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✫

✩

✪

SDD, Attribute Grammar and SDT
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✫

✩

✪

Translation

• So far we have talked about parsinga of a

language. But our main goal is translation.

• Semantic actions to translate the source

language program to a target language

program often go hand-in-hand with parsing.

It is called syntax-directed translation.

aEven the parsing cannot be completed without some analysis beyond the

context-free structure.
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✫

✩

✪

Translation

• To perform semantic actions along with

parsing actions (e.g. reduction), we associate

computation with the production rules.

Computed information is propagated as

attributes of non-terminals.

• An alternative is to be built the parse tree

explicitly, and perform semantic actions by

traversing the tree.
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✫

✩

✪

Example

Consider the following production rule of the

classic expression grammar: E → E1 + T a.

We consider three different translations:

• implementation of a simple calculator,

• conversion of an infix expression to a postfix

expression,

• general purpose code generation.
aWe have used subscript to differentiate between two instances of E.

Lect 9 Goutam Biswas



Compiler Design IIIT Kalyani, WB 5✬

✫

✩

✪

Example: Calculator

• We have already seen that the only attribute

of E and T required for this translation are

values expressions corresponding to the

sub-trees of E and T .

• Let us call the attribute to be val.

• The semantic action associated with the

given production rule is,

E → E1 + T {E·val = E1·val + T ·val}a.
aIn bison this gets translated to $$ = $1 + $3.
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✫

✩

✪

Note

• The action may take place when E1 + T is

reduced to E. The computed value is saved

as the attribute of E.

• Alternatively, it may take place during the

postorder traversal of the syntax tree.

• There is no other side-effect of the semantic

action.
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✫

✩

✪

Note

• But if we want to keep a provision to store a

value as a named object (variable), we need

a symbol table where the variables names

and their values are stored.

• In that case the semantic action of

ES → id := E will changes the state of the

symbol-table data structure (side effect) by

entering the E·val corresponding to id.name.
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✫

✩

✪

Example: Infix to Postfix Conversion

• Here the problem is to convert an infix

arithmetic expression to an equivalent

postfix expression.

• Both the input and output are strings of

characters.

• Let the attribute associated to each

non-terminal be exp of type char *. The

semantic action is the following.
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✫

✩

✪

Example: Infix to Postfix

E → E1 + T

{

E.exp=(char*)malloc(strlen(E1.exp)+

strlen(T.exp)+4);

strcpy(E.exp, E1.exp); strcat(E.exp, " ");

strcat(E.exp, T.exp);

strcat(E.exp, " + ");

free(E1.exp); free(T.exp);

}

Again there is no side-effect
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✫

✩

✪

Example: Code Generation

• The main difference of translation for code

generation with two previous translations is

that there is no data value corresponding to

E1 and T available at compilation time.

• Both E1 and T corresponds to two sequences

of translated codes that will compute values

of expressions corresponding to E1 and T

when they are executed.
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✫

✩

✪

Example: Code Generation

• The translation for to the rule E → E1 + T

generates code so that the computed values

of E1 and T are added to generate and store

the value of expression for E.

• The computed values of the expressions E1

and T are stored in compiler defined

temporary locations.
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✫

✩

✪

Example: Code Generation

• Compiler creates temporary variablesa where

the intermediate values of sub-expressions

are stored. These variable names are also

entered in the symbol table.

• The main attribute of a non-terminal like E

or T is the index of the symbol table

corresponding to its temporary variable

name.
aThey are also called virtual registers.
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✫

✩

✪

Example: Code Generation

The code corresponding to E → E1 + T may

look like,

{

E.loc = newLoc();

codeGen(assignPlus, E.loc, E1.loc, T.loc);

}

where assignPlus means
E.loc = E1.loc + T.loc.
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✫

✩

✪

Note

• This action has side-effects, it makes an

entry of the new location in the symbol

table. And the generated code is added in a

data structure.

