

LR(k) Grammar

An LR(k) grammar is a context-free grammar where the handle in a right sentential form can be identified with a lookahead of at most kinput. We shall only consider k = 0, 1. $\mathbf{2}$

LR(0) Parsing

An LR(0) parser can take shift-reduce decisions entirely on the basis of the states of LR(0)automaton^a of the grammar. Consider the following grammar with the augmented start symbol and the production rule.

^aThe parsing table can be filled from the automaton.

Example

The production rules are,

 $S \to aSa \mid bSb \mid c$

The production rules of the augmented grammar are,

The states of the LR(0) automaton are the following:

Complete and Incomplete Items

An LR(0) item is called complete if the '•' is at the right end of the production, $A \rightarrow \alpha \bullet$. This indicates that the DFA has already 'seen' a handle and it is on the top of the stack.

LR(0) Grammar

A grammar G is of type LR(0) if the DFA of its viable prefixes has the following properties:

- no state has both complete and incomplete items,
- no state has two complete items.

A state with a unique complete item $A \to \alpha \bullet$, indicates a reduction of the handle α by the rule $A \to \alpha$. A state with incomplete items indicates shift actions. The parsing table for the given grammar is as follows.

State	Action				Goto
	a	b	С	\$	S
0	s_2	s_3	s_4		1
1				accept	
2	s_2	s_3	s_4		5
3	s_2	s_3	s_4		6
4	r_3	r_3	r_3	r_3	
5	S_7				
6		s_8			
7	r_1	r_1	r_1	r_1	
8	r_2	r_2	r_2	r_2	

Goutam Biswas

The parser does not look-ahead for any shift operation. It gets the current state from the top-of-stack and the token from the scanner. Using the parsing table it gets the next state and pushes it in the stack^a. The token is consumed.

^aIt may push the token and its attributes in the value stack for semantic action.

Note

In case of LR(0) parser it does not look-ahead even for any reduce operation^a. It gets the current state from the top-of-stack and the production rule number from the parsing table (for all correct input they are same), and reduces the right sentential form by the rule^b.

^aIt may read the input to detect error. Note the column corresponding to 'c' for the states 4, 7, 8 with unique complete items.

^bThe Goto portion of the table is used to push a new state on the stack after a reduction.

	Parsing Exa	mple	
Stack	Input	Handle	Action
q_0	aabcbaa\$	nil	<i>s</i> ₂
$q_0 q_2$	abcbaa\$	nil	s_2 a
$q_0 q_2 q_2$	bcbaa\$	nil	s_3
$q_0 q_2 q_2 q_3$	cbaa\$	nil	s_4
$q_0 q_2 q_2 q_3 q_4$	baa\$	$S \to c$	r_3

^aThe length of |c| = 1, so q_4 is popped out and $Goto(q_3, S) = q_6$ is pushed in the stack.

Parsing Example

Stack	Input	Handle	Action	
$q_0 q_2 q_2 q_3 q_4$	baa\$	$S \to c$	r_3	
$q_0 q_2 q_2 q_3 q_6$	baa\$	nil	s_8	a
$q_0 q_2 q_2 q_3 q_6 q_8$	aa\$	$S \rightarrow bSb$	r_2	
$q_0 q_2 q_2 q_5$	aa\$	nil	s_7	
$q_0 q_2 q_2 q_5 q_7$	a\$	$S \rightarrow aSa$	r_1	

^aThe length of |bSb| = 3, so $q_3q_6q_8$ are popped out and $Goto(q_2, S) = q_5$ is pushed in the stack.

Parsing Example

Stack	Input	Handle	Action	
$q_0q_2q_2q_5q_7$	a\$	$S \rightarrow aSa$	r_1	
$q_0 q_2 q_5$	a\$	nil	S_7	a
$q_0 q_2 q_5 q_7$	\$	$S \rightarrow aSa$	r_1	
$$q_0q_1$	\$	$S' \to S$	accept	

^aThe length of |aSa| = 3, so $q_2q_5q_7$ are popped out and $Goto(q_2, S) = q_5$ is pushed in the stack. Similarly, $Goto(q_0, S) = q_1$ is pushed in the stack.

