✪

Assignment Statement1: Parse Tree

dotId

id

indexListO

null

ID

sum

ASSIGN
exp

INT_CONST

0

assignmentStmt

Code Gen Example Goutam Biswas

Compiler Design 31✬

✫

✩

✪

Assignment Statement1: 3-address code

We consider simplest situation.

• The current symbol-table is searched with

the lexme ”sum” of ID. If it is not found, it

will be inserted in the symbol-table, but its

type will be NOT DECL etca. as it is an

error.
aWe shall not talk about error-recovery etc. at this point.

Code Gen Example Goutam Biswas

Compiler Design 32✬

✫

✩

✪

• If it is found in the symbol-table, the index

is preserved as a synthesized attribute of

id.loc and also in dotId.loc.

• The situation will be more involved if id

corresponds to an array element or a field of

a structure.

Code Gen Example Goutam Biswas

Compiler Design 33✬

✫

✩

✪

Assignment Statement1: 3-address code

• For the non-terminal exp, an internal

variable name is created and entered in the

symbol-table with appropriate type,

displacement etc. Corresponding index is

preserved as the synthesized attribute

exp.loc.

• A 3-address code assigns the

integer-constant to the new internal variable.

Code Gen Example Goutam Biswas

Compiler Design 34✬

✫

✩

✪

Assignment Statement1: 3-address code

• Finally during the reduction to

assignmentStmt, the internal variable is

assigned to the program variable.

• But this is certainly not a good code and it

is not difficult to remove the internal

variable and assign the constant directly to

the program variable.

Code Gen Example Goutam Biswas

Compiler Design 35✬

✫

✩

✪

Assignment Statement1: 3-address code

Command IntConst Dst Index

assignIntConst 0 84 ($0)

assignVar 84 ($0) 85 (sum)

Modified to

Command IntConst Dst Index

assignIntConst 0 85 (sum)

Code Gen Example Goutam Biswas

Compiler Design 36✬

✫

✩

✪

Sequence of 3-address Codes

Index Command Other Fields

i printStr 0

i+ 1 printInt 110

i+ 2 assignIntConst 0 85 (sum)

Code Gen Example Goutam Biswas

Compiler Design 37✬

✫

✩

✪

Assignment Statement2: 3-address code

The code of the second assignment statement is

similar. The 3-address code sequence after the

first four statements is,

Index Command Other Fields

i printStr 0

i+ 1 printInt 110

i+ 2 assignIntConst 0 85

i+ 3 assignIntConst 0 105

Code Gen Example Goutam Biswas

Compiler Design 38✬

✫

✩

✪

while-Statement: Parse Tree

whileStmt

WHILE bExp COLON stmtList END

relOPexp exp

LEid id

ID

i

indexListO

null

indexListO
ID

null
n

stmtList

stmt

stmt
SEMICOLON

assignmentStmt

assignmentStmt
1

1

1

2

2

2

1

2

3

4

Code Gen Example Goutam Biswas

Compiler Design 39✬

✫

✩

✪

Boolean Expression(bExp): 3-address code

• exp1.loc has the index of i in the

symbol-table. Similarly exp2.loc has the

index of n in the symbol table.

• The 3-address code of the bExp is

Command Src1 Indx Src2 Indx Jmp Loc.

ifLE 105 (i) 110 (n) ??

goto ??

Code Gen Example Goutam Biswas

Compiler Design 40✬

✫

✩

✪

Note

• Two jump addresses in the 3-address codes

of bExp are unknown at this point.

• We remember indices of these two 3-address

instructions as synthetic attributes of bExp -

bExp.trueList and bExp.falseList.

• “Address holes” in these 3-address

instructions will subsequently be filled up.

Code Gen Example Goutam Biswas

Compiler Design 41✬

✫

✩

✪

Assignment Statement3: Parse Tree

dotId

ID

sum

ASSIGN
exp

assignmentStmt

indexListO

exp
id

ID indexListO

sumnull null

exp
PLUS

ID

i

indexListO

null

1

1

2 3

Code Gen Example Goutam Biswas

Compiler Design 42✬

✫

✩

✪

Assignment Statement3: 3-address code

• The synthesized attributes of dotId.loc,

exp2.loc and exp3.loc store the symbol-table

indices corresponding to the program

variables sum, sum and i respectively.

• The reduction of exp2 + exp3 to exp1 creates

an internal variable $0, inserts it in the

symbol table (index (36 + 48) mod 128 = 84)

with appropriate typea.
aExpressions may be of different types.