• As an alternative E and T may store their

code sequences as their attributes.
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✫

✩

✪

Associating Information

• Information is associated to syntactic

categories by attaching attributes to the

corresponding non-terminals.

• Computation of these attributes are

associated with the production rules.

• Initial attribute values are supplied by the

scanner.
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✫

✩

✪

Definition

• A syntax-directed definition is a context-free

grammar where attributes are associated

with the grammar symbols. Rules for

computing the attributes are associated with

the production rules. There should not be

any circularity in the definition.

• These are called attribute grammars when

the definition does not have any side-effect.
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✫

✩

✪

Definition

• A syntax-directed translation is an

executable specification of SDD. Fragments

of programs are associated to different points

in the production rules.

• The order of execution of the code is

important in this case.
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✫

✩

✪

Example

A → {Action1} B {Action2} C {Action3}

Action1: takes place before parsing of the
input corresponding to the non-terminal B.
Action2: takes place after consuming the input
for B, but before consuming the input for C.
Action3: takes place at the time of reduction of
BC to A or after consuming the input
corresponding to BC.
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✫

✩

✪

Note

• Embedded action may create some problem

in a parser generator like Bison.

• Bison replaces the embedded action in a

production rule by an ε-production and

associates the embedded action with the new

rule.
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✫

✩

✪

Note

• But this may change the nature of the

grammar. As an example, the grammar

S → A | B, A → aba,B → abb is LALR.

• An embedded action is introduced as shown,

S → A | B, A → a {action} ba,B → abb.
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✫

✩

✪

Note

• Bison modifies the grammar to

S → A|B,A → aMba,B → abb,

M → ε {action} .

• The modified grammar is no longer LALR.
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✫

✩

✪

Attribute Computation: a General Approach

• Construct the parse tree. Compute the

attributes of the non-terminals following the

data-flow in attribute dependence graph.

But construction of complete parse tree is

costly.

• There are restricted SDDs that do not

require explicit construction of parse tree.

They are S-attributed and L-attributed

definitions.
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✫

✩

✪

A Simple Example

Consider the following grammar of signed

binary numerals. We wish to translate it to

decimal number.
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✫

✩

✪

0 : S′ → N$

1 : N → S L

2 : S → +

3 : S → −

4 : L → L B

5 : L → B

6 : B → 0

7 : B → 1
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✫

✩

✪

Note

• We first construct the LR(0) automaton of

the grammar and find that the grammar is

SLR.

• We associate attributes to the non-terminals.

• We also associate SDDs to the production

rules.
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✫

✩

✪

LR(0) Automaton

q0 : S′ → •N$ N → •SL S → •+

S → •−

q1 : S′ → N • $

q2 : N → S • L L → •LB L → •B

B → •0 B → •1

q3 : S → +•

q4 : S → −•

q5 : N → SL• L → L •B B → •0

B → •1
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✫

✩

✪

LR(0) Automaton

q6 : L → B•

q7 : B → 0•

q8 : B → 1•

q9 : L → LB•
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✫

✩

✪

SLR Parsing Table

S Action Goto

+ − 0 1 $ N S L B

0 s3 s4 1 2

1 Acc

2 s7 s8 5 6

3 r6 r6

4 r7 r7

5 s7 s8 r1 9
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✫

✩

✪

SLR Parsing Table

S Action Goto

+ − 0 1 $ N S L B

6 r5 r5 r5

7 r6 r6 r6

8 r7 r7 r7
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✫

✩

✪

Attributes of Non-Terminals

Following are the attributes of different

non-terminals:

Non-terminal Attribute Type

N val int

S sign char

L val int

B val int
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✫

✩

✪

SDD

0 : S′ → N print N.val

1 : N → SL if (S.sign == ’-’) N.val= - L.val;

else N.val = L.val;

2 : S → + S.sign = ’+’;

3 : S → − S.sign = ’-’;

4 : L → L1B L.val = 2*L1.val+B.val;

5 : L → B L.val = B.val;

6 : B → 0 B.val = 0;

