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✫

✩

✪

LR(k) Grammar

An LR(k) grammar is a context-free grammar
where the handle in a right sentential form can
be identified with a lookahead of at most k
input. We shall only consider k = 0, 1.
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✫

✩

✪

LR(0) Parsing

An LR(0) parser can take shift-reduce decisions
entirely on the basis of the states of LR(0)
automatona of the grammar. Consider the
following grammar with the augmented start
symbol and the production rule.

aThe parsing table can be filled from the automaton.
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✫

✩

✪

Example

The production rules are,

S → aSa | bSb | c

The production rules of the augmented

grammar are,

S′ → S$

S → aSa | bSb | c

The states of the LR(0) automaton are the
following:
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✫

✩

✪

States

q0 : S′ → •S$ S → •aSa S → •bSb

S → •c

q1 : S′ → S • $

q2 : S → a • Sa S → •aSa S → •bSb

S → •c

q3 : S → b • Sb S → •aSa S → •bSb

S → •c

q4 : S → c•
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✫

✩

✪

States

q5 : S → aS • a

q6 : S → bS • b

q7 : S → aSa•

q8 : S → bSb•
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✫

✩

✪

Complete and Incomplete Items

An LR(0) item is called complete if the ‘•’ is at
the right end of the production, A → α•. This
indicates that the DFA has already ‘seen’ a
handle and it is on the top of the stack.
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✫

✩

✪

LR(0) Grammar

A grammar G is of type LR(0) if the DFA of its

viable prefixes has the following properties:

• no state has both complete and incomplete

items,

• no state has two complete items.
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✫

✩

✪

Note

A state with a unique complete item A → α•,
indicates a reduction of the handle α by the
rule A → α.
A state with incomplete items indicates shift
actions. The parsing table for the given
grammar is as follows.
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✫

✩

✪

Parsing table
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✫

✩

✪

State Action Goto

a b c $ S

0 s2 s3 s4 1

1 accept

2 s2 s3 s4 5

3 s2 s3 s4 6

4 r3 r3 r3 r3

5 s7

6 s8

7 r1 r1 r1 r1

8 r2 r2 r2 r2
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✫

✩

✪

Note

The parser does not look-ahead for any shift
operation. It gets the current state from the
top-of-stack and the token from the scanner.
Using the parsing table it gets the next state
and pushes it in the stacka. The token is
consumed.

aIt may push the token and its attributes in the value stack for semantic

action.

Lect 7 Goutam Biswas



Compiler Design IIIT Kalyani, WB 13✬

✫

✩

✪

Note

In case of LR(0) parser it does not look-ahead
even for any reduce operationa. It gets the
current state from the top-of-stack and the
production rule number from the parsing table
(for all correct input they are same), and
reduces the right sentential form by the ruleb.

aIt may read the input to detect error. Note the column corresponding to ‘c’

for the states 4, 7, 8 with unique complete items.
bThe Goto portion of the table is used to push a new state on the stack after

a reduction.
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✫

✩

✪

Parsing Example

Stack Input Handle Action

$q0 aabcbaa$ nil s2

$q0q2 abcbaa$ nil s2

$q0q2q2 bcbaa$ nil s3

$q0q2q2q3 cbaa$ nil s4

$q0q2q2q3q4 baa$ S → c r3

a

aThe length of |c| = 1, so q4 is popped out and Goto(q3, S) = q6 is pushed in

the stack.
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✫

✩

✪

Parsing Example

Stack Input Handle Action

$q0q2q2q3q4 baa$ S → c r3

$q0q2q2q3q6 baa$ nil s8

$q0q2q2q3q6q8 aa$ S → bSb r2

$q0q2q2q5 aa$ nil s7

$q0q2q2q5q7 a$ S → aSa r1

a

aThe length of |bSb| = 3, so q3q6q8 are popped out and Goto(q2, S) = q5 is

pushed in the stack.
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✫

✩

✪

Parsing Example

Stack Input Handle Action

$q0q2q2q5q7 a$ S → aSa r1

$q0q2q5 a$ nil s7

$q0q2q5q7 $ S → aSa r1

$q0q1 $ S′ → S accept

a

aThe length of |aSa| = 3, so q2q5q7 are popped out and Goto(q2, S) = q5 is

pushed in the stack. Similarly, Goto(q0, S) = q1 is pushed in the stack.
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✫

✩

✪

SLR(1) Parsing
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✫

✩

✪

We consider our old grammar (augmented with S′).

