
Compiler Design IIIT Kalyani, WB 1✬

✫

✩

✪

Top-Down Parsing

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 2✬

✫

✩

✪

Non-terminal as a Function

• In a top-down parser a non-terminal may be

viewed as a generator of a substring of the

input.

• We view a non-terminal as a function that

generates the substring.

• In our expression grammar G with the

E-productions E → E + T , E → E − T ,

E → T , the function looks as follows:

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 3✬

✫

✩

✪

Function of E

E()

Select an E-production p // possible choice

if p = E → E + T // and backtracking

if E() then

if yylex()=‘+’ then

if T () then return OK

else ERROR

else ERROR

else ERROR

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 4✬

✫

✩

✪

Example

• Let the input be ic· · · . The parser chooses

the production rule E → E + T a.

• As there is no change in the input and the

leftmost non-terminal is still E. It may be

expanded by the same rule again and again.

• A left recursive grammar may lead to

non-termination.
aBut how to choose, each rule of E produces a string starting with ic.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 5✬

✫

✩

✪

Example

• The parser chooses the following sequence of

rules: E → T , T → F and F → ic.

• The first symbol of the input matches, but

the choice may be incorrect if the next input

symbol is ‘+’, as there is no rule with right

hand side F + · · · .

• It may be necessary to backtrack on the

choice of production rules.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 6✬

✫

✩

✪

Example

Consider the grammar:

S → aSa | aTba | c

T → bS

And let the first symbol of the input be a· · · .

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 7✬

✫

✩

✪

Example

• A parser, only on this information, cannot

decide whether to use the first or the second

rule of S.

• But if it is allowed to look-ahead one more

symbol, the correct choice can be made.

• If the input is aa· · · , it selects the rule

S → aSa. But if it is ab· · · , the choice is

S → aTba.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 8✬

✫

✩

✪

Note

• In case of the expression grammar G, no

fixed amount of look-ahead can help.

• The parser may have 5-look-ahead and the

input is ic+ic+ic· · · .

• The derivation sequence will be

E → E + T → E + T + T . But the next step

cannot be decided as the operator after the

rightmost ic is not known.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 9✬

✫

✩

✪

Example

Consider the grammar:

S → Aab

A → a | ε

Functions of a recursive descent parser are as
follows.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 10✬

✫

✩

✪

Function of S

S()

if A() then

if yylex()=‘a’ then

if yylex() = ‘b’ then return OK

else ERROR

else ERROR

A()

if yylex()=‘a’ return OK

else return ERROR

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 11✬

✫

✩

✪

Note

• The parser cannot recognize ‘ab’.

• The problem is, A can produce a as the first

symbol. But A also produces ε, and a can

come after A.

• The parser cannot decide whether to use

A→ a or A→ ε.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 12✬

✫

✩

✪

Example

Consider the ambiguous grammar:

S → aSa | bSb | aTba | c

T → bS

There is no way to decide a rule entirely on the
basis of the input, without removing the
ambiguity.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 13✬

✫

✩

✪

LL(k)

An unambiguous context-free grammar without
left recursion is called an LL(k) grammara, if a
predictive parser for its language can be
constructed with a look-ahead of at most k
input symbols. Often for a compiler
construction we consider k = 1.

aThe parser scans the input from left-to-right and uses the leftmost derivation.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 14✬

✫

✩

✪

Note

In an LL(k) grammar

• For every non-terminal A, the right-hand

side of each production rule must produce l

distinct terminal symbols as prefix (first

symbols), for some l ≤ k.

• If A→ ε is a rule, then l terminal symbols

that can appear behind A (follow) in a

sentential form should be different from the

prefixes of other rules of A, for some l ≤ k.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 15✬

✫

✩

✪

Note

If A is a non-terminal in a LL(k) grammar and

A→ α1 | · · · | αn | ε,

• Then for some l ≤ k, Firstl(αi)∩

Firstl(αj) = ∅, for 1 ≤ i < j ≤ k.

• And for some m ≤ k, Firstm(αi)∩

Followm(A) = ∅, for 1 ≤ i ≤ k.

Firstl(αi) is the set of first l symbols produced
by αi. Followm(A) is the set terminals of length
m that can follow A in a sentential form.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 16✬

✫

✩

✪

Note

Let A→ α1 | · · · | αn, and αi is nullable i.e. αi

produces ε.
Then not only for some l ≤ k, Firstl(αi)∩
Firstl(αj) = ∅, for 1 ≤ i < j ≤ k, but also
Firstm(αi) should be disjoint from Followm(A)
for some m ≤ k, for 1 ≤ i ≤ k.
But two such α’s cannot be nullable.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 17✬

✫

✩

✪

Information From Grammar

• It is necessary to extract First and Follow

information from the given grammar to

decide whether it is LL(k)a.