7 : B → 1 B.val = 1;
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Parsing $0 +101$ shift

Value $

Parsing $03 101$ reduce

Value $+

Parsing $02 101$ shift

Value $S S.sign=’+’

Parsing $028 01$ reduce

Value $S1
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Parsing $026 01$ reduce

Value $SB B.val = 1

Parsing $025 01$ shift

Value $SL L.val = B.val

Parsing $0257 1$ reduce

Value $SL0

Parsing $0259 1$ reduce

Value $SLB B.val = 0
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Parsing $025 1$ shift

Value $SL L.val = 2*L1.val + B.val

Parsing $0258 $ reduce

Value $SL1

Parsing $0259 $ reduce

Value $SLB B.val=1

Parsing $025 $ reduce

Value $SL L.val = 2*L1.val + B.val
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Parsing $01 $ Accept

Value $N N.val = +L.val
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✫

✩

✪

Decorated Parse Tree

N

0

1

S

+

L3

L2

L1S.sign = ’+’

N.val=L1.val

B1 B1.val=0

B2B2.val=1
L2.val=2*L3.val+B1.val

L1.val=2*L1.val + B2.val

B0.val=1B0

1

L3.val=B0.val
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✫

✩

✪

Synthesized Attribute

• In this example the value of an attribute of a

non-terminal is either coming from the

scannera or it is computed from the

attributes of its children.

• This type of attribute is known as a

synthesized attribute.

aAttribute of a terminal comes from the scanner.
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✫

✩

✪

S-Attributed

• An attributed grammar is called

S-attributed if every attribute is synthesized.

• Attributes in such a grammar can be easily

computed during a bottom-up parsing.
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✫

✩

✪

Another Set of Attributes

Non-terminal Attribute Type

N val int

S sign char

L val, pos int, int

B val, pos int, int
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✫

✩

✪

SDD

0 : S′ → N print N.val

1 : N → SL L.pos = 0

if (S.sign == ’-’) N.val= - L.val;

else N.val = L.val;

2 : S → + S.sign = ’+’;

3 : S → − S.sign = ’-’;

4 : L → L1B L1.pos = L.pos+1;

B.pos = L.pos;

L.val = L1.val+B.val;
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✫

✩

✪

SDD

5 : L → B B.pos = L.pos;

L.val = B.val;

6 : B → 0 B.val = 0;

7 : B → 1 B.val = 2B.pos;
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✫

✩

✪

Exercise

Draw the parse tree for −101 and show the flow
of information.
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✫

✩

✪

Note

• Attributes of a non-terminal depends on the

nature of translation. But it may also

depend on the nature of the grammar.

• Following is a grammar of integers in 2’s

complement numerals. It is to be translated

to a signed decimal numeral.
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✫

✩

✪

Exercise

1 : N → L

2 : L → L B

3 : L → B

4 : B → 0

5 : B → 1

Associate appropriate attributes to the
non-terminals and give rules of semantic
actions. Write bison specification for the
grammar.
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✫

✩

✪

Example

Consider a right-recursive grammar of signed

binary strings:
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✫

✩

✪

0 : S′ → N

1 : N → S L

2 : S → +

3 : S → −

4 : L → B L

5 : L → B

6 : B → 0

7 : B → 1
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✫

✩

✪

Attributes of Non-Terminals

We need a new attribute of L to remember the bit

position:

Non-terminal Attribute Type

N val int

S sign char

L val int

pos int

B val int
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✫

✩

✪

Action for Rules

0 : S′ → N print N.val

1 : N → SL if (S.sign == ’-’) N.val=- L.val;

else N.val = L.val;

2 : S → + S.sign = ’+’;

3 : S → − S.sign = ’-’;

4 : L → BL1 if(B.val)

L.val=pow(2,L1.pos)+L1.val;

else L.val=L1.val;

L.pos=L1.pos+1;
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✫

✩

✪

Actions for Production Rules

5 : L → B L.val = B.val; L.pos = 1

6 : B → 0 B.val = 0;

