
Compiler Design IIIT Kalyani, WB 1✬

✫

✩

✪

Introduction to Syntax Analysis

The Second Phase of Front-End

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 2✬

✫

✩

✪

Syntax Analysis

The syntactic or the structural correctness of a
program is checked during the syntax analysis
phase of compilation. The structural properties
of language constructs can be specified in
different ways. Different styles of specification
are useful for different purposes.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 3✬

✫

✩

✪

Different Formalism

• Syntax diagram (SD),

• Backus-Naur form (BNF), and

• Context-free grammar (CFG).

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 4✬

✫

✩

✪

Example

We take an example of simple variable

declaration in C languagea.

int a, b, c;

float x, y;
aThis part of syntax can be expressed as a regular expression. But we shall

use context-free grammar.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 5✬

✫

✩

✪

Syntax Diagram

,
;idtypevarDclr:

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 6✬

✫

✩

✪

Context-Free Grammar

< VDP > → ε | < VD >< VD OPT >

< VD > → < TYPE > id < ID OPT >

< ID OPT > → ε | , id < ID OPT >

< VD OPT > → ; | ; < VD >< VD OPT >

< TYPE > → int | float | · · ·

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 7✬

✫

✩

✪

Backus-Naur Form

< VDP > ::= ε | < VD >; { < VD > ; }

< VD > ::= < TYPE > id { , id }

This formalism is a mixture of CFG and
regular expression. Here Kleene closure x∗ is
written as {x}.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 8✬

✫

✩

✪

Note

Our variable declaration is actually a regular

language with the following state transition

diagram:

,

;
0 1type id

2

3

4

id

type

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 9✬

✫

✩

✪

Note

The first question is why go for context-free
grammar. Why regular expression is not good
enough. We consider arithmetic expressions
(AE) with integer constants (IC), identifiers
(ID) and four basic operators + - * /.
We already know that there are regular
expressions corresponding to ID and IC.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 10✬

✫

✩

✪

Note

A regular expression corresponding to AE is as

follows:

(IC|ID)((+ | - | * | /)(IC|ID))∗.

Natural question is why it is not good enough.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 11✬

✫

✩

✪

Note

Different styles of specification have different
purpose. SD is good for human understanding
and visualization. The BNF is very compact. It
is used for theoretical analysis and also in
automatic parser generating software. But for
most of our discussion we shall consider
structural specification in the form of a
context-free grammar (CFG).

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 12✬

✫

✩

✪

Note

There are non-context-free structural features

of a programming language that are handled

outside the formalism of grammar.

• Variable declaration and use:

... int sum ... sum = ..., this is of the

form xwywz and is not context-free.

• Matching of actual and formal parameters of

a function, matching of print format and the

corresponding expressions etc.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 13✬

✫

✩

✪

Specification to Recognizer

The syntactic specification of a programming
language, written as a context-free grammar
can be be used to construct its parser by
synthesizing a push-down automaton (PDA)a.

aThis is similar to the synthesis of a scanner from the regular expressions of

the token classes.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 14✬

✫

✩

✪

Context-Free Grammar

A context-free grammar (CFG) G is defined by
a 4-tuple of data (Σ, N, P, S), where Σ is a
finite set of terminals, N is a finite set of
non-terminals. P is a finite subset of
N × (Σ ∪N)∗. Elements of P are called
production or rewriting rules. The forth
element S is a distinguished member of N ,
called the start symbol or the axiom of the
grammar.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 15✬

✫

✩

✪

Derivation and Reduction

If p = (A,α) ∈ P , we write it as A → α (“A

produces α” or “A can be replaced by α”). If

x = uAv ∈ (Σ ∪N)∗, then we can rewrite x as

y = uαv using the rule p ∈ P . Similarly,

y = uαv can be reduced to x = uAv.

The first process is called derivation and the

second process is called reduction.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 16✬

✫

✩

✪

Language of a Grammar

The language of a grammar G is denoted by
L(G). The language is a subset of Σ∗. An
x ∈ Σ∗ is an element of L(G), if starting from
the start symbol S we can produce x by a finite
sequence of rewritinga. The sequence of
derivation of x may be written as S → xb.

aIn other word x can be reduced to the start symbol S.
bIn fact it is the reflexive-transitive closure of the single step derivation. We

abuse the same notation.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 17✬

✫

✩

✪

Sentence and Sentential Form

Any α ∈ (N ∪ Σ)∗ derivable from the start
symbol S is called a sentential form of the
grammar. If α ∈ Σ∗, i.e. α ∈ L(G), then α is
called a sentence of the grammar.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 18✬

✫

✩

✪

Parse Tree

Given a grammar G = (Σ, N, P, S), the parse

tree of a sentential form x of the grammar is a

rooted ordered tree with the following

properties:

• The root of the tree is labeled by the start

symbol S.