Code Gen Example Goutam Biswas

Compiler Design 43✬

✫

✩

✪

Assignment Statement3: 3-address code

• The reduction produces the following

3-address code.

Command Src1 Indx Src2 Indx Dst Indx

assignIntPlus 85 (sum) 105 (i) 84 ($0)

• More code may be needed if sum and i are of

different types.

Code Gen Example Goutam Biswas

Compiler Design 44✬

✫

✩

✪

Assignment Statement3: 3-address code

• Finally the reduction of doId = exp1 to

assignmentStmt produces the following three

address code.

Command Src Indx Dst Indx

assign 84 ($0) 85 (sum)

• Again more code is needed if types of sum

and $0 are different.

Code Gen Example Goutam Biswas

Compiler Design 45✬

✫

✩

✪

Assignment Statement4: Parse Tree

dotId

ID

ASSIGN
exp

indexListO

exp
id

ID indexListO

null null

exp
PLUS

1

2 3

i
i

INT_CONST

1

assignmentStmt2

Code Gen Example Goutam Biswas

Compiler Design 46✬

✫

✩

✪

Assignment Statement4: 3-address code

• The 3-address code corresponding to i = i

+ 1 is almost similar to sum = sum + i.

• The constant 1 may be stored in an internal

variable.

Command IntConst Dst Indx

assignIntConst 1 85 ($1)

Code Gen Example Goutam Biswas

Compiler Design 47✬

✫

✩

✪

Assignment Statement4: 3-address code

• Then i will be added to $1 and the value will

be stored in another internal variable $2.

But we may avoid the extra variable $1

Command Src1 Indx IntConst Dst Indx

assignIPC 105 (i) 1 86 ($1)

Code Gen Example Goutam Biswas

Compiler Design 48✬

✫

✩

✪

Assignment Statement4: 3-address code

• Finally $1 is assigned to i.

Command Src Indx Dst Indx

assign 86 ($1) 105 (i)

Code Gen Example Goutam Biswas

Compiler Design 49✬

✫

✩

✪

Assignment Statement4: 3-address code

Final code looks as follows:

Command Other fields

assignIntPlusConst 105 (i) 1 85 ($1)

assign 86 ($1) 105 (i)

Code Gen Example Goutam Biswas

Compiler Design 50✬

✫

✩

✪

Note

• In the hash function computing symbol table

index both sum and $1 have same values -

(115 + 117 + 109) mod 128 = 85 and

(36 + 49) mod 128 = 85.

• So there is a collision in the symbol-table

and that is to be properly handled. It is not

enough to store 85 in the 3-address code.

There will be no way to identify the actual

name.

Code Gen Example Goutam Biswas

Compiler Design 51✬

✫

✩

✪

While Statement: 3-address code

• There are two blocks of 3-address codes

corresponding to the while-statement. The

question is how to stitch them.

• One important point to remember is that

branch statement causes inefficiency in

execution.

Code Gen Example Goutam Biswas

Compiler Design 52✬

✫

✩

✪

While Statement: 3-address code blocks

Boolean Expression

Command Field1 Field2 Field3

ifLE 105 (i) 110 (n) ??

goto ??

Code Gen Example Goutam Biswas

Compiler Design 53✬

✫

✩

✪

While Statement: 3-address code blocks

While Body

Command Field1 Field2 Field3

assignIntPlus 85 (sum) 105 (i) 84 ($0)

assign 84 ($0) 85 (sum)

assignIntPlusConst 105 (i) 1 85 ($1)

assign 86 ($1) 105 (i)

Code Gen Example Goutam Biswas

Compiler Design 54✬

✫

✩

✪

Stitching - I

• In the program the code for boolean

expression comes before the code of

while-body. If we maintain this order, we

need the following.

• A label at the beginning of the code for

boolean expression - we call it $L0.

• A label at the beginning of the while-body -

we call it $L1.

Code Gen Example Goutam Biswas

Compiler Design 55✬

✫

✩

✪

Stitching - I

The question is how to create these labels and
fill the holes in the bExp code.

Code Gen Example Goutam Biswas

Compiler Design 56✬

✫

✩

✪

Stitching - I

• We modify the production rule of whileStmt

as follows:

original: whileStmt → WHILE bExp

COLON stmtList END

modified: whileStmt → WHILE m1 bExp

COLON m2 stmtList END

m → ε

Code Gen Example Goutam Biswas

Compiler Design 57✬

✫

✩

✪

Stitching - I

• Labels are generated during reduction of m1

($L1) and m2 ($L2). They are stored as

synthesized attributes of marker

non-terminal m1.lbl and m2.lbl.