Lect 7

In the LR(0) automaton of the grammar there are two states q_4 and q_{11} with both complete and incomplete items. So the grammar is not of type LR(0).

Consider the state q_4 . The complete item is $L \to D \bullet$ and the incomplete items are $T \to \bullet i$ and $T \to \bullet f$. The Follow $(L) = \{s\}$ is different from i, f. So we can put Action $(4, i) = s_6$, Action $(4, f) = s_7$ and Action $(4, s) = r_3$ (reduce by the production rule number 3) in the parsing table.

SLR Parsing Table: Action

- If $A \to \alpha \bullet a\beta \in q_i \ (a \in \Sigma)$ and $Goto(q_i, a) = q_j$, then $Action(i, a) = s_j$.
- If $A \to \alpha \bullet \in q_i$ $(A \neq S')$ and $b \in Follow(A)$, then $Action(i, b) = r_k$, where k is the rule number of $A \to \alpha$.
- If $S' \to S \bullet \$ \in q_i$, then Action(i, \$) = accept.

If this process does not lead to a table with multiple entries, then the grammar is of type SLR (simple LR).

SLR Parsing Table: Goto If $A \to \alpha \bullet B\beta \in q_i \ (B \in N)$ and $Goto(q_i, B) = q_j$, then in the table $\operatorname{Goto}(i, B) = j.$ All other entries of the table are errors.

SLR Parsing Table

S				Ad	ction	/					Got	0	
	m	S	e	•	d	i	f	\$	P	L	D	V	T
0	s_2								1				
1								A					
2						s_6	S_7			3	4		5
3		s_8											
4		r_3				s_6	S_7			9	4		5
5					s_{11}							10	

Consider the following grammar G_{rr} (augmented by the S').

> $0: S' \rightarrow S$ $1: S \rightarrow E + T$ $2: S \rightarrow T$ $3: T \rightarrow i * E$ $4: T \rightarrow i$ $5: E \rightarrow T$

States

The states of the LR(0) automaton are as follows:

q_0 :	$S' \to \bullet S$ $E \to \bullet T$	$S \to \bullet E + T$	$S \to \bullet T$
	$E \to \bullet T$	$T \rightarrow \bullet i * E$	$T \to \bullet i$
$q_1:$	$S' \to S \bullet \$$		
q_2 :	$S \to E \bullet + T$		
q_3 :	$S \to T \bullet$	$E \to T \bullet$	
$q_4:$	$T \to i \bullet * E$	$T \rightarrow i \bullet$	
q_5 :	$S \to E + \bullet T$	$T \to \bullet i * E$	$T \to \bullet i$

Goutam Biswas

- The state q_3 has two complete items $S \to T$ and $E \to T$ •.
- Also the Follow(S) = {\$} and
 Follow(E) = {\$,+} has a common element.
- So there are two conflicting reduce entries in the SLR table corresponding to the row-q₃ and the column-\$ - Action[q₃][\$] = {r₂, r₅}.

Consider the grammar G_{sr} (augmented by the S' $0: S' \rightarrow A$ $1: A \rightarrow B a$ $2: A \rightarrow C b$ $3: A \rightarrow a C a$ $4: C \rightarrow B$ $5: B \rightarrow cA$ $6: B \rightarrow b$
States

Some of the states of the LR(0) automaton are as follows:

q_0 :	$S' \to \bullet A$	$A \to \bullet B a$	$A \to \bullet C \ b$
	$S' \to \bullet A$ $A \to \bullet a \ C \ a$	$B \to \bullet c A$	$B \to \bullet b$
	$C \to \bullet B$		
$q_1:$	$S' \to A \bullet \$$		
q_2 :	$A \to B \bullet a$	$C \to B \bullet$	
q_3 :	$A \to C \bullet b$		
$q_4:$	$A \to a \bullet C \ a$	$C \to \bullet B$	

- The state q_2 has one complete item, $C \to B \bullet$ and one incomplete item, $A \to B \bullet a$.
- The SLR parsing table will have two entries for $Action[q_2][a] = \{s_7, r_4\}, as a \in Follow(C).$

- The grammar G_{rr} is not SLR due to the reduce/reduce conflict.
- The grammar G_{sr} is not SLR due to the shift/reduce conflict.