• The leaf nodes from left two right are

labeled by the symbols of x.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 19✬

✫

✩

✪

Parse Tree

• Internal nodes are labeled by non-terminals

so that if an internal node is labeled by

A ∈ N and its children from left to right are

A1A2 · · ·An, then A → A1A2 · · ·An ∈ P .

• A leaf node may be labeled by ε is there is a

A → ε ∈ P and the parent of the leaf node

has label A.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 20✬

✫

✩

✪

Example

Consider the following grammar for arithmetic

expressions:

G = ({id, ic, (,),+,−, ∗, /}, {E, T, F}, P, E).

The set of production rules, P , are,

E → E + T | E − T | T

T → T ∗ F | T/F | F

F → id | ic | (E)

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 21✬

✫

✩

✪

Example

Two derivations of the sentence id + ic ∗ id
are,
d1: E → E + T → E + T ∗ F → E + F ∗ F →
T + F ∗ F → F + F ∗ F → F + ic ∗ F →
id+ ic ∗ F → id+ ic ∗ id
d2:
E → E+T → T +T → F +T → id+T → id+
T ∗F → id+F ∗F → id+ic∗F → id+ic∗id
It is clear that the derivations for a sentential
form need not be unique.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 22✬

✫

✩

✪

Leftmost and Rightmost Derivations

A derivation is said to be leftmost if the

leftmost nonterminal of a sentential form is

rewritten to get the next sentential form. The

rightmost derivation is similarly defined.

Due to the context-free nature of the
production rules, any string that can be derived
by unrestricted derivation can also be derived
by leftmost(rightmost) derivation.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 23✬

✫

✩

✪

Ambiguous Grammar

A grammar G is said to be ambiguous if there
is a sentence x ∈ L(G) that has two distinct
parse trees.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 24✬

✫

✩

✪

Example

Our previous grammar of arithmetic

expressions is unambiguous. Following is an

ambiguous grammar for the same language:

G′ = ({id, ic, (,),+,−, ∗, /}, {E}, P, E). The

production rules are,

E → E + E | E − E | E ∗ E | E/E |

id | ic | (E)

Number of non-terminals may be less in an
ambiguous grammar.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 25✬

✫

✩

✪

Unique Parse Tree

E

E T+

T
F

*T

F F

id

id

ic

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 26✬

✫

✩

✪

Non-Unique Parse Tree

E

E +

*

E

E
E

id

id

ic

E

E E*

id+E
E

id
ic

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 27✬

✫

✩

✪

Note

Leftmost(rightmost) derivation is unique for an
unambiguous grammar but not in case of a
ambiguous grammar.
d3: E → E + E → id+ E → id+ E ∗ E →
id+ ic ∗ E → id+ ic ∗ id
d4: E → E ∗ E → E + E ∗ E → id+ E ∗ E →
id+ ic ∗ E → id+ ic ∗ id
The length of derivation of string with an
ambiguous grammar may be shorter.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 28✬

✫

✩

✪

if-else Ambiguity

Consider the following production rules:

S → if(E)S | if(E) S else S | · · ·

A statement of the form
if(E1) if(E2) S2 else S3
can be parsed in two different ways. Normally
we associate the else to the nearest ifa.

aC compiler gives you a warning to disambiguate using curly braces.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 29✬

✫

✩

✪

if-else Ambiguity

S

if (E) S

if (E) S else S

S

if (E) S else S

if (E) S

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 30✬

✫

✩

✪

if-else Modified

Consider the following production rules:

S → if(E)S | if(E) ES else S | · · ·

ES → if(E) ES else ES | · · ·

We restrict the statement that can appear in
then-part. Now following statement has unique
parse tree.
if(E1) if(E2) S2 else S3

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 31✬

✫

✩

✪

if-else Unambiguous

if (E)

S

S
Eif () S else

S

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 32✬

✫

✩

✪

Note

Consider the following grammar G1 for

arithmetic expressions:

E → T + E | T − E | T

T → F ∗ T | F/T | F

F → id | ic | (E)

Is L(G) = L(G1)? What difference does the
grammar make?