• Jump addresses of the 3-address codes

corresponding to bExp.trueList is updated

by m2.lbl.

Code Gen Example Goutam Biswas

Compiler Design 58✬

✫

✩

✪

Stitching - I

• A 3-address code ‘goto m1.lbl is generated at

the end of the while-body.

• Jump addresses of the 3-address codes

corresponding to bExp.falseList are to be

updated by whileStmt.next.

• The code looks like -

Code Gen Example Goutam Biswas

Compiler Design 59✬

✫

✩

✪

While Statement: 3-address code blocks

Command Field1 Field2 Field3

Label $L1

ifLE 105 (i) 110 (n) $L2

goto ??

Label $L2

assignIntPlus 85 (sum) 105 (i) 84 ($0)

assign 84 ($0) 85 (sum)

Code Gen Example Goutam Biswas

Compiler Design 60✬

✫

✩

✪

Command Field1 Field2 Field3

assignIntPlusConst 105 (i) 1 85 ($1)

assign 85 ($1) 105 (i)

goto $L1

Code Gen Example Goutam Biswas

Compiler Design 61✬

✫

✩

✪

Stitching - I

• Two easy modifications can be made.

Following code can be modified -

Command Field1 Field2 Field3

ifLE 105 (i) 110 (n) $L2

goto ??

Label $L2

Code Gen Example Goutam Biswas

Compiler Design 62✬

✫

✩

✪

Stitching - I

Command Field1 Field2 Field3

ifGT 105 (i) 110 (n) ??

• This makes the label $L2 redundant.

• We may introduce a label at the end and fill

?? with that.

• The new code sequence is -

Code Gen Example Goutam Biswas

Compiler Design 63✬

✫

✩

✪

While Statement: 3-address code

Command Field1 Field2 Field3

Label $L1

ifGT 105 (i) 110 (n) $L2

assignIntPlus 85 (sum) 105 (i) 84 ($0)

assign 84 ($0) 85 (sum)

Code Gen Example Goutam Biswas

Compiler Design 64✬

✫

✩

✪

Command Field1 Field2 Field3

assignIntPlusConst 105 (i) 1 85 ($1)

assign 85 ($1) 105 (i)

goto $L1

Label $L2

Code Gen Example Goutam Biswas

Compiler Design 65✬

✫

✩

✪

Final Print Statement: 3-address code

Command Field1

printInt 85 (sum)

Code Gen Example Goutam Biswas

Compiler Design 66✬

✫

✩

✪

Program: 3-address code

Command Field1 Field2 Field3

printStr 0 (.LRO0)

readInt 110 (n)

assignIntConst 0 85 (sum)

assignIntConst 0 105 (i)

Label $L1

ifGT 105 (i) 110 (n) $L2

Code Gen Example Goutam Biswas

Compiler Design 67✬

✫

✩

✪

assignIntPlus 85 (sum) 105 (i) 84 ($0)

assign 84 ($0) 85 (sum)

assignIntPlusConst 105 (i) 1 85 ($1)

assign 85 ($1) 105 (i)

Goto $L1

Label $L2

printInt 85 (sum)

Code Gen Example Goutam Biswas

Compiler Design 68✬

✫

✩

✪

Symbol Table

index lexme type offset

· · · · · · · · ·

84 $0 INT T −16

85 sum INT −12

85 $1 INT T −20

· · · · · · · · ·

Code Gen Example Goutam Biswas

Compiler Design 69✬

✫

✩

✪

index lexme type offset

105 i INT −8

· · · · · · · · ·

110 n INT −4

· · · · · · · · ·

This gives us the size of memory space (may be
on stack) required by the variables.

Code Gen Example Goutam Biswas

Compiler Design 70✬

✫

✩

✪

Stitching - II

• We may keep the boolean expression code

below the code of the while-body. Boolean

expression will start with a label $L2 (say).

• A synthesized attribute bExp.code may be

used to preserve the boolean expression code.

Code Gen Example Goutam Biswas

Compiler Design 71✬

✫

✩

✪

Stitching - II

• The code corresponding to while-body starts

with a label $L1.

• The execution of the loop starts with a jump

to $L2, to test the boolean condition.

• Jump addresses of the 3-address codes

corresponding to bExp.trueList are updated

with $L1.