0 : S′ → P$

1 : P → m L s e

2 : L → D L

3 : L → D

4 : D → T V ;

5 : V → d V

6 : V → d

7 : T → i

8 : T → f
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✫

✩

✪

States

q0 : S′ → •P P → •m L s e

q1 : S′ → P • $

q2 : P → m • L s e L → •D L L → •D

D → •T V ; T → •i T → •f

q3 : P → m L • s e

q4 : L → D • L L → D• L → •D L

L → •D D → •T V ; T → •i

T → •f
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✫

✩

✪

States

q5 : D → T • V ; V → •d V V → •d

q6 : T → i•

q7 : T → f•

q8 : P → m L s • e

q9 : L → D L•

q10 : D → T V •;

q11 : V → d • V V → d• V → •d V

V → •d
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✫

✩

✪

States

q12 : P → m L s e•

q13 : D → T V ; •

q14 : V → d V •
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✫

✩

✪

Note

In the LR(0) automaton of the grammar there
are two states q4 and q11 with both complete
and incomplete items. So the grammar is not of
type LR(0).
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✫

✩

✪

Note

Consider the state q4.
The complete item is L → D• and the
incomplete items are T → •i and T → •f .
The Follow(L) = {s} is different from i, f . So
we can put Action(4, i) = s6, Action(4, f) = s7
and Action(4, s) = r3 (reduce by the production
rule number 3) in the parsing table.
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✫

✩

✪

SLR Parsing Table: Action

• If A → α • aβ ∈ qi (a ∈ Σ) and

Goto(qi, a) = qj , then Action(i, a) = sj.

• If A → α• ∈ qi (A 6= S′) and b ∈ Follow(A),

then Action(i, b) = rk, where k is the rule

number of A → α.

• If S′ → S • $ ∈ qi, then Action(i, $) = accept.
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✫

✩

✪

Note

If this process does not lead to a table with
multiple entries, then the grammar is of type
SLR (simple LR).
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✫

✩

✪

SLR Parsing Table: Goto

If A → α • Bβ ∈ qi (B ∈ N) and
Goto(qi, B) = qj, then in the table
Goto(i, B) = j.
All other entries of the table are errors.
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✫

✩

✪

FOLLOW() Sets

Non-terminal Follow

P $

L s

D i, f, s

T d

V ;
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✫

✩

✪

SLR Parsing Table

S Action Goto

m s e ; d i f $ P L D V T

0 s2 1

1 A

2 s6 s7 3 4 5

3 s8

4 r3 s6 s7 9 4 5

5 s11 10
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✫

✩

✪

Example

S Action Goto

m s e ; d i f $ P L D V T

6 r7

7 r8

8 s12

9 r2

10 s13

11 r6 s11 14
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✫

✩

✪

Example

S Action Goto

m s e ; d i f $ P L D V T

12 r1

13 r4 r4 r4

14 r5
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✫

✩

✪

Non-SLR Grammar
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✫

✩

✪

Consider the following grammar Grr

(augmented by the S′).

0 : S′ → S$

1 : S → E + T

2 : S → T

3 : T → i ∗ E

4 : T → i

5 : E → T
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✫

✩

✪

States

The states of the LR(0) automaton are as follows:

q0 : S′ → •S S → •E + T S → •T

E → •T T → •i ∗ E T → •i

q1 : S′ → S • $

q2 : S → E •+ T

q3 : S → T• E → T•

q4 : T → i • ∗ E T → i•

q5 : S → E + •T T → •i ∗ E T → •i
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✫

✩

✪

States

q6 : T → i ∗ •E E → •T T → •i ∗ E

T → •i

q7 : S → E + T•

q8 : T → i ∗ E•

q9 : E → T•
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✫

✩

✪

Note

• The state q3 has two complete items S → T•

and E → T•.