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 33✬

✫

✩

✪

Problem

Consider another version of the grammar G2:

E → E ∗ T | E/T | T

T → T + F | T − F | F

F → id | ic | (E)

What is the difference in this case? Is
L(G) = L(G2).

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 34✬

✫

✩

✪

Problem

Construct parse trees corresponding to the
input 25-2-10 for G and G1. What are the
postorder sequences in these two cases (replace
the non-terminals by ε)?
Similarly, construct parse trees corresponding
to the input 5+2*10 for G and G2. Find out the
postorder sequences in these two cases?
Why postorder sequence?

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 35✬

✫

✩

✪

Postorder Sequences

• G: 25 2 - 10 -

G1: 25 2 10 - -

• G: 5 2 10 * +

G2: 5 2 + 10 *

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 36✬

✫

✩

✪

A Few Important Transformations

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 37✬

✫

✩

✪

Useless Symbols

A grammar may have useless symbols that can
be removed to produce a simpler grammar. A
symbol is useless if it does not appear in any
sentential form producing a sentence.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 38✬

✫

✩

✪

Useless Symbols

We first remove all non-terminals that does not
produce any terminal string; then we remove all
the symbols (terminal or non-terminal) that
does not appear in any sentential form. These
two steps are to be followed in the given ordera.

aAs an example (HU), all useless symbols will not be removed if done in the

reverse order on the grammar S → AB | a and A → a.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 39✬

✫

✩

✪

ε-Production

If the language of the grammar does not have
any ε, then we can free the grammar from
ε-production rules. If ε is in the language, we
can have only the start symbol with
ε-production rule and the remaining grammar
free of it.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 40✬

✫

✩

✪

Example

S → 0A0 | 1B1 | BB

A → C

B → S | A

C → S | ε

All non-terminals are nullable.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 41✬

✫

✩

✪

Example

After removal of ε-productions.

S → 0A0 | 1B1 | BB | 00 | 11 | B | ε

A → C

B → S | A

C → S

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 42✬

✫

✩

✪

Unit Production

A production of the form A → B may be
removed but not very important for
compilation.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 43✬

✫

✩

✪

Normal Forms

A context-free grammar can be converted into
different normal forms e.g. Chomsky normal
form etc. These are useful for some decision
procedure e.g. CKY algorithm. But are not of
much importance for compilation.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 44✬

✫

✩

✪

Left and Right Recursion

A CFG is called left-recursive if there is a
non-terminal A such that A → Aα after a finite
number of steps. It is necessary to remove
left-recursion for a top-down parsera.

aThe right recursion can be similarly defined. It does not have so much

problem as we do not read input from right to left, but in a bottom-up parser

the stack size may be large due to right-recursion.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 45✬

✫

✩

✪

Immediate Left-Recursion

A left-recursion is called immediate if a

production rule of the form A → Aα is present

in the grammar. It is easy to eliminate an

immediate left-recursion. We certainly have

production rules of the form

A → Aα1 | β

where the first symbol of β does not produce A
as the first symbola.

aOtherwise A will be a useless symbol.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 46✬

✫

✩

✪

Parse Tree

The parse tree with this pair of production

rules looks as follows:
A

A

β

α

The yield is βα.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 47✬

✫

✩

✪

Rotation

We can rotate the parse tree to get the same

yield, but without the left-recursion.

A

A’
β

α

The new rules are A → βA′ and A′ → αA′ | ε.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 48✬

✫

✩

✪

Removal of Immediate Left-Recursion

The original grammar is

A → Aα1 | Aαk | · · · | Aαk

A → β1 | β2 | · · · | βl

The transformed grammar is

A → β1A
′ | β2A

′ | · · · | βlA
′

A′ → α1A
′ | α2A

′ | · · · | αkA
′ | ε

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 49✬

✫

✩

✪

Example

Original grammar:

E → E + T | T

T → T ∗ F | F

F → (E) | ic

The transformed grammar is

E → TE ′ E ′ → +TE ′ | ε

T → FT ′ T ′ → ∗FT ′ | ε

F → (E) | ic

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 50✬

✫

✩

✪

Change in the Parse Tree

Consider the input ic+ic*ic:

E

E +

*

E

T

T
F

T

F

ic

F

ic

ic

T E’

F

ic

+ T
E’

ε

F

* F
T’

T’

ε
ic

ic

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 51✬

✫

✩

✪

Removal of Indirect Left-Recursion

Consider the following grammar:

A → Aab | Ba | Cb | b

B → Aa | Db

C → Ab | Da

D → Bb | Ca

The grammar has indirect left-recursion:
A → Ba → Aaa etc.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 52✬

✫

✩

✪

Removal of Indirect Left-Recursion

• First we order the non-terminals:

A1 < A2 < · · · < An.