7 : B → 1 B.val = 1;
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✫

✩

✪

Example

Consider the following grammar for variable

declaration:

1 : D → T L ;

2 : T → int

3 : T → double

4 : L → L , id

5 : L → id
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✫

✩

✪

Parse Tree

The parse tree for the string double id, id; is
as follows:
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✫

✩

✪

D

T L

Ldouble

id

,

;

id
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✫

✩

✪

Note

When an id is reduced to the non-terminal L,
it is inserted in the symbol table along with its
type informationa. The type information is not
available from any subtree rooted at L. It has
to be inherited from T via the root D.

aThe type information is important for space allocation, representation, op-

erations, correctness and other purposes.
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✫

✩

✪

SDDefinition

1 : D → TL; L.type = T.type

2 : T → int T.type = INT

3 : T → double T.type = DOUBLE

4 : L → L1, id L1.type = L.type

addSym(id.name, L.type)

5 : L → id addSym(id.name, L.type)
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✫

✩

✪

Inherited Attribute

• Let B be a non-terminal of a parse tree node.

• An inherited attribute B.i is defined in

terms of the attributes of the parent and

sibling nodes of B.

• In the previous example the non-terminal L

gets the attribute from T as an inherited

attribute.
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✫

✩

✪

Synthesized Attribute

• The synthesized attribute B.s of a

non-terminal B is defined by the attributes

of its children.

• The attribute of a leaf-node comes from the

scanner.
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✫

✩

✪

S-Attributed Definitions

An SDD is S-attributed if every attribute is

synthesized. This may be called an S-attributed

grammar.

This definition can be implemented in a
LR-parser during a reduction as the traversal
on the parse-tree is postorder.
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✫

✩

✪

L-Attributed Definitions

An SDD is called L-attributed (‘L’ for left) if
each attribute is either synthesized, or inherited
with the following restrictions.
Let A → α1α2 · · ·αn be a production rule, and
αk has an inherited attribute ‘a’.
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✫

✩

✪

L-Attributed Definition

The value of αk.a is computed using

• the inherited attribute of A (parent),

• the inherited or synthesized attributes of

α1, α2, · · · , αk−1 (symbols to the left of αk),

• attributes of αk, provided no dependency

cyclea is formed.
aA → B { A.s = B.i;B.i = A.s+ k }.
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✫

✩

✪

Rules

The type definition mentioned earlier is L-attributed.

1 : D → TL; L.type = T.type

2 : T → int T.type = INT

3 : T → double T.type = DOUBLE

4 : L → L1, id L1.type = L.type

addSym(id.name, L.type)

5 : L → id addSym(id.name, L.type)
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✫

✩

✪

Note

The question is how to propagate the type
information in a parser generated by bison
The non-terminal T gets the value of
synthesized type attribute when a T -production
rule is reduced.
But that cannot be propagated as an attribute
of the non-terminal L directly as this
non-terminal is not present in the stack.
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✫

✩

✪

Solution I

An ad hoc solution is to use a global variable to

hold the type value.

T → int type = INT

T → double type = DOUBLE

L → L1, id addSym(id.name, type)

L → id addSym(id.name, type)
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✫

✩

✪

Solution II

We introduce a different attribute of L, a list of
symbol table entries corresponding to different
identifiers, and initialize their types at the end.
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✫

✩

✪

1 : D → TL; initType(L.list, T.type)

2 : T → int T.type = INT

3 : T → double T.type = DOUBLE

4 : L → L1, id L.list = L 1.list +

mklist(addSym(id.name))

5 : L → id L.list =

mklist(addSym(id.name))

Read ‘+’ as append in the list.
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✫

✩

✪

Solution III

We can device another solution from the value
stack. For that we consider the states of LR(0)
automaton of the grammar.
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✫

