

Input and Output

- The input is a stream of characters (ASCII codes) of the source program.
- The output is a stream of tokens or symbols corresponding to different syntactic categories. It also contains attributes (associated values) of tokens.
- Examples of tokens are keywords, identifiers, constants, operators, delimiters etc.

- The scanner removes the comments, white spaces, evaluates the constants, keeps track of the line numbers etc.
- This stage performs the main I/O. It reduces the complexity of the syntax analyzer.
- The syntax analyzer invokes the scanner whenever it requires a token.

A token is an identifier (name/code) corresponding to a syntactic category of the grammar (of the source language). In other words it is a symbol (terminal) of the alphabet. Often we use different integer codes for different tokens.

Pattern

A pattern is a description (formal or informal) of the set of objects corresponding to a terminal (token) symbol of the grammar. Examples are the set of identifier, set of integer constants, keywords, operator symbols etc.

Lexeme and Attribute

- A lexeme is the actual string of characters that matches a pattern.
- An attribute of a token is a value that the scanner extracts from the corresponding lexeme. This is used for semantic action.
- Typical examples are value of constant, the string of characters of an identifiers etc.

Specification of Token

- The set of strings corresponding to a token (terminals) of a is often a regular language, and can be specified by a regular expression.
- So the collection of tokens of a programming language can be specified by a finite set of regular expressions.

 $\overline{7}$

Scanner from the Specification

- A scanner or lexical analyzer of a language, in its core, has an NFA or DFA corresponding to the set of regular expressions of its tokens.
- The automaton and the related actions of a scanner can be implemented directly as a program or can be synthesized from its specification by another program e.g flex.

Regular Expression

- 1. ε , \emptyset and all $a \in \Sigma$ are regular expressions.
- 2. If r and s are regular expressions, then so are (r|s), (rs), (r^*) and (r). Nothing else is a regular expression.

We can reduce the use of parenthesis by introducing precedence and associativity rules. Binary operators are left associative and the precedence rule is * > concat > |. 9

IEEE POSIX Regular Expressions

An enlarged set of operators (defined) for the regular expressions were introduced in different software e.g. awk, grep, lex etc.^a.

- \mathbf{x} or \mathbf{x} is the character itself^b.
- . matches with any character except 'n'.
- [xyz] is any character x, y, z.

^aConsult the manual pages of lex/flex and Wikipedia for the details of IEEE POSIX standard of regular expressions.

^b'\x' is used when 'x' is a meta-character of regular expression e.g. '\.'. A few exceptions are n, t, r etc.

IEEE POSIX Regular Expression

- If r₁ and r₂ are regular expressions, there composition rules are same as before. r₁r₂ is the regular expression r₁ followed by r₂, and r₁ | r₂, either r₁ or r₂.
- Basic repetition operators are r?: zero or one r, r*: zero or any finite number of r's, and r+: one or any finite number of r's.
- (r) is used for grouping.

13

An Identifier

The regular expression for an identifier may be $[_a-zA-Z] [_a-zA-ZO-9] *$ The first character is an English alphabet or underscore. From the second character on a decimal digit can also be used.

Regular Name Definition

- Names can be given to sub-expressions of a regular expression to structure it.
- A defined name can be use in subsequent expressions as a symbol that can be expanded.
- It is like a variable of a context-free grammar, with operator symbols, but without recursion (EBNF).

- For each $a \in \Sigma$ we can construct a 2-state NFA to recognize 'a'.
- We can combine these base NFAs using ε -transitions to build bigger NFAs.
- All these NAFs have one initial and one final state.

• The constructed NFA has only one initial and one final state. There is no incoming edge to the initial state and no outgoing edge from the final state.

Construction of DFA from NFA

Let the constructed ε -NFA be ($N, \Sigma, \delta_n, n_0, \{n_F\}$). By taking ε -closure of states and doing the subset construction we can get an equivalent DFA ($Q, \Sigma, \delta_d, q_0, Q_F$).

Algorithm: Subset Construction

```
q_0 = \varepsilon-closure(\{n_0\})
Q = L = \{q_0\}
while (L \neq \emptyset)
      q = \text{removeElm}(L)
      for all \sigma \in \Sigma
          t = \varepsilon-closure(\delta_n(q, \sigma))
          T[q][\sigma] = t
          if t \notin Q
                 Q = Q \cup \{t\}
                 L = L \cup \{t\}
```


Final State of the DFA

- The set of final states of the equivalent DFA is $Q_F = \{q \in Q : n_F \in q\}.$
- Different final states recognize different tokens. Also one final state may identify more than one tokens^a.

^aBut a scanner may not be able to produce a token immediately from its final state, as there may be longer string matching with another token class. Often we need the maximal length match.