• Also the Follow(S) = {$} and

Follow(E) = {$,+} has a common element.

• So there are two conflicting reduce entries in

the SLR table corresponding to the row-q3

and the column-$ - Action[q3][$] = {r2, r5}.
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✫

✩

✪

Consider the grammar Gsr (augmented by the

S′).

0 : S′ → A$

1 : A → B a

2 : A → C b

3 : A → a C a

4 : C → B

5 : B → c A

6 : B → b
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✫

✩

✪

States

Some of the states of the LR(0) automaton are as

follows:

q0 : S′ → •A A → •B a A → •C b

A → •a C a B → •c A B → •b

C → •B

q1 : S′ → A • $

q2 : A → B • a C → B•

q3 : A → C • b

q4 : A → a • C a C → •B
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✫

✩

✪

States

q5 : B → c • A A → •B a A → •C b

A → •a C a B → •c A B → •b

C → •B

q6 : B → b•

q7 : A → B a•

q8 :

q9 :
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✫

✩

✪

Note

• The state q2 has one complete item, C → B•

and one incomplete item, A → B • a.

• The SLR parsing table will have two entries

for Action[q2][a] = {s7, r4}, as a ∈ Follow(C).
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✫

✩

✪

Note

• The grammar Grr is not SLR due to the

reduce/reduce conflict.

• The grammar Gsr is not SLR due to the

shift/reduce conflict.
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✫

✩

✪

Note

• If the state of an LR(0) automaton contains

a complete item A → α• and the next input

a ∈ FOLLOW(A), the SLR action is

reduction by the rule A → α.

• But in the same state if there is another

complete item B → β• with a ∈ Follow(B),

or a shift item C → γ • aµ, there will be

conflict in action.
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✫

✩

✪

Note

• The set FOLLOW(A) is the super set of

what can follow a complete A-item at a

particular state.

• In the grammar Grr, in the state q3, E

cannot be followed by a $. Similarly S

cannot be followed by a +.

• Similarly in the grammar Gsr, in state q2, a

cannot follow the variable C.
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✫

✩

✪

Note

Both the reduce/reduce (Grr) and shift/reduce
(Gsr) conflicts may be resolved by explicitly
carrying the look-ahead information.
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✫

✩

✪

Canonical LR(1) Item

• An object of the form A → α • β, a, where

A → αβ is a production rule and

a ∈ Σ ∪ {$}, is called an LR(1) item.

• ‘a’ is called the look-ahead symbol that can

follow A with this item.

• If there are more than one LR(1) items with

same LR(0) core, we write them as

A → α • β, a/b/ · · · , a set.
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✫

✩

✪

Reduction

• The look-ahead symbols of an LR(1) item

A → α • β, L are important when the item is

complete i.e. β = ε.

• The reduction by the rule A → α can take

place if the look-ahead symbol is in L of

A → α•, L.

• The look-ahead set L is a subset of

FOLLOW(A), but we carry them explicitly

to resolve more conflicts.
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✫

✩

✪

Valid Item

An LR(1) item A → α • β, a is valid for a viable
prefix ‘uα’, if there is a rightmost derivation:
S → uAx → uαβx, so that
a ∈ FIRST(x) or if x = ε, then a = $.
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✫

✩

✪

Closure()

If i is an LR(1) item, then Closure(i) is defined

as follows:

• i ∈ Closure(i) - basis,

• If (A → α •Bβ, a) ∈ Closure(i) and B → γ

is a production rule, then

(B → •γ, b) ∈ Closure(i),

where b ∈ FIRST(βa).
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✫

✩

✪

Closure()

The closure of I, a set of LR(1) items, is
defined as Closure(I) =

⋃
i∈I Closure(i).
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✫

✩

✪

Goto(I,X)

Let I be a set of LR(1) items and X ∈ Σ ∪N .

The set of LR(1) items Goto(I,X) is

Closure ({(A → α X • β, a) : (A → α •X β, a) ∈ I}) .
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✫

✩

✪

LR(1) Automaton

The start state of the LR(1) automaton is
Closure(S′ → •S, $). Other reachable and final
states can be constructed by computing
GOTO() of already existing states. This is a
fixed-point computation.
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✫

✩

✪

Consider the grammar Grr (augmented by the

S′).