✩

✪

LR(0) Automaton

q0 : S → •D D → •TL; T → •int

T → •double

q1 : S → D•

q2 : D → T • L L → •L, id L → •id

q3 : T → int•

q4 : S → double•

q5 : D → TL•; L → L•, id

q6 : L → id•
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✫

✩

✪

LR(0) Automaton

q7 : L → L, •id

q8 : L → L, id•

q9 : D → TL; •
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Par $0 int id, id;$ shift

Val $

Par $03 id, id;$ reduce

Val $int

Par $02 id, id;$ shift

Val $T T.type=INT

Par $026 , id;$ reduce

Val $T id
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Par $025 , id;$ reduce

Val $T L addSym(id.name,L.type)

How does L gets the type information. Note that in

bison L ≡ $$ and id ≡ $1. But the type information is

available in T in the stack, below the handle.

Type Stack → Input→ Action/Value

Par $0257 id;$ shift

Val $T L ,
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✫

✩

✪

Example: Parsing & Value Stack

Type Stack → Input→ Action/Value

Par $02578 ;$ reduce

Val $T L , id

Par $025 ;$

Val $T L addSym(id.name,L.type)

Again the type information is available just below the
handle.
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✫

✩

✪

Note

In Bison the attribute below the handle can be
accessed. In this case the non-terminal T
corresponds to $0 and its type attribute is
$0.type.

Lect 9 Goutam Biswas



Compiler Design IIIT Kalyani, WB 72✬

✫

✩

✪

Note

• Often a natural grammar is transformed to

make it suitable for parsing.

• But the new parse tree no longer match with

the abstract syntax tree of the language.

• As an example the left-recursion is removed

from the grammar for LL(1) parsing.

• The original S-attributed grammar gets

modified after this transformation.

Lect 9 Goutam Biswas



Compiler Design IIIT Kalyani, WB 73✬

✫

✩

✪

S-Attributed Expression Grammar

S → E$ { print E.val }

E → E1 + T { E.val = E1.val + T.val}

E → T { E.val = T.val}

T → T1 ∗ F { T.val = T1.val * F.val}

T → F { T.val = F.val}

F → (F ) { F.val = E.val}

F → ic { F.val = ic.val}
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✫

✩

✪

Decorated Parse Tree of 2 + 3 + 4

E0

E1
T1

+

E2
T2 F1

ic

ic

3

ic

4

T3

F3

F2

ic.val=2

ic.val=3

ic.val=4

F3.s = 2

T3.s = 2

E2.s = 2

F2.s = 3

F1.s = 4

T1.s = 4
E1.s = E2.s+ T2.s

E0.s = E1.s+ T1.s

2

T2.s = 3

+
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✫

✩

✪

Equivalent LL(1) Grammar

S → E$

E → TE ′

E ′ → +TE ′

E ′ → ε

T → FT ′

T ′ → ∗FT ′

T ′ → ε

F → (E)

F → ic
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✫

✩

✪

Parse Tree of LL(1) Grammar

E0

T3

F3

ic

2

+

T1

E′

3

T ′

1

ε

E′

1

T ′

3

ε

T2

F2 T ′

2

ic

3

ε

+

F1

ic

4

ε

E′

2
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✫

✩

✪

Partially Decorated Parse Tree of LL(1) Grammar

E0

T3

F3F3.s = 2

ic

2

ic.val=2

+ E′

2

T1

E′

3

T ′

1

ic.val=4 ε

E′

1

T ′

3

ε

T2

F2 T ′

2

F2.s = 3

ic

3

ic.val=3
F1.s = 4

ε

+

F1

ic

4

ε
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✫

✩

✪

Note

• Two arguments of ‘+’ are in different

subtrees. It is necessary to pass the value of

T3.s to the subtree of E ′
1.

• It is also necessary for left-associativity of

‘+’, to propagate the computed value down

the tree say from E ′
1 to E ′

2.