• Following algorithm eliminates direct and

indirect left-recursions.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 53✬

✫

✩

✪

Algorithm

for i = 1 to n

for j = 1 to i− 1

replace rule of the form Ai → Ajγ

by Ai → δ1γ | · · · | δkγ, where

Aj → δ1 | · · · | δk are the current

Aj productions

remove immediate left-recursion of

Ai-productions.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 54✬

✫

✩

✪

Removal of Indirect Left-Recursion

• In the first iteration of the outer loop (i = 1),

immediate left recursions of A1 are removed.

• After this iteration any production rule of

the form A1 → Alβ has l > 1.

• Similarly after the (i− 1)th iteration of the

outer-loop, for no Ak, (k = 1, · · · , i− 1),

there is any production rule of the form

Ak → Alγ, where k ≥ l.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 55✬

✫

✩

✪

Removal of Indirect Left-Recursion

• In the ith iteration, the inner loop exposes

any recursion of Ai through Ajs,

j = 1, · · · , i− 1.

• It progressively transforms (j = 1, · · · , i− 1)

every production Ai → Ajβ, until j ≥ i.

• Then the outer loop removes the immediate

left recursions of Ai.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 56✬

✫

✩

✪

Example

Let A < B < C < D. In the first-pass (i = 1) of

the outer loop, the immediate recursion of A is

removed.

A → BaA′ | CbA′ | bA′

A′ → abA′ | ε

B → Aa | Db

· · · · · · · · ·

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 57✬

✫

✩

✪

Example

In the second-pass (i = 2) of the outer loop,

B → Aa are replaced and immediate

left-recursions on B are removed.

A → BaA′ | CbA′ | bA′

A′ → abA′ | ε

B → BaA′a | CbA′a | bA′a | Db

· · · · · · · · ·

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 58✬

✫

✩

✪

Example

A → BaA′ | CbA′ | bA′

A′ → abA′ | ε

B → DbB′ | bA′aB′ | CbA′aB′

B′ → aA′aB′ | ε

C → Ab | Da

· · · · · · · · ·

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 59✬

✫

✩

✪

Example

In the third-pass (i = 3) of the outer loop,

A → BaA′ | CbA′ | bA′

A′ → abA′ | ε

B → DbB′ | bA′aB′ | CbA′aB′

B′ → aA′aB′ | ε

C → BaA′b | CbA′b | bA′b | Da

· · · · · · · · ·

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 60✬

✫

✩

✪

Example

A → BaA′ | CbA′ | bA′

A′ → abA′ | ε

B → DbB′ | bA′aB′ | CbA′aB′

B′ → aA′aB′ | ε

C → DbB′aA′b | bA′aB′aA′b | CbA′aB′aA′b

CbA′b | bA′b | Da

· · · · · · · · ·

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 61✬

✫

✩

✪

Left Factoring

• More than one grammar rules of a

non-terminal with same prefix of the right

hand side creates the problem of rule

selection in a top-down parser.

• The grammar is transformed by left

factoring so that the prefixes of the

right-hand sides of different productions are

different for a non-terminal.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 62✬

✫

✩

✪

Example

If we have production rules of the form
A → xBα, A → xCβ, A → xDγ, we transform
them to A → xE and E → Bα | Cβ | Dγ,
where x ∈ Σ∗.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 63✬

✫

✩

✪

Substitution

• Some time for the purpose of left factoring it

may be necessary to substitute a

non-terminal B in the right-hand side of a

production rule.

• A left factor may not be visible due to the

presence of different non-terminals

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 64✬

✫

✩

✪

Example

• Let A → Bb | Cd, B → abB | b, C → adC | d

before substitution.

• After the substitution we get,

A → abBb | bb | adCd | dd, B → abB | b,

C → adC | d.

• Now the rules of A can be factored.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 65✬

✫

✩

✪

Parsing

• Using the grammar as a specification, a

parser tries to construct the parse tree

corresponding to the input (a program to

compile). This construction may be

top-down or bottom-up.