0 : S′ → S$

1 : S → E + T

2 : S → T

3 : T → i ∗ E

4 : T → i

5 : E → T
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✫

✩

✪

States

The states of the LR(1) automaton are as follows:

q0 : S′ → •S, $ S → •E + T, $ S → •T, $

E → •T,+ T → •i ∗ E,+/$ T → •i,+/$

q1 : S′ → S•, $

q2 : S → E •+ T, $

q3 : S → T•, $ E → T•,+

q4 : T → i • ∗ E,+/$ T → i•,+/$

q5 : S → E + •T, $ T → •i ∗ E, $ T → •i, $
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✫

✩

✪

States

q6 : T → i ∗ •E,+/$ E → •T,+/$ T → •i ∗ E,+/$

T → •i,+/$

q7 : S → E + T•, $

q8 : T → i • ∗ E, $ T → i•, $

q9 : T → i ∗ E•,+/$

q10 : E → T•,+/$

q11 : T → i ∗ •E, $ E → •T, $ T → •i ∗ E, $

T → •i, $
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✫

✩

✪

States

q12 : T → i ∗ E•, $

q13 : E → T•, $
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✫

✩

✪

Note

Number of states of the LR(1) automaton are
more than that of LR(0) automaton.
Several states have the same core LR(0) items,
but different look-ahead symbols - (q4, q8),
(q6, q11), (q9, q12).
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✫

✩

✪

LR(1) Parsing Table: Action

• If (A → α • aβ, b) ∈ qi (a ∈ Σ) and

Goto(qi, a) = qj , then Action(i, a) = sj.

• If (A → α•, a) ∈ qi (A 6= S′), then

Action(i, a) = rk, where k is the rule number

of A → α.

• If (S′ → S•, $) ∈ qi, then Action(i, $) =

accept.
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✫

✩

✪

LR(1) Parsing Table: Goto

If A → α • Bβ ∈ qi (B ∈ N) and
Goto(qi, B) = qj, then in the table
Goto(i, B) = j.
All other entries of the table are errors.
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✫

✩

✪

Note

If the process constructs a table without
multiple entries, the grammar is LR(1).
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✫

✩

✪

LR(1) Parsing Table

S Action Goto

+ ∗ i $ S E T

0 s4 1 2 3

1 A

2 s5

3 r5 r2

4 r4 s6 r4

5 s8 7

6 s4 9 10
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✫

✩

✪

LR(1) Parsing Table

S Action Goto

+ ∗ i $ S E T

7 r1

8 s11 r4

9 r3 r3

10 r5 r5

11 s8 12 13

12 r3

13 r5
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✫

✩

✪

Non-LR(1) Grammar

0 : S → A

1 : A → a A a

2 : A → a Aa a b

3 : A → a b
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✫

✩

✪

States of LR(1) Automaton

q0 : S → •A, $ A → •aAa, $ A → •aAaab, $

A → •ab, $

q1 : S → A•, $

q2 : A → a • Aa, $ A → a • Aaab, $ A → a • b, $

A → •aAa, a A → •aAaab, a A → •ab, a

q3 : A → aA • a, $ A → aA • aab, $

q4 : A → ab•, $

q5 : A → a • Aa, a A → a • Aaab, a A → a • b, a

A → •aAa, a A → •aAaab, a A → •ab, a
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✫

✩

✪

States of LR(1) Automaton

q6 : A → aAa•, $ A → aAa • ab, $

q7 : A → aA • a, a A → aA • aab, a

q8 : A → ab•, a

q9 A → aAaa • b, $

q10 : A → aAa•, a A → aAa • ab, a

q11 A → aAaab•, $
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✫

✩

✪

Note

In state q10, the shift/reduce conflict cannot be
resolved and there will be multiple entries in
Action(10, a) = {si, r1}, where Goto(q10, a) = qi.
This can be resolved with 2-look-ahead
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✫