- If the state of an LR(0) automaton contains

 a complete item A → α• and the next input
 a ∈ FOLLOW(A), the SLR action is
 reduction by the rule A → α.
- But in the same state if there is another complete item B → β• with a ∈ Follow(B), or a shift item C → γ aµ, there will be conflict in action.

- The set FOLLOW(A) is the super set of what can follow a complete A-item at a particular state.
- In the grammar G_{rr} , in the state q_3 , E cannot be followed by a S. Similarly S cannot be followed by a +.
- Similarly in the grammar G_{sr} , in state q_2 , a cannot follow the variable C.

Both the reduce/reduce (G_{rr}) and shift/reduce (G_{sr}) conflicts may be resolved by explicitly carrying the look-ahead information.

Canonical LR(1) Item

- An object of the form $A \to \alpha \bullet \beta, a$, where $A \to \alpha\beta$ is a production rule and $a \in \Sigma \cup \{\$\}$, is called an LR(1) item.
- 'a' is called the look-ahead symbol that can follow A with this item.
- If there are more than one LR(1) items with same LR(0) core, we write them as $A \to \alpha \bullet \beta, a/b/\cdots$, a set.

Reduction

- The look-ahead symbols of an LR(1) item $A \rightarrow \alpha \bullet \beta, L$ are important when the item is complete i.e. $\beta = \varepsilon$.
- The reduction by the rule $A \to \alpha$ can take place if the look-ahead symbol is in L of $A \to \alpha \bullet, L$.
- The look-ahead set L is a subset of FOLLOW(A), but we carry them explicitly to resolve more conflicts.

Valid Item

An LR(1) item $A \to \alpha \bullet \beta$, *a* is valid for a viable prefix ' $u\alpha$ ', if there is a rightmost derivation: $S \to uAx \to u\alpha\beta x$, so that $a \in \text{FIRST}(x)$ or if $x = \varepsilon$, then a =\$.

Closure()

If i is an LR(1) item, then Closure(i) is defined as follows:

•
$$i \in \text{Closure}(i)$$
 - basis,

• If $(A \to \alpha \bullet B\beta, a) \in \text{Closure}(i)$ and $B \to \gamma$ is a production rule, then $(B \to \bullet \gamma, b) \in \text{Closure}(i),$ where $b \in \text{FIRST}(\beta a)$.

LR(1) Automaton

The start state of the LR(1) automaton is $Closure(S' \rightarrow \bullet S, \$)$. Other reachable and final states can be constructed by computing GOTO() of already existing states. This is a fixed-point computation.

Consider the grammar G_{rr} (augmented by the S').

 $0: S' \rightarrow S$ $1: S \rightarrow E + T$ $2: S \rightarrow T$ $3: T \rightarrow i * E$ $4: T \rightarrow i$ $5: E \rightarrow T$

States The states of the LR(1) automaton are as follows: $q_0: \begin{vmatrix} S' \to \bullet S, \$ & S \to \bullet E + T, \$ & S \to \bullet T, \$ \\ E \to \bullet T, + & T \to \bullet i \ \ast \ E, +/\$ & T \to \bullet i, +/\$ \end{vmatrix}$ $q_1: | S' \to S \bullet, \$$ $q_2: \mid S \to E \bullet + T, \$$ $q_3: | S \to T \bullet, \$$ $E \to T \bullet, +$ $q_4: | T \rightarrow i \bullet * E, +/\$ \quad T \rightarrow i \bullet, +/\$$ $q_5: \mid S \to E + \bullet T,$ $T \to \bullet i * E,$ $T \to \bullet i,$