• This information also enables the LL(1)

parser to choose the correct action.

• We restrict our attention to k = 1.
aIt may also help to transform the grammar to LL(k) if possible.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 18✬

✫

✩

✪

FIRST(X)

Informally the FIRST(X) is a set, where X is a
terminal, a non-terminal, a string over terminals
and non-terminals, or even a production rule.
The set is a collection of all terminal symbols
(also ε) that may appear as the first (leftmost)
symbol of X in the given grammar.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 19✬

✫

✩

✪

FIRST(X)

If X ∈ Σ ∪N ∪ {ε}, then FIRST(X) ⊆ Σ ∪ {ε}

is defined inductively as follows:

• FIRST(X) = {X}, if X ∈ Σ ∪ {ε},

• FIRST(X) is
⋃

X→α∈P FIRST(α), X ∈ N ,

• ε ∈ FIRST(X), if X is nullable,

• FIRST(A→ α) is the FIRST(α).

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 20✬

✫

✩

✪

FIRST(X)

If α = X1X2 · · ·Xk, then

• FIRST(X1) \ {ε} ⊆ FIRST(α).

• FIRST(Xi) \ {ε} ⊆ FIRST(α) if

ε ∈
⋂i−1

j=1
FIRST(Xj), 1 < i ≤ k.

• If ε ∈
⋂k

j=1
FIRST(Xj), then ε ∈ FIRST(α).

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 21✬

✫

✩

✪

Example

Consider the classic expression grammar:

• FIRST(E) =FIRST(T) =FIRST(F) =

{ic, (}.

• There are two production rules for both E

and T with identical FIRST() sets:

E → E + T, E → T and T → T ∗ F, T → F

• This makes the choice of rule impossible

with finite look-ahead.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 22✬

✫

✩

✪

Example

Consider the grammar obtained after removing

the left-recursion from G:

E → TE ′

E ′ → +TE ′ | ε

T → FT ′

T ′ → ∗FT ′ | ε

F → (E) | ic

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 23✬

✫

✩

✪

Example

FIRST(E) =FIRST(T) =FIRST(F) = {ic, (},
FIRST(E ′) = {+, ε}, and FIRST(T ′) = {∗, ε}.
No non-terminal has more than one production
rule with the identical FIRST() set.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 24✬

✫

✩

✪

Note

• Let A→ α and A→ β be two production

rules. A top-down parser can choose one of

them with one look-ahead if FIRST(α) ∩

FIRST(β) = ∅ and none of them contains ε.

• But what happens if one of α or β is

nullable?

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 25✬

✫

✩

✪

FOLLOW(X)

For every non-terminal X, the FOLLOW(X) is

the collection of all terminals that can follow X

in a sentential form. The set can be defined

inductively as follows.

• The special symbol eof or $ is in

FOLLOW(S), where S is the start symbol.

• If A→ αBβ be a production rule,

FIRST(β) \ {ε} ⊆ FOLLOW(B).

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 26✬

✫

✩

✪

FOLLOW(X)

• If A→ αBβ, where β = ε or β → ε, then

FOLLOW(A) ⊆ FOLLOW(B).

The reason is simple:
S → uAv → uαBβv → uαBv, naturally
FIRST(v) ⊆ FOLLOW(A), FOLLOW(B).

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 27✬

✫

✩

✪

Computation of FOLLOW() Sets

for each A ∈ N

FOLLOW(A)← ∅

FOLLOW(S)← {$}

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 28✬

✫

✩

✪

Computation of FOLLOW() Sets

while (FOLLOW sets are not fixed points)

for each A→ β1β2 · · · βk ∈ P

FA ← FOLLOW(A)

for i← k downto 1

if βi ∈ N

FOLLOW(βi)← FOLLOW(βi) ∪ FA

if ε ∈ FIRST(βi)

FA← FA ∪ FIRST(βi) \ {ε}

else FA← FA ∪ FIRST(βi)

else FA← ∪ FIRST(βi)

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 29✬

✫

✩

✪

Example

In the expression grammar G:
FOLLOW(E) = {$,+,)}, FOLLOW(T) =
FOLLOW(E) ∪ {∗} = {$,+,), ∗} and
FOLLOW(F) = {$,+,), ∗}.
In the transformed grammar:
FOLLOW(E) = FOLLOW(E ′) = {$,)},
FOLLOW(T) = FOLLOW(T ′) = {$,),+} and
FOLLOW(F) = {$,),+, ∗}.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 30✬

✫

✩

✪

Note

• Let A→ α and A→ ε be two production

rules. A top-down parser can choose a rule if

FIRST(α) ∩ FOLLOW(A) = ∅.