Code Gen Example Goutam Biswas

Compiler Design 72✬

✫

✩

✪

Program: 3-address code

Code Gen Example Goutam Biswas

Compiler Design 73✬

✫

✩

✪

Seq. No. Command Field1 Field2 Field3

1 printStr 0 (.LRO0)

2 readInt 110 (n)

3 assignIntConst 0 85 (sum)

4 assignIntConst 0 105 (i)

5 goto $L2

6 Label $L1

Code Gen Example Goutam Biswas

Compiler Design 74✬

✫

✩

✪

7 assignIntPlus 85 (sum) 105 (i) 84 ($0)

8 assign 84 ($0) 85 (sum)

9 assignIntPlusConst 105 (i) 1 85 ($1)

10 assign 85 ($1) 105 (i)

11 Label $L2

12 ifLE 105 (i) 110 (n) $L1

13 printInt 85 (sum)

Code Gen Example Goutam Biswas

Compiler Design 75✬

✫

✩

✪

Generating Target Code

• Once the symbol-table, global data-table and

sequence of 3-address codes are available, we

are ready to generate target code.

• We generate equivalent assembly language

code of x86-64 for the GNU assembler gas.

• For IO we may use standard C library or our

own library (assignment 2).

Code Gen Example Goutam Biswas

Compiler Design 76✬

✫

✩

✪

Generating Target Code

• We need to allocate space (bind) for program

variables and compiler generated variables.

• One simple solution is to keep all variables

in the memory. But two important features

prohibit that.

Code Gen Example Goutam Biswas

Compiler Design 77✬

✫

✩

✪

Generating Target Code

1. A memory access is much slower compared

to CPU operations. So keeping operands in

the memory will slow-down the process.

2. Many CPU operations require operands to

be in the registers.

Code Gen Example Goutam Biswas

Compiler Design 78✬

✫

✩

✪

Register Allocation

• In any modern CPU, the number of general

purpose registers may vary from a few to

more than hundred.

• But the total number of variables in a

3-address code stream may be much larger.

• So it is necessary to decide which variables

will stay in registers and for how long.

Code Gen Example Goutam Biswas

Compiler Design 79✬

✫

✩

✪

Register Allocation

• If it is necessary to bring some data from the

memory to a CPU register, and no register is

free, the content of some register is written

back (spilling) to memory to make it

available.

• So it is essential to keep track of the current

binding of different variables and availability

of registers.

Code Gen Example Goutam Biswas

Compiler Design 80✬

✫

✩

✪

Register Allocation

• Life span of a data, its assignment to a

variable (definition), up to its last usage is

an important information.

• But the computation of that requires more

sophisticated analysis of the intermediate

representation.

Code Gen Example Goutam Biswas

Compiler Design 81✬

✫

✩

✪

Register Allocation

We shall use the following ad hoc scheme.

• In the symbol-table we already have an

offset field specifying the memory offset of a

variable from the base of the activation

record.

• We introduce one more field - reg. This field

shows whether the most recent value of the

variable is in memory or in a register. It also

stores the name of the assigned register.

Code Gen Example Goutam Biswas

Compiler Design 82✬

✫

✩

✪

Register Allocation

• There is an accepted application binary

interface (ABI) for the usage of registers.

• We shall use the following GCC convention

for x86-64 architecture.

Code Gen Example Goutam Biswas

Compiler Design 83✬

✫

✩

✪

Register Usage Convention

GPR(64) Usage Convention

rax return value from a function

rbx callee saved

rcx 4th argument to a function

rdx 3rd argument to a function

return value from a function

rsi 2nd argument to a function

rdi 1st argument to a function

rbp callee saved

Code Gen Example Goutam Biswas

Compiler Design 84✬

✫

✩

✪

64-bit GPR Usage Convention

rsp hardware stack pointer

r8 5th argument to a function

r9 6th argument to a function

r10 callee saved

r11 reserved for linker

r12 reserved for C

r13 callee saved

r14 callee saved

r15 callee saved

Function return address is at the top of the stack.

Code Gen Example Goutam Biswas

Compiler Design 85✬

✫

✩

✪

Modified Symbol Table

index lexme type offset reg/mem

· · · · · · · · · · · ·

84 $0 INT T −16 eax

85 sum INT −12

85 $1 INT T −20

· · · · · · · · · · · ·

Code Gen Example Goutam Biswas

Compiler Design 86✬

✫

✩

✪

index lexme type offset reg/mem

105 i INT −8

· · · · · · · · · · · ·

110 n INT −4

· · · · · · · · · · · ·

The requirement of stack space is 32B (multiple
of 16B).