✩

✪

States of LR(2) Automaton

q0 : S → •A, $ A → •aAa, $ A → •aAaab, $

A → •ab, $

q1 : S → A•, $

q2 : A → a • Aa, $ A → a •Aaab, $ A → a • b, $

A → •aAa, aa/a$ A → •aAaab, aa/a$ A → •ab, aa/a$

q3 : A → aA • a, $ A → aA • aab, $

q4 : A → ab•, $

q5 : A → a • Aa, aa/a$ A → a •Aaab, aa/a$ A → a • b, aa/a$

A → •aAa, aa A → •aAaab, aa A → •ab, aa
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✫

✩

✪

States of LR(2) Automaton

q6 : A → aAa•, $ A → aAa • ab, $

q7 : A → aA • a, aa/a$ A → aA • aab, aa/a$

q8 : A → ab•, aa/a$

q9 A → aAaa • b, $

q10 : A → aAa•, aa/a$ A → aAa • ab, aa/a$

q11 A → aAaab•, $
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✫

✩

✪

Note

In state q10, the action is r1 if the next two
symbols are either ‘aa’ or ‘a$’. The action is
shift if they are ‘ab’. But we shall not use
LR(2) parsing.
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✫

✩

✪

LALR Parser

• There are pairs of LR(1) states for the

grammar Grr with the same LR(0) items.

These are (q4, q8), (q6, q11), (q9, q12).

• If we can merge states with the same LR(0)

items, the number of states of the automaton

will be same as that of LR(0) automaton.
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✫

✩

✪

LALR Parser

• For some LR(1) grammar this merging will

not lead to multiple entries in the parsing

table.

• Such a grammar is known as LALR(1)

(lookahead LR) grammar.
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✫

✩

✪

Note

• Merging of two LR(1) states with the same

LR(0) item cannot give rise to a new

shift/reduce conflict.

• If there is a pair of items of the form

{A → α • aβ, · · · , B → γ•, a} in the merged

state, it is already there in some LR(1) state.

• So the grammar is not even LR(1).
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✫

✩

✪

Note

• Two states of an LALR parser cannot have

the same set of LR(0) items.

• So the number of states of an LR(0) and an

LALR(1) automaton are same.

• An LALR parser uses a better heuristic,

than the global FOLLOW() sets of

non-terminals, about symbols that can

follow an LR(0) item at a state.
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✫

✩

✪

LALR States

The states of the LR(1) automaton are as follows:

q0 : S′ → •S, $ S → •E + T, $ S → •T, $

E → •T,+ T → •i ∗ E,+/$ T → •i,+/$

q1 : S′ → S•, $

q2 : S → E •+ T, $

q3 : S → T•, $ E → T•,+

q4·8 : T → i • ∗ E,+/$ T → i•,+/$

q5 : S → E + •T, $ T → •i ∗ E, $ T → •i, $
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✫