• The first rule is chosen if the next symbol is

from the FIRST(α).

• The second rule is chosen if the next symbol

is from the FOLLOW(A).

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 31✬

✫

✩

✪

Note

• Let A→ α and A→ β be two production

rules such that β is nullable. A top-down

parser can still choose a rule if FIRST(α) ∩

(FIRST(β) ∪ FOLLOW(A)) = ∅.

• The first rule is chosen if the next symbol is

from the FIRST(α).

• The second rule is chosen if the next symbol

is from the FIRST(β) ∪ FOLLOW(A).

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 32✬

✫

✩

✪

LL(1) Grammar

A context-free grammar G is LL(1) iff for any

pair of distinct productions A→ α, A→ β, the

following conditions are satisfied.

• FIRST(α)∩ FIRST(β) = ∅ i.e. no

a ∈ Σ ∪ {ε} can belong to botha.

• If α→ ε or α = ε, then

FIRST(β)∩ (FOLLOW(A)∪ FIRST(α)) = ∅.
aBoth cannot be nullable.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 33✬

✫

✩

✪

Example

Consider the following grammar with the set of
terminals,
Σ = {id ; := int float main do else end
if print scan then while} ∪{E BE}a;
the set of non-terminals,
N = {P DL D VL T SL S ES IS WS IOS};
the start symbol is P and the set of production
rules are:

a
E and BE, corresponds to expression and boolean expressions, are actually

non-terminals. But here we treat them as terminals.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 34✬

✫

✩

✪

Production Rules

1 P → main DL SL end

2 DL → D DL | D

4 D → T VL ;

5 VL → id VL | id

7 T → int | float

9 SL → S SL | ε

11 S → ES | IS | WS | IOS

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 35✬

✫

✩

✪

Production Rules

15 ES → id := E ;

16 IS → if BE then SL end |

if BE then SL else SL end

18 WS → while BE do SL end

19 IOS → scan id ; | print E ;

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 36✬

✫

✩

✪

Note

There is no production rule with left-recursion.
But the rules 2,3, 5,6, and 16,17 needs
left-factoring as the FIRST() sets are not
disjoint. The transformed grammar after
factoring is:

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 37✬

✫

✩

✪

New Production Rules

1 P → main DL SL end

2 DL → D DO

3 DO → DL | ε

4 D → T VL ;

5 VL → id VO

6 VO → VL | ε

7 T → int | float

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 38✬

✫

✩

✪

Production Rules

9 SL → S SL | ε

11 S → ES | IS | WS | IOS

15 ES → id := E ;

16 IS → if BE then SL EO

17 EO → end | else SL end

18 WS → while BE do SL end

19 IOS → scan id ; | print E ;

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 39✬

✫

✩

✪

FIRST()

The next step is to calculate the FIRST() sets of different

rules.

NT/Rule FIRST()

P (1) main

DL (2) int float

DO (3) int float

DO (3a) ε

D (4) int float

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 40✬

✫

✩

✪

FIRST()

NT/Rule FIRST()

VL (5) id

VO (6) id

VO (6a) ε

T (7) int

T (8) float

SL (9) id if while scan print

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 41✬

✫

✩

✪

FIRST()

NT/Rule FIRST()

SL (10) ε

S (11) id

S (12) if

S (13) while

S (14) scan print

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 42✬

✫

✩

✪

FIRST()

NT/Rule FIRST()

ES (15) id

IS (16) if

EO (17) end

EO (17a) else

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 43✬

✫

✩

✪

FIRST()

NT/Rule FIRST()

WS (18) while

IOS (19) scan

IOS (20) print

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 44✬

✫

✩

✪

Note

Three rules have ε-productions. Their
applications in a predictive parser depends on
what can follow the corresponding
non-terminals. So it is necessary to compute
the FOLLOW() sets corresponding to these
non-terminals. The rules are:
DO → ε(3a), VO → ε(6a), SL → ε(10).