Goutam Biswas

		States		
q_6 :	$T \rightarrow i * \bullet E, +/\$$	$E \to \bullet T, +/\$$	$T \rightarrow \bullet i *$	E, +/\$
	$T \rightarrow \bullet i, +/\$$			
q_7 :	$S \to E + T \bullet, \$$			
q_8 :	$T \to i \bullet * E, $	$T \to i \bullet, \$$		
q_9 :	$T \rightarrow i * E \bullet, +/\$$			
$q_{10}:$	$E \to T \bullet, +/\$$			
$q_{11}:$	$T \to i * \bullet E, \$$	$E \to \bullet T, \$$	$T \rightarrow \bullet i *$	E, \$
	$T \rightarrow \bullet i, \$$			

Lect 7

Number of states of the LR(1) automaton are more than that of LR(0) automaton. Several states have the same core LR(0) items, but different look-ahead symbols - (q_4, q_8) , $(q_6, q_{11}), (q_9, q_{12}).$

• If
$$(A \to \alpha \bullet a\beta, b) \in q_i \ (a \in \Sigma)$$
 and
 $Goto(q_i, a) = q_j$, then $Action(i, a) = s_j$.

• If
$$(A \to \alpha \bullet, a) \in q_i$$
 $(A \neq S')$, then
Action $(i, a) = r_k$, where k is the rule number
of $A \to \alpha$.

• If
$$(S' \to S \bullet, \$) \in q_i$$
, then $\operatorname{Action}(i, \$) =$ accept.

LR(1) Parsing Table: Goto

If $A \to \alpha \bullet B\beta \in q_i \ (B \in N)$ and Goto $(q_i, B) = q_j$, then in the table Goto(i, B) = j. All other entries of the table are errors.

	1						
S		Act	ion			Got	0
	+	*	i	\$	S	E	T
7				r_1			
8		s_{11}		r_4			
9	r_3			r_3			
10	r_5			r_5			
11			s_8			12	13
12				r_3			
13				r_5			

Goutam Biswas

$$0: S \to A$$

$$1: A \rightarrow a A a$$

$$2: A \rightarrow a A a a b$$

$$3: A \rightarrow a b$$

$$\begin{array}{c|c} \mbox{States of } LR(1) \mbox{ Automaton} \end{array} \\ \hline q_0: & S \rightarrow \bullet A, \$ & A \rightarrow \bullet aAa, \$ & A \rightarrow \bullet aAaab, \$ \\ & A \rightarrow \bullet ab, \$ & \\ \hline q_1: & S \rightarrow A \bullet, \$ & \\ \hline q_2: & A \rightarrow a \bullet Aa, \$ & A \rightarrow a \bullet Aaab, \$ & A \rightarrow a \bullet b, \$ \\ & A \rightarrow \bullet aAa, a & A \rightarrow \bullet aAaab, a & A \rightarrow \bullet ab, a \\ \hline q_3: & A \rightarrow aA \bullet a, \$ & A \rightarrow aA \bullet aab, \$ & \\ \hline q_4: & A \rightarrow ab \bullet, \$ & \\ \hline q_5: & A \rightarrow a \bullet Aa, a & A \rightarrow a \bullet Aaab, a & A \rightarrow a \bullet b, a \\ & A \rightarrow \bullet aAa, a & A \rightarrow a \bullet Aaaab, a & A \rightarrow a \bullet b, a \\ \hline q_5: & A \rightarrow a \bullet Aa, a & A \rightarrow a \bullet Aaaab, a & A \rightarrow a \bullet b, a \\ \hline q_5: & A \rightarrow a \bullet Aa, a & A \rightarrow a \bullet Aaaab, a & A \rightarrow \bullet ab, a \\ \hline \end{array}$$