✩

✪

States

q6·11 : T → i ∗ •E,+/$ E → •T,+/$ T → •i ∗ E,+/$

T → •i,+/$

q7 : S → E + T•, $

q9·12 : T → i ∗ E•,+/$

q10 : E → T•,+/$

q13 : E → T•, $

Lect 7 Goutam Biswas



Compiler Design IIIT Kalyani, WB 74✬

✫

✩

✪

LALR Parsing Table

S Action Goto

+ ∗ i $ S E T

0 s4·8 1 2 3

1 A

2 s5

3 r5 r2

4 · 8 r4 s6·11 r4

5 s4·8 7

6 · 11 s4·8 9 · 12 10
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✫

✩

✪

LALR Parsing Table

S Action Goto

+ ∗ i $ S E T

7 r1

9 · 12 r3 r3

10 r5 r5

13 r5
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✫

✩

✪

LR(1) but not LALR

Consider the grammar

0 : S → A$

1 : A → a B a

2 : A → b B b

3 : A → a D b

4 : A → b D a

5 : B → c

6 : D → c

Lect 7 Goutam Biswas



Compiler Design IIIT Kalyani, WB 77✬

✫

✩

✪

States of LR(1) Automaton

q0 : S → •A, $ A → •aBa, $ A → •bBb, $

A → •aDb, $ A → •bDa, $

q1 : S → A•, $

q2 : A → a •Ba, $ A → a •Db, $ B → •c, a

D → •c, b

q3 : A → b •Bb, $ A → b •Da, $ B → •c, b

D → •c, a

q4 : A → aB • a, $

q5 : A → aD • b, $
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✫

✩

✪

States of LR(1) Automaton

q6 : B → c•, a D → c•, b

q7 : A → bB • b, $

q8 : A → bD • a, $

q9 : B → c•, b D → c•, a

The states q6 and q9 have the same LR(0) core,
but they cannot be merged to form a LALR
state as that will lead to reduce/reduce
conflicts. So the grammar is LR(1) but not
LALR.
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✫

✩

✪

Resolving Shift-Reduce Conflicts

• Take longest sequence of handle for reduction

i.e. shift when there is a shift/reduce conflict

e.g. associate the else to the nearest if.

• In an operator grammar use the associativity

and precedence of operators. As an example

A → α • ⊗β, B → γ ⊕ µ•. ‘shift’ if ⊗ is of

higher precedence, reduce is ⊕ is of higher

precedence etc.
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✫

✩

✪

Resolving Reduce-Reduce Conflicts

• There are two or more complete items in a

state.

• It is often resolved using the first grammar

rule of complete items.

• But it may not give a satisfactory result.

Consider the following grammar. The

terminals are {i, f, id}. The start symbol

is D.
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✫

✩

✪

Resolving Reduce-Reduce Conflicts

1,2 D → ID | FD

3 ID → IS i

4 FD → FS f

5,6 IS → IS IV | IV

7,8 FS → FS FV | FV

9 IV → id

10 FV → id
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✫

✩

✪

Resolving Reduce-Reduce Conflicts

• The state IV → id•,FV → id• has a

reduce-reduce conflict.

• But resolving it to reduct by rule 9 is

unacceptable.
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✫

✩

✪

Ambiguous Grammar & LR Parsing

An ambiguous grammar cannot be LR. But for
some ambiguous grammarsa it is possible to use
LR parsing techniques efficiently with the help
of some extra grammatical information such as
associativity and precedence of operators.

aAs an example for operator-precedence grammars: CFG with no ε produc-

tion and no production rule with two non-terminals coming side by side.
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✫

✩

✪

Example

Consider the expression grammar Ga

0 : S → E$

1 : E → E − E

2 : E → E ∗ E

3 : E → (E)

4 : E → −E

5 : E → i

Note that the terminal ‘-’ is used both as binary as well
as unary operator.
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✫

✩

✪

States of LR(0) Automaton

q0 : S → •E E → •E − E E → •E ∗ E

E → •(E) E → •− E E → •i

q1 : S → E • $ E → E • −E E → E • ∗E

q2 : E → (•E) E → •E − E E → •E ∗ E

E → •(E) E → •− E E → •i

q3 : E → − • E E → •E − E E → •E ∗ E

E → •(E) E → •− E E → •i

q4 : E → i•
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✫

✩

✪

States of LR(0) Automaton

q5 : E → E − •E E → •E − E E → •E ∗ E

E → •(E) E → •− E E → •i

q6 : E → E ∗ •E E → •E − E E → •E ∗ E

E → •(E) E → •− E E → •i

q7 : E → (E•) E → E • −E E → E • ∗E

q8 : E → −E• E → E • −E E → E • ∗E

q9 : E → E − E• E → E • −E E → E • ∗E

q10 : E → E ∗ E• E → E • −E E → E • ∗E

There are a few more states.