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 45✬

✫

✩

✪

FOLLOW()

NT FOLLOW()

DO id if while scan print end

VO ;

SL end else

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 46✬

✫

✩

✪

Note

FOLLOW(DO) = FOLLOW(DL) (rule 2). The
FOLLOW(DL) = FIRST(SL) \{ε}∪
FOLLOW(P) (rule 1) as SL is nullable (rule
10). Now FOLLOW(P) = {end}.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 47✬

✫

✩

✪

Note

It is clear from the previous computation that
no two production rules of the form A→ α1 | α2

have common elements in their FIRST() sets.
There is also no common element in the
FIRST() set of the production rule A→ α and
the FOLLOW() set of A in cases A→ ε. So the
grammar is LL(1) and a predictive parser can
be constructed.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 48✬

✫

✩

✪

Recursive-Descent Parser

We write a function (may be recursive) for
every non-terminal. The function corresponding
to a non-terminal A returns ACCEPT if the
corresponding portion of the input can be
generated by A. Otherwise it returns a
REJECT with proper error message.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 49✬

✫

✩

✪

Example

Consider the production rule
✞

✝

☎

✆P → main DL SL end

The function corresponding to the non-terminal
P is as follows:

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 50✬

✫

✩

✪

int P()

int P(){

if(token == MAIN){ // MAIN for "main"

getNextToken();

if(DL() == ACCEPT)

if(SL() == ACCEPT) {

if(token == END){ // END is the token

getNextToken(); // for "end"

return ACCEPT;

}

else {

printf("end missing (1)\n");

return REJECT;

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 51✬

✫

✩

✪

}

}

else {

printf("SL mismatch (1)\n");

return REJECT;

}

else {

printf("DL mismatch (1)\n");

return REJECT;

}

}

else {

printf("main missing (1)\n");

return REJECT;

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 52✬

✫

✩

✪

}

}

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 53✬

✫

✩

✪

Note

The global variable token stores the next
token. The function getNextToken() is called
once the token is consumed.
The stack of the PDA is the stack of the
recursive call. The body of the function
corresponding to a non-terminal corresponds to
all its production rules.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 54✬

✫

✩

✪

Example

We now consider a non-terminal with

ε-production.
✞

✝

☎

✆
DO → DL | ε

The members of FIRST(DL) are {int float}
and the elements of FOLLOW(DO) are
{id if while scan print end}.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 55✬

✫

✩

✪

int DO()

int DO(){

if(token == INT || token == FLOAT)

// token is not consumed

if(DL() == ACCEPT) {

getNextToken();

return ACCEPT;

}

else {

printf("DL mismatch (3)\n");

return REJECT;

}

else

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 56✬

✫

✩

✪

if(token == IDNTIFIER ||

token == IF ||

token == WHILE ||

token == SCAN ||

token == PRINT ||

token == END) // token not consumed

return ACCEPT;

else {

printf("DO follow mismatch (3)\n");

return REJECT;

}

}

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 57✬

✫

✩

✪

Table Driven Predictive Parser

A non-recursive predictive parser can be
constructed that maintains a stack (explicitly)
and a table to select the appropriate production
rule.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 58✬

✫

✩

✪

Parsing Table

The rows of the predictive parser table are
indexed by the non-terminals and the columns
are indexed by the terminals including the
end-of-input marker ($). The content of the
table are production rules or error situations.
The table cannot have multiple entries
corresponding to a (row, column).

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 59✬

✫

✩

✪

Parsing Stack

The parsing stack can hold both terminals and
non-terminals. At the beginning, the stack
contains the end-of-stack marker ($) and the
start symbol on top of it.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 60✬

✫

✩

✪

Parsing Table Construction

• If A → α is a production rule and a ∈

FIRST(α), then P [A][a] = A → α.

• If A → ε is a production rule and a ∈

FOLLOW(A), then P [A][a] = A → ε.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 61✬

✫

✩

✪

Actions

• If the top-of-stack is a terminal symbol

(token) and matches with input token, both

are consumed. A mismatch is an error.