States of LR(1) Automaton

$q_6:$	$A \to aAa \bullet, \$$	$A \to aAa \bullet ab, \$$
$q_7:$	$A \to aA \bullet a, a$	$A \rightarrow aA \bullet aab, a$
$q_8:$	$A \to ab \bullet, a$	
q_9	$A \rightarrow aAaa \bullet b, \$$	
q_{10} :	$A \to aAa \bullet, a$	$A \rightarrow aAa \bullet ab, a$
q_{11}	$A \rightarrow aAaab \bullet, \$$	

In state q_{10} , the shift/reduce conflict cannot be resolved and there will be multiple entries in Action $(10, a) = \{s_i, r_1\}$, where $Goto(q_{10}, a) = q_i$. This can be resolved with 2-look-ahead

	States o	of $LR(2)$ Automator	1
$\overline{q_0}$:	$S \to \bullet A, \$$	$A \rightarrow \bullet aAa, \$$	$A \rightarrow \bullet aAaab, \$$
	$A \to \bullet ab, \$$		
$q_1:$	$S \to A \bullet, \$$		
$q_2:$	$A \to a \bullet Aa, \$$	$A \rightarrow a \bullet Aaab, \$$	$A \rightarrow a \bullet b, \$$
	$A \rightarrow \bullet aAa, aa/a$ \$	$A \rightarrow \bullet aAaab, aa/a\$$	$A \rightarrow \bullet ab, aa/a\$$
$q_3:$	$A \to aA \bullet a, \$$	$A \rightarrow aA \bullet aab, \$$	
$q_4:$	$A \to ab \bullet, \$$		
q_5 :	$A \rightarrow a \bullet Aa, aa/a\$$	$A \rightarrow a \bullet Aaab, aa/a\$$	$A \rightarrow a \bullet b, aa/a\$$
	$A \rightarrow \bullet aAa, aa$	$A \rightarrow \bullet aAaab, aa$	$A \rightarrow \bullet ab, aa$

	States of $LR(2$) Automaton
q_6 :	$A \to aAa \bullet, \$$	$A \rightarrow aAa \bullet ab, \$$
q_7 :	$A \rightarrow aA \bullet a, aa/a\$$	$A \rightarrow aA \bullet aab, aa/a\$$
q_8 :	$A \to ab \bullet, aa/a\$$	
q_9	$A \rightarrow aAaa \bullet b, \$$	
q_{10} :	$A \rightarrow a A a \bullet a a / a \$$	$A \rightarrow aAa \bullet ab, aa/a$

In state q_{10} , the action is r_1 if the next two symbols are either 'aa' or 'a\$'. The action is shift if they are 'ab'. But we shall not use LR(2) parsing.

LALR Parser

- There are pairs of LR(1) states for the grammar G_{rr} with the same LR(0) items. These are $(q_4, q_8), (q_6, q_{11}), (q_9, q_{12}).$
- If we can merge states with the same LR(0) items, the number of states of the automaton will be same as that of LR(0) automaton.

LALR Parser

- For some LR(1) grammar this merging will not lead to multiple entries in the parsing table.
- Such a grammar is known as LALR(1) (lookahead LR) grammar.

state, it is already there in some LR(1) state.

• So the grammar is not even LR(1).

Note

- Two states of an LALR parser cannot have the same set of LR(0) items.
- So the number of states of an LR(0) and an LALR(1) automaton are same.
- An LALR parser uses a better heuristic, than the global FOLLOW() sets of non-terminals, about symbols that can follow an LR(0) item at a state.

LALR States

The states of the LR(1) automaton are as follows:

q_0 :	$S' \to \bullet S, \$$	$S \to \bullet E + T, \$$	$S \to \bullet T, \$$
	$E \to \bullet T, +$	$T \rightarrow \bullet i * E, +/\$$	$T \rightarrow \bullet i, +/\$$
$q_1:$	$S' \to S \bullet, \$$		
$q_2:$	$S \to E \bullet + T, \$$		
q_3 :	$S \to T \bullet, \$$	$E \to T \bullet, +$	
$q_{4\cdot 8}:$	$T \to i \bullet * E, +/\$$	$T \rightarrow i \bullet, +/\$$	
q_5 :	$S \to E + \bullet T, \$$	$T \rightarrow \bullet i * E, \$$	$T \to \bullet i, \$$
-	States		
------------------	---	----	
$q_{6\cdot 11}:$	$T \to i \ast \bullet E, +/\$ E \to \bullet T, +/\$ T \to \bullet i \ast E, +/$	\$	
	$T \to \bullet i, +/\$$		
$q_7:$	$S \to E + T \bullet, \$$		
$q_{9\cdot 12}:$	$T \to i * E \bullet, +/\$$		
q_{10} :	$E \to T \bullet, +/\$$		
$q_{13}:$	$E \to T \bullet, \$$		
)	

S		Act	ion		G		
	+	*	i	\$	S	E	T
0			$s_{4.8}$		1	2	3
1				A			
2	s_5						
3	r_5			r_2			
$4 \cdot 8$	r_4	$s_{6.11}$		r_4			
5			$s_{4.8}$				7
$6 \cdot 11$			$s_{4.8}$		$9 \cdot 12$		10

LALR Parsing Table

S		Act	ior),	(Gote)
	+	*	i	\$	S	E	T
7				r_1			
$9 \cdot 12$	r_3			r_3			
10	r_5			r_5			
13				r_5			

Lect 7

$$\begin{array}{c|c} \mbox{States of } LR(1) \mbox{ Automaton} \\ \hline q_0: & S \rightarrow \bullet A, \$ & A \rightarrow \bullet aBa, \$ & A \rightarrow \bullet bBb, \$ \\ & A \rightarrow \bullet aDb, \$ & A \rightarrow \bullet bDa, \$ & \\ \hline q_1: & S \rightarrow A \bullet, \$ & \\ \hline q_2: & A \rightarrow a \bullet Ba, \$ & A \rightarrow a \bullet Db, \$ & B \rightarrow \bullet c, a \\ & D \rightarrow \bullet c, b & \\ \hline q_3: & A \rightarrow b \bullet Bb, \$ & A \rightarrow b \bullet Da, \$ & B \rightarrow \bullet c, b \\ & D \rightarrow \bullet c, a & \\ \hline q_4: & A \rightarrow aB \bullet a, \$ & \\ \hline q_5: & A \rightarrow aD \bullet b, \$ & \\ \end{array}$$

States of
$$LR(1)$$
 Automaton $q_6: B \to c \bullet, a \qquad D \to c \bullet, b$ $q_7: A \to bB \bullet b, \$$ $q_8: A \to bD \bullet a, \$$ $q_9: B \to c \bullet, b \qquad D \to c \bullet, a$

The states q_6 and q_9 have the same LR(0) core, but they cannot be merged to form a LALR state as that will lead to reduce/reduce conflicts. So the grammar is LR(1) but not LALR.

Resolving Shift-Reduce Conflicts

- Take longest sequence of handle for reduction i.e. shift when there is a shift/reduce conflict e.g. associate the else to the nearest if.
- In an operator grammar use the associativity and precedence of operators. As an example A → α • ⊗β, B → γ ⊕ μ•. 'shift' if ⊗ is of higher precedence, reduce is ⊕ is of higher precedence etc.

Resolving Reduce-Reduce Conflicts

- There are two or more complete items in a state.
- It is often resolved using the first grammar rule of complete items.
- But it may not give a satisfactory result. Consider the following grammar. The terminals are {i, f, id}. The start symbol is D.

Ambiguous Grammar & LR Parsing

An ambiguous grammar cannot be LR. But for some ambiguous grammars^a it is possible to use LR parsing techniques efficiently with the help of some extra grammatical information such as associativity and precedence of operators.

^aAs an example for operator-precedence grammars: CFG with no ε production and no production rule with two non-terminals coming side by side.

Example

Consider the expression grammar G_a

- $3: E \rightarrow (E)$
- $4: E \rightarrow -E$
- $5: E \rightarrow i$

Note that the terminal '-' is used both as binary as well as unary operator.