Lect 7 Goutam Biswas



Compiler Design IIIT Kalyani, WB 87✬

✫

✩

✪

Note

The states q8, q9 and q10 have complete and
incomplete items. FOLLOW(E) = {$,−, ∗, )}
cannot resolve the conflict. In fact no amount of
look-ahead can help - the LR(1) initial state is

q0 : S → •E, $ E → •E − E, $/− /∗ E → •E ∗E, $/− /∗

E → •(E), $/− /∗ E → •− E, $/− /∗ E → •i, $/− /∗
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✫

✩

✪

q8 : E → −E•, E → E • −E, E → E • ∗E

The higher precedence of unary ‘−’ over the
binary ‘−’ and binary ‘∗’ will help to resolve
the conflict. The parser reduces the handle i.e.
Action(8,−) = Action(8, ∗) = Action(8, )) =
Action(8, $) = r4.
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✫

✩

✪

q9 : E → E − E•, E → E • −E, E → E • ∗E

In this case if the look-ahead symbol is a ‘−’ (it
must be binary), the parser reduces due to the
left associativity of binary ‘−’. But if the
look-ahead symbol is a ‘∗’, the parser shifts i.e.
Action(9,−) = Action(9, )) = Action(9, $) = r4
but Action(9, ∗) = s6.
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✫

✩

✪

q10 : E → E ∗ E•, E → E • −E, E → E • ∗E

Actions are always reduce.
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✫

✩

✪

Error Handling

• What happens when an (LA)LR(1)-parser is

in state q, the input token is a, and the

parsing table entry Action(q, a) is empty i.e.

no-shift, no-reduce, no-accept. This is an

error condition.

• The token a is not a valid continuation of

the input the parses has seen so far.
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✫

✩

✪

Error Handling

• The question is what action should the

parser take.

• The simplest solution is highlight the

position of error, and terminate parsing.

• But the error may be due to a missing

semicolon (‘;’) or a parenthesis (‘(’) only.

After fixing it the compilation is to be

restarted from the beginning.
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✫

✩

✪

Error Handling

• Another alternative may be to continue with

the error. But then the parser will start

generating dozens of spurious errors due to

the single error.

• So the parser needs to recover from the

current error and try to detect as many

errors as possible in a pass.
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✫

✩

✪

Error Handling

• An error recovery strategy may try to modify

either the stack or the input stream or both.

• Modification of the stack amounts to

modification of a portion of the parse tree

that has already been constructed and found

to be correct.
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✫

✩

✪

Panic-Mode Error Recovery

• The parsing stack is scanned so that a state

q with a Goto on a non-terminal A is found.

• A few input tokens are discarded until a

token b ∈ Follow(A) is found in the input

stream.

• The state Goto(A, b) is pushed in the stack

and the normal parsing is resumed.
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✫

✩

✪

Panic-Mode Error Recovery

• The recovery works under the assumption

that the error is within the string generated

by A (within the phrase of A).

• The non-terminal A may represent an

expression, where an operator or an operand

is missing; or a statement, where a semicolon

or an end is missing.
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✫

✩

✪

Embedding Error Actions in Parsing table

• Phrase-level recovery routines can be

embedded in the (LA)LR(1) parsing table.

• Each error entry may be a pointer to the

corresponding error-handling routine.

• The error-handling routine should not drive

the parses in an infinite loop.
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✫

✩

✪

We consider our old grammar.

0 : S′ → P$

1 : P → m L s e

2 : L → D L

3 : L → D

4 : D → T V ;

5 : V → d V

6 : V → d

7 : T → i

8 : T → f
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✫

✩

✪

States

q0 : S′ → •P P → •m L s e

q1 : S′ → P • $

q2 : P → m • L s e L → •D L L → •D

D → •T V ; T → •i T → •f

q3 : P → m L • s e

q4 : L → D • L L → D• L → •D L

L → •D D → •T V ; T → •i

T → •f
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✫

✩

✪

States

q5 : D → T • V ; V → •d V V → •d

q6 : T → i•

q7 : T → f•

q8 : P → m L s • e

q9 : L → D L•

q10 : D → T V •;

q11 : V → d • V V → d• V → •d V

V → •d
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✫

✩

✪

States

q12 : P → m L s e•

q13 : D → T V ; •

q14 : V → d V •
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✫

✩

✪

Modified SLR Table

• All error entries of a state with reduction

action are replaced by the same reduction

action.

• This delays the error detection.

Lect 7 Goutam Biswas



Compiler Design IIIT Kalyani, WB 103✬

✫

✩

✪

Error Routine - 0 (e0)

• The parser is in a state i (i 6= 1) and it

encounters the eof ($).