• If the top-of-stack is a non-terminal A, the

input token is a, P [A][a] has the entry

A→ α, then A on the stack is replaced by α,

with the head of α on the top of the stack.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 62✬

✫

✩

✪

Example

Consider the production rules of the

non-terminal SL.
✞

✝

☎

✆
SL → S SL | ε

The FIRST(SL → S SL) =
{id if while scan print} and
FOLLOW(SL) ={end else}. So,
P [SL][IDNTIFIER] = P [SL][IF] = P [SL][WHILE] =
P [SL][SCAN] = P [SL][PRINT] = SL → S SL and
P [SL][END] = P [SL][ELSE] = SL → ε.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 63✬

✫

✩

✪

Note

Multiple entries in a table indicates that the
grammar is not LL(1). But it is interesting to
note that in some cases we can drop (with
proper consideration) some of these entries and
construct a parser.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 64✬

✫

✩

✪

Example

Consider the ambiguous grammar G1 for

expressions.

E → E + E | E − E | E ∗ E | E/E | (E) | ic

After the removal of left-recursion we get the
following ambiguous, no-left-recursive grammar:

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 65✬

✫

✩

✪

Example

E → (E)E ′ | icE ′

E ′ → +EE ′ | − EE ′ | ∗ EE ′ | /EE ′ | ε

We calculate FIRST(E ′) = {+ - * / ε } and
the FOLLOW(E ′) = FOLLOW(E) =
{$) + - * /}.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 66✬

✫

✩

✪

Example

Naturally,
P [E ′][±] = {E ′ → +EE ′, E ′ → ε} and
P [E ′][∗/] = {E ′ → ∗EE ′, E ′ → ε}.
We may drop the ε-productions from these four
places and get a nice parsing tablea.

aBut it does not work for all grammars. Consider S → aSa | bSb | ε.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 67✬

✫

✩

✪

Note

It seems that the removal of two ε-production

disambiguates the grammar. The corresponding

unambiguous grammar G2 is as follows:

E → (E)E ′ | icE ′ | (E) | ic

E ′ → +E | − E | ∗ E | /E | ε

We have L(G1) = L(G2) and FOLLOW(E ′) =
{$)}, so there is no multiple entries in the
tablea.

aHow to maintain operator precedence?

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 68✬

✫

✩

✪

Error Recovery

There are two possibilities.

• The token on the top of stack does not

match with the token in the input stream.

• The entry in the parsing table corresponding

to the non-terminal on the top of stack and

the current input token is empty, i.e. there

is no prediction for a production rule of the

non-terminal.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 69✬

✫

✩

✪

Error Recovery

There are two main concerns:

• Avoidance of infinite loop during error

handling.

• Avoidance of the construction of corrupted

syntax tree.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 70✬

✫

✩

✪

An Example

• Consider an example where the non-terminal

A is on the top of the stack, where its

production rules are A→ aA | bc (The

non-terminal A produces a∗bc.), and

• ‘c’ is input look-ahead.

• No prediction is possible due to error.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 71✬

✫

✩

✪

An Example

• We cannot remove A from the stack. That

changes a part of already constructed tree.

• Forcing a prediction A→ aA by inserting an

‘a’ will lead to an infinite loop.

• Tokens may be discarded from the input to

get a match. But how far can we skip.

• In this case of course inserting a ‘b’ may

solve the problem.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 72✬

✫

✩

✪

Panic Mode

• Remove sequence of tokens from the input

until a synchronizing token appears.

• The success of the algorithm depends on the

set of synchronizing tokens.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 73✬

✫

✩

✪

Synchronizing Tokens

• For a non-terminal A, the Follow(A) may be

the set of synchronizing tokens.

• Tokens are removed until an element of

Follow(A) is found. Then pop A from the

stack and try to continue with parsing.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 74✬

✫

✩

✪

Synchronizing Tokens

• An expression becomes a statement when

followed by a semicolon.

• If a semicolon (‘;’) is missing, the follow set

of expression will not be of help as

synchronizing symbol.

• We need to include possible first symbols of

next statement or even higher level

constructs.

Lect 5 Goutam Biswas

Compiler Design IIIT Kalyani, WB 75✬

✫

✩

✪

References

[ASRJ] Compilers Principles, Techniques, and Tools, by

A. V. Aho, Monica S. Lam, R. Sethi, & J. D. Ullman,

2nd ed., ISBN 978-81317-2101-8, Pearson Ed., 2008.

[DKHJK] Modern Compiler Design, by Dick Grune, Kees

van Reeuwijk, Henri E. Bal, Ceriel J. H. Jacobs, Koen

Langendoen, 2nd ed,, ISBN 978 1461 446989, Springer

(2012).

[KL] Engineering a Compiler, by Keith D. Cooper & Linda

Troczon, (2nd ed.), ISBN 978-93-80931-87-6, Morgan

Kaufmann, Elsevier, 2012.

Lect 5 Goutam Biswas