States of
$$LR(0)$$
 Automaton

Goutam Biswas

States of
$$LR(0)$$
 Automaton $q_5:$ $E \to E - \bullet E$ $E \to \bullet - E$ $E \to \bullet E * E$ $E \to \bullet(E)$ $E \to \bullet - E$ $E \to \bullet i$ $q_6:$ $E \to E * \bullet E$ $E \to \bullet - E$ $E \to \bullet E * E$ $E \to \bullet(E)$ $E \to \bullet - E$ $E \to \bullet i$ $q_7:$ $E \to (E \bullet)$ $E \to E \bullet - E$ $E \to e * E$ $q_8:$ $E \to -E \bullet$ $E \to E \bullet - E$ $E \to E \bullet * E$ $q_9:$ $E \to E - E \bullet$ $E \to E \bullet - E$ $E \to E \bullet * E$ $q_{10}:$ $E \to E * E \bullet$ $E \to E \bullet - E$ $E \to E \bullet * E$

There are a few more states.

NoteThe states
$$q_8$$
, q_9 and q_{10} have complete and
incomplete items. FOLLOW $(E) = \{\$, -, *, \}$ cannot resolve the conflict. In fact no amount of
look-ahead can help - the $LR(1)$ initial state is $q_0:$ $S \rightarrow \bullet E, \$$ $E \rightarrow \bullet E - E, \$/-/*$ $E \rightarrow \bullet E * E, \$/-/*$ $E \rightarrow \bullet (E), \$/-/*$ $E \rightarrow \bullet - E, \$/-/*$ $E \rightarrow \bullet (E), \$/-/*$ $E \rightarrow \bullet - E, \$/-/*$

$$q_8: E \to -E \bullet, \ E \to E \bullet -E, \ E \to E \bullet *E$$

The higher precedence of unary '-' over the binary '-' and binary '*' will help to resolve the conflict. The parser reduces the handle i.e. $Action(8, -) = Action(8, *) = Action(8,) = Action(8, *) = r_4.$

$$q_9: E \to E - E \bullet, \ E \to E \bullet - E, \ E \to E \bullet * E$$

In this case if the look-ahead symbol is a '-' (it must be binary), the parser reduces due to the left associativity of binary '-'. But if the look-ahead symbol is a '*', the parser shifts i.e. $Action(9, -) = Action(9,) = Action(9,) = r_4$ but $Action(9, *) = s_6$.

Error Handling

- What happens when an (LA)LR(1)-parser is in state q, the input token is a, and the parsing table entry Action(q, a) is empty i.e. no-shift, no-reduce, no-accept. This is an error condition.
- The token *a* is not a valid continuation of the input the parses has seen so far.

91

Lect 7

Error Handling

- The question is what action should the parser take.
- The simplest solution is highlight the position of error, and terminate parsing.
- But the error may be due to a missing semicolon (';') or a parenthesis ('(') only. After fixing it the compilation is to be restarted from the beginning.

Error Handling

- Another alternative may be to continue with the error. But then the parser will start generating dozens of spurious errors due to the single error.
- So the parser needs to recover from the current error and try to detect as many errors as possible in a pass.

- An error recovery strategy may try to modify either the stack or the input stream or both.
- Modification of the stack amounts to modification of a portion of the parse tree that has already been constructed and found to be correct.

- The recovery works under the assumption that the error is within the string generated by A (within the phrase of A).
- The non-terminal A may represent an expression, where an operator or an operand is missing; or a statement, where a semicolon or an end is missing.

Embedding Error Actions in Parsing table

- Phrase-level recovery routines can be embedded in the (LA)LR(1) parsing table.
- Each error entry may be a pointer to the corresponding error-handling routine.
- The error-handling routine should not drive the parses in an infinite loop.

Compiler Design

Compiler Design

Lect 7

Modified SLR Table

- All error entries of a state with reduction action are replaced by the same reduction action.
- This delays the error detection.