• Terminate parsing with a message

‘unexpected <eof>’
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✫

✩

✪

Error Routine - 1 (e1)

• The parser expects m at state 0 and the

Action(0,m) = 2.

• If it encounters any other symbol at state 0,

it pushes state 2 in the stack and generates

error message ‘m missing’.
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✫

✩

✪

Error Routine - 2 (e2)

• At state 1 the parser has already seen a valid

input.

• If it sees anything other than eof ($), it may

accept the input and generate the error

message ‘extra character’ at the end of input.
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✫

✩

✪

Error Routine - 3 (e3)

• At state 2 if there is anything other than i, f

or $, the parser push either state 6 or state 7

in the stack (does not matter as it is an error

condition).

• It prints ‘missing i or f ’.
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✫

✩

✪

Error Routine - 4 (e4)

• At state 3 if there is anything other than s

or $, the parser pushes state 8 in the stack.

• It prints ‘missing s’.
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✫

✩

✪

State - 4

• Error entries of state 4 are filled with

reduction by rule 3 (r3).

• The reduction takes place and the error

detection is deferred.
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✫

✩

✪

Note

• Similarly we fill other error entries.

• The question is, whether there is any

possibility of infinite loop.
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✫

✩

✪

SLR Parsing Table

S Action Goto

m s e ; d i f $ P L D V T

0 s2 e1 e1 e1 e1 e1 e1 e0 1

1 e2 e2 e2 e2 e2 e2 e2 A

2 e3 e3 e3 e3 e3 s6 s7 e0 3 4 5

3 e4 s8 e4 e4 e4 e4 e4 e0

4 r3 r3 r3 r3 r3 s6 s7 r3 9 4 5

5 e5 e5 e5 e5 s11 e5 e5 e0 10
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✫

✩

✪

Example

S Action Goto

m s e ; d i f $ P L D V T

6 r7 r7 r7 r7 r7 r7 r7 r7

7 r8 r8 r8 r8 r8 r8 r8 r8

8 e6 e6 e6 s12 e6 e6 e6 e0

9 r2 r2 r2 r2 r2 r2 r2 r2

10 e7 e7 e7 s13 e7 e7 e7 e0

11 r6 r6 r6 r6 s11 r6 r6 r6 14
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✫

✩

✪

Example

S Action Goto

m s e ; d i f $ P L D V T

12 r1 r1 r1 r1 r1 r1 r1 r1

13 r4 r4 r4 r4 r4 r4 r4 r4

14 r5 r5 r5 r5 r5 r5 r5 r5
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✫

✩

✪

Error Recovery in Yacc

• Some non-terminals are chosen for error

recovery.

• Such a non-terminal A has an added special

production rule A → errRec to create a

dummy node.

• If a syntax error is detected while

constructing a subtree rooted at A, two

actions are taken.
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✫

✩

✪

Error Recovery in Yacc

• Tokens from the input expected to reduce to

A are discarded.

• A dummy node is created for A.

• Let the production rules of A be

A → BCD | errRec.
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✫

✩

✪

Error Recovery in Yacc

• The state at the top of stack is sz and the

current token is a. But Action(sz, a) is

empty, an error.

• Let the sequence of states and non-terminals

at the top of stack are as follows.

tos

sx B sy C sz
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✫

✩

✪

Error Recovery in Yacc

• The set of valid items for the state sx are

{X → α •Aβ, A → •BCD, A → • errRec, B → · · · }

The sub-trees corresponding to B and C

have already been constructed.

• Element from the top of the stack are

removed to get the error recovery state (sx),

which has a Goto() on an error recovery

non-terminal (A).
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✫

✩

✪

Error Recovery in Yacc

• A dummy node for A with errRec is created.

Then A and Goto(sx, A) are pushed in the

stack.

• The top of stack looks like,

tos

sx A su
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✫

✩

✪

Error Recovery in Yacc

• The valid items of su are

{X → αA • β, · · · }

• Tokens from the input stream are discarded

until there is a token b such that

Action(su, b) is non-empty, not an error.

• This process cannot go to an infinite loop as

there must be some Action() at the state su.
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✫

✩

✪
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