• We achieve this by inherited attributes E ′.i

and T ′.i of the non-terminals E ′ and T ′.
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✫

✩

✪

Note

But it is also necessary to propagate the
computed value towards the root. This is done
through the synthesized attributes of E ′ and T ′

i.e. E ′.s, T ′.s.
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✫

✩

✪

L-Attributed LL(1) Expression Grammar

E → T { E’.ival = T.sval } E ′

{ E.sval = E’.sval }

E ′ → +T { E1’.ival = E’.ival + T.sval } E ′
1

{ E’.sval = E1’.sval }

E ′ → ε { E’.sval = E’.ival }
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✫

✩

✪

L-Attributed LL(1) Expression Grammar

T → F { T’.ival = F.sval } T ′

{ T.sval = T’.sval }

T ′ → ∗F { T1’.ival = T’.ival * F.sval } T ′
1

{ T’.sval = T1’.sval }

T ′ → ε { T’.sval = T’.ival }
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✫

✩

✪

L-Attributed LL(1) Expression Grammar

F → (E) { F.sval = E.sval }

F → ic { F.sval = ic.val }
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✫

✩

✪

Decorated Parse Tree of LL(1) Grammar

E0

T3

F3F3.s = 2

ic

2

ic.val=2

+ E′

2

T1

E′

3

T ′

1

ic.val=4 ε

E′

1

T ′

3

ε

T2

F2 T ′

2

F2.s = 3

ic

3

ic.val=3
F1.s = 4

ε

+

F1

ic

4

ε

T ′

3
.i = F3.s = 2

T3.s = T ′

3
.s = 2

T ′

3
.s = T ′

3
.i = 2

E′

1
.i = T3.s = 2

E′

2
.i = E′

1
.i+ T2.s = 2 + 3 = 5

E′

3
.i = E′

2
.i+ T1.s = 5 + 4 = 9

E′

3
.s = E′

3
.i = 9

E′

2
.s = E′

3
.s = 9

E′

1
.s = E′

2
.s = 9

E′

0
.s = E′

1
.s = 9
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✫

✩

✪

Another Example

L-attributed grammars come naturally with

flow-control statements. Following is an

example with if-then-else statement.

IS → if BE then S1 else S2.
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✫

✩

✪

Attributes of Statement

• Every statement has a natural synthesized

attribute, S.code, holding the code

corresponding to S.

• Also a statement S has a continuation, the

next instruction to be executed after

execution of S. This may be handled as a

jump target (label). But this label is an

inherited attribute of S, S.next, propagated

in the subtree of S.
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✫

✩

✪

Attributes of Boolean Expression

• The boolean expression also has a

synthesized attribute BE.code.

• But it has two inherited attributes, BE.true,

a jump target (label) where the control is

transferred if the boolean expression is

evaluated to true. This is the beginning of

S1.

Similarly there is BE.false, a label at the

beginning of S2.
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✫

✩

✪

SDD for if-then-else

IS → if BE l1=newLabel(), l2=newLabel()

then S1 BE.true = l1, BE.false=l2

else S2. S1.next = S2.next = IS.next

IS.code = BE.code + l1’:’ +

S1.code + l2’:’ + S2.code
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✫

✩

✪

L-Attributed SDT for if-then-else

IS → if {l1=newLabel(),l2=newLabel()

BE.true = l1, BE.false=l2}

BE {S1.next = IS.next }

then S1 {S2.next = IS.next }

else S2.

{IS.code = BE.code + l1’:’ +

S1.code + l2’:’ + S2.code}
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✫

✩

✪

Note

Afterward we shall see how this is managed in
an actual implementation using back-patching.
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✫

✩

✪

SDD for Boolean Expression and

BE → BE1 and BE2 BE1.true=l=newLabel()

BE1.false = BE.false

BE2.true = BE.true

BE2.false = BE.false

BE.code = BE1.code +

l’:’ + BE2.code
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✫

✩

✪

L-Attributed SDT for Boolean Expression and
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✫

✩

✪

BE → { BE1.true=l=newLabel()

BE1.false = BE.false }

BE1 and

{ BE2.true = BE.true

BE2.false = BE.false }

BE2

{ BE.code = BE1.code +

l’:’ + BE2.code }
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