Error Routine - 0 (e_0)

- The parser is in a state $i \ (i \neq 1)$ and it encounters the eof (\$).
- Terminate parsing with a message 'unexpected <eof>'

Error Routine - $2(e_2)$

- At state 1 the parser has already seen a valid input.
- If it sees anything other than eof (\$), it may accept the input and generate the error message 'extra character' at the end of input.

Error Routine - $3(e_3)$

- At state 2 if there is anything other than *i*, *f* or \$, the parser push either state 6 or state 7 in the stack (does not matter as it is an error condition).
- It prints 'missing i or f'.

- Error entries of state 4 are filled with reduction by rule 3 (r_3) .
- The reduction takes place and the error detection is deferred.

- Similarly we fill other error entries.
- The question is, whether there is any possibility of infinite loop.

SLR Parsing Table

S				Act	tion						Gote	0	
	m	S	е	•	d	i	f	\$	Р	L	D	V	Т
0	s_2	e_1	e_1	e_1	e_1	e_1	e_1	e_0	1				
1	e_2	e_2	e_2	e_2	e_2	e_2	e_2	A					
2	e_3	e_3	e_3	e_3	e_3	s_6	s_7	e_0		3	4		5
3	e_4	s_8	e_4	e_4	e_4	e_4	e_4	e_0					
4	r_3	r_3	r_3	r_3	r_3	s_6	S_7	r_3		9	4		5
5	e_5	e_5	e_5	e_5	<i>s</i> ₁₁	e_5	e_5	e_0				10	

					E	xam	ple						
S		Action									Gote	0	
	m	S	е	•	d	i	f	\$	P	L	D	V	T
6	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7					
7	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8					
8	e_6	e_6	e_6	s_{12}	e_6	e_6	e_6	e_0					
9	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2					
10	e_7	e_7	e_7	s_{13}	e_7	e_7	e_7	e_0					
11	r_6	r_6	r_6	r_6	<i>s</i> ₁₁	r_6	r_6	r_6				14	

					Ε	xan	nple						
S				Act	Goto								
	m	S	e	,	d	i	f	\$	P	L	D	V	T
12	r_1												
13	r_4												
14	r_5												

- Some non-terminals are chosen for error recovery.
- Such a non-terminal A has an added special production rule A → errRec to create a dummy node.
- If a syntax error is detected while constructing a subtree rooted at A, two actions are taken.

• Let the production rules of A be $A \rightarrow BCD \mid \text{errRec.}$

- The state at the top of stack is s_z and the current token is a. But Action(s_z, a) is empty, an error.
- Let the sequence of states and non-terminals at the top of stack are as follows.

Goutam Biswas

• The set of valid items for the state s_x are

 $\{X \to \alpha \bullet A\beta, A \to \bullet BCD, A \to \bullet \operatorname{errRec}, B \to \cdots \}$

The sub-trees corresponding to B and Chave already been constructed.

Element from the top of the stack are removed to get the error recovery state (s_x), which has a Goto() on an error recovery non-terminal (A).

- A dummy node for A with errRec is created.
 Then A and Goto(s_x, A) are pushed in the stack.
- The top of stack looks like,

• The valid items of s_u are

$$\{X \to \alpha A \bullet \beta, \cdots\}$$

- Tokens from the input stream are discarded until there is a token b such that Action(s_u, b) is non-empty, not an error.
- This process cannot go to an infinite loop as there must be some Action() at the state s_u .

References

[ASRJ] Compilers Principles, Techniques, and Tools, byA. V. Aho, Monica S. Lam, R. Sethi, & J. D. Ullman,2nd ed., ISBN 978-81317-2101-8, Pearson Ed., 2008.

[DKHJK] Modern Compiler Design, by Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J. H. Jacobs, Koen Langendoen, 2nd ed., ISBN 978 1461 446989, Springer (2012).

[KL] Engineering a Compiler, by Keith D. Cooper & Linda Troczon, (2nd ed.), ISBN 978-93-80931-87-6, Morgan Kaufmann, Elsevier, 2012.