• The top-down parsing may be viewed as a

pre-order construction and the bottom-up

parsing as a post-order construction of the

parse tree.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 66✬

✫

✩

✪

Top-Down Parsing

• A top-down parser starts from the start

symbol (S) to generate the input string of

tokens (x).

• When a top-down parser tries to build the

subtree of an internal node, the non-terminal

(A) of the node is known.

• It decides the appropriate production rule of

A using the information from the input.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 67✬

✫

✩

✪

Top-Down Parsing

• The node is expanded to its children and

they are labeled by the symbols of the

chosen production rule of A.

• The parser continues the construction of the

tree from the left child (left to right) of A.

• If the left child is a terminal it matches with

the leftmost token of the input token stream.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 68✬

✫

✩

✪

Top-Down Parsing

• Once a terminal is matched with the token,

the parser continues with the next pre-order

node.

• For a context-free grammar the choice of

appropriate rule for a non-terminal, on the

finite information of input, may not be

deterministic. And it may be necessary for

the parser to backtrack.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 69✬

✫

✩

✪

Top-Down Parsing

Consider the grammar: S → aSa | bSb | c

S

a b c b aInput:

a S a

S

a S a

S

Sb b

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 70✬

✫

✩

✪

Bottom-Up Parsing

• A bottom-up parser starts from the input x

and tries to reduce it to the start symbol S.

• The internal nodes of the syntax-tree are

constructed in post-order.

• The root of a sub-tree is constructed and

labeled by a non-terminal only after the

construction and labeling of its children.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 71✬

✫

✩

✪

Bottom-Up Parsing

• The process is the reduction of the

right-hand side of a production rule to its

non-terminal.

• A bottom-up parser always constructs the

root of a complete sub-treea when it

consumes tokens (from left to right)

corresponding to the sub-tree.

• Each Token is sub-trees of label 1.
aA sub-tree is complete when all its children are constructed and labeled

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 72✬

✫

✩

✪

Bottom-Up Parsing

Consider the grammar: S → aSa | bSb | c

a b c b aInput:

ba c

S

c

S

cb b

S

1 2 3

4

5

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 73✬

✫

✩

✪

Note

• Input is always read (consumed) from

left-to-right.

• A snapshot of a top-down parser on an input

x is as follows.

• A part of the input u has already been

generated (tokens consumed) i.e. x = uv and

the parser has the sentential form uAα.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 74✬

✫

✩

✪

Note

• A parser tries to decide the correct rule for

A to get the next sentential form.

• Top-down parser always expands the

leftmost variable i.e. the leftmost derivation.

• The choice of rule depends on the initial part

of the remaining input.

• A choice of production rule may lead to a

dead-end and backtracking.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 75✬

✫

✩

✪

Example

Consider the following grammar:

S → aSa | bSb | a | b

Given a sentential form aabaSabaa and the
remaining portion of the input ab· · · it is
impossible to decide by seeing one or two or
any finite number of input symbols, whether to
use the first or the third production rule to
generate ‘a’ of the input.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 76✬

✫

✩

✪

Example

Consider the following grammar:

S → aSa | bSb | c

Given a sentential form aabaSabaa and the
remaining portion of the input abc· · · , it is
clear from the first element of the input string
that the first production rule is to be applied to
get the next sentential form.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 77✬

✫

✩

✪

Note

• In a bottom-up parser on the input x, the

snapshot is as follows:

• The current sentential form is αv where

α ∈ Σ ∪N , and the remaining portion of the

input is v. If x = uv, then α → u.

• At this point the parser tries to find a β so

that α′βv′ = αv, A → β ∈ P and α′Av′ is

the previous sentential form.

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 78✬

✫

✩

✪

Note

There may be more than one such choices
possible, and some of them may be incorrect. If
β is always a suffix of α, then we are following a
sequence of right-most derivation in reverse
order (reductions).

Lect 4 Goutam Biswas

Compiler Design IIIT Kalyani, WB 79✬

✫

✩

✪

Example

Consider the grammar:

E → E + E | E ∗ E | ic

Given the input ic+ic*ic· · · , many reductions
are possible and in this case all of them will
finally lead to the start symbol. The previous
sentential form can be any one of the following
three, and there are many more:
E+ic*ic· · · , ic+E*ic· · · , ic+ic*E· · · etc. The
first one is the right sentential form.

Lect 4 Goutam Biswas