Code Gen Example Goutam Biswas

Compiler Design 87✬

✫

✩

✪

Global Data Table

Label RO/RW Type Size Data

0 .LRO0 RO STRING 27 ”Enter a

positive integer: ”

1 .LRO1 RO STRING 3 ”%d”

2 .LRO2 RO STRING 3 ”%d”

Code Gen Example Goutam Biswas

Compiler Design 88✬

✫

✩

✪

x86-64 Assembly Language Code Generation

We use information from global data table to

generate the following code:

.section .rodata

.LRO0:

.string "Enter a positive integer: "

.LRO1:

.string "%d"

.LRO2:

.string "%d "

Code Gen Example Goutam Biswas

Compiler Design 89✬

✫

✩

✪

x86-64 Assembly Language Code Generation

Next part of the code is almost constant.

.text

.globl main

.type main, @function

main:

pushq %rbp

movq %rsp, %rbp

Code Gen Example Goutam Biswas

Compiler Design 90✬

✫

✩

✪

x86-64 Assembly Language Code Generation

The total memory space requirement for all the

variables (program defined and compiler

generated) is available from the symbol table.

We allocate this space in the stack frame.

We could have done this in the common data

area as well.

subq $32, %rsp

Code Gen Example Goutam Biswas

Compiler Design 91✬

✫

✩

✪

Program: 3-address code

Code Gen Example Goutam Biswas

Compiler Design 92✬

✫

✩

✪

Seq. No. Command Field1 Field2 Field3

1 printStr 0 (.LRO0)

2 readInt 110 (n)

3 assignIntConst 0 85 (sum)

4 assignIntConst 0 105 (i)

5 goto $L2

6 Label $L1

Code Gen Example Goutam Biswas

Compiler Design 93✬

✫

✩

✪

7 assignIntPlus 85 (sum) 105 (i) 84 ($0)

8 assign 84 ($0) 85 (sum)

9 assignIntPlusConst 105 (i) 1 85 ($1)

10 assign 85 ($1) 105 (i)

11 Label $L2

12 ifLE 105 (i) 110 (n) $L1

13 printInt 85 (sum)

Code Gen Example Goutam Biswas

Compiler Design 94✬

✫

✩

✪

x86-64 Assembly Language Code Generation

Code for
print "Enter a positive integer: " ;
printStr .LRO0
is as follows:

movl $.LRO0, %eax
movq %rax, %rdi
call printf

It is like a parameterised template where
starting address of the string is the parameter.

Code Gen Example Goutam Biswas

Compiler Design 95✬

✫

✩

✪

x86-64 Assembly Language Code Generation

Code for read %d n;
readInt 110(n)
is as follows:

movl $.LRO1, %eax
movq %rax, %rdi
leaq -4(%rbp), %rsi
call __isoc99_scanf

For a simple variable n (0ffset −4) the code
leaq -4(%rbp), %rsi
is also a template.

Code Gen Example Goutam Biswas

Compiler Design 96✬

✫

✩

✪

x86-64 Assembly Language Code Generation

Code for sum := 0;
assignIntConst 0 85(sum)
is as follows:

movl $0, -12(%rbp)

Here the constant and the offset of the variable
are parameters.

Code Gen Example Goutam Biswas

Compiler Design 97✬

✫

✩

✪

x86-64 Assembly Language Code Generation

Code for sum := sum + i;
assignIntPlus 85(sum) 105(i) 84($0)
assign 84($0) 85(sum)
is as follows:

movl -8(%rbp), %eax
addl -12(%rbp), %eax
movl %eax, -16(%rbp) # $0 <-- sum + i
movl %eax, -12(%rbp) # eax has the current

value of $0

Code Gen Example Goutam Biswas

Compiler Design 98✬

✫

✩

✪

x86-64 Assembly Language Code Generation

Code for i := i + 1;
assignIntPlusConst 105(i) 1 85($1)
assign 85($1) 105(i)
is as follows:

movl -8(%rbp), %ecx
addl $1, %ecx # $1 is available in ecx
movl %ecx, -8(%rbp)

Not only the offset of the variable, but also the
available register is also a parameter.
This code can be improved as
addl $1, -8(%rbp).
It is important as the instruction is within a

Code Gen Example Goutam Biswas

Compiler Design 99✬

✫

✩

✪

loop.

Code Gen Example Goutam Biswas

Compiler Design 100✬

✫

✩

✪

x86-64 Assembly Language Code Generation

Code for if i <= n goto L1;
ifLE 105(i) 110(n) .L1
is as follows:

movl -4(%rbp), %eax
cmpl %eax, -8(%rbp)
jle .L1

Code Gen Example Goutam Biswas