Time Complexity of Subset Construction

The size of Q is $O(2^{|N|})$ and so the time complexity is also $O(2^{|N|})$, where N is the set of states of the NFA. But this is one time construction.

a + (ab)* - NFA to DFA

The state transition table of the DFA is

Initial	Final State	
State	a	b
$A: \{0, 2, 6, 7, 8, 9\}$	$\{1, 3, 4, 9\}$	Ø
$B: \{1, 3, 4, 9\}$	Ø	$\{2, 5, 7, 9\}$
$C: \{2, 5, 7, 9\}$	$\{3, 4\}$	Ø
$D: \{3,4\}$	Ø	$\{2, 5, 7, 9\}$
Ø	Ø	Ø

29

- We may drop the transitions to Ø for designing a scanner. This makes the DFA incompletely specified.
- Absence of a transition from a final state identifies a token.
- But in a scanner absence of a transition from a non-final state may be due to crossing past a token.

DFA State Minimization

- The constructed DFA may have set of equivalent states^a and can be minimized.
- The time complexity of a scanner with lesser number of states is not different from one with smaller number of states.
- Their code sizes may be different.

^aLet $M = (Q, \Sigma, \delta, s, F)$ be a DFA. Two states $p, q \in Q$ are said to be equivalent if there is no $x \in \Sigma^*$ so that $\delta(p, x) \neq \delta(q, x)$.

DFA State Minimization

- Minimization starts with two non-equivalent partitions of Q: F and $Q \setminus F$.
- If p, q belongs to the same initial partition Pof states, but there is some $\sigma \in \Sigma$ so that $\delta(p, \sigma) \in P_1$ and $\delta(q, \sigma) \in P_2$, where P_1 and P_2 are two distinct partitions, then p, qcannot remain in the same partition i.e. they are not equivalent.

DFA to Scanner

- Given a regular expression r we can construct a recognizer of L(r).
- For every token class or syntactic category of a language we have a regular expression.
- Let $\{r_1, r_2, \cdots, r_k\}$ be the total collection of regular expressions of a language. Then $r = r_1 |r_2| \cdots |r_k$ represents objects of all syntactic categories.

DFA to Scanner

- Given the set of NFAs of r_1, r_2, \cdots, r_k we construct the NFA for $r = r_1 |r_2| \cdots |r_k$ by introducing a new start state and adding ε -transitions from this state to the initial states of the component NFAs.
- But we keep different final states as they are to identify different tokens.

DFA to Scanner

The DFA corresponding to r can be constructed from the composite NFA. It can be implemented as a C program that will be used as a scanner of the language. But the following points are to be noted.

- A lexically correct program is not a single word but a stream of words.
- The notion of acceptance of a token in a scanner is different from a simple DFA.

- Word of one syntactic category may be a prefix of a word of another category e.g.
 < << <<=^a.
- Words of different categories are often not separated by delimiters e.g. main(){^b.

^aThe scanner should generate one token for <<= and not three. ^bThe scanner generates four tokens, id, (,), {

We need to address the following questions.

- when does the scanner report an acceptance?
- what does it do if the word (lexeme) matches with more than one regular expressions e.g.
 int which is a valid identifier and a keyword of C.

Consider the following operators in C language: + ++ += * *= < << <= <<=

The state transition diagram of their DFA is as follows:

Compiler Design

- Both state a and 1 are final. The token for ++ can be generated at state 1 as it is not prefix to any other pattern.
- But it cannot be done at state a without a look-ahead. If the next symbol is other than + or =, then the token for + can be generated.

- The amount of look-ahead may be more than one character.
- The look-ahead symbols are put back in the input stream before starting the matching for the next pattern (from the start state).

A Classic Example

• Here is a situations where there are more than one look-ahead.

```
Fortran:

DO 10 I = 1, 10 and DO 10 I = 1.10

The first one is a do-loop and the second one is

an assignment DO10I=1.10. Fortran ignores

blanks.

PL/I:

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

IF THEN are not reserved as keyword.
```


• The state q may or may not be a final state.

q is Final

- If the final state q corresponds to only one regular expression r_i , the scanner returns the corresponding token^a.
- But if it matches with more than one regular expressions then the conflict is resolved by specifying priority of expressions e.g. a keyword over an identifier.

^aIt is necessary to identify the final state of the DFA with regular expressions. It is determined by the final states of the NFA present in the final state of the DFA.

q is not Final

- It is possible that while consuming symbols the scanner has crossed one or more final states. In a maximal length scanner, the token corresponding to the last final state is returned.
- So it is necessary to keep track of the sequence of states crossed before a final state is reached^a.

^aA stack may be used for this purpose.

Another DFA Construction

Following is another construction of DFA from the collection of dotted items of the regular expressions.

An Input and a Set of Items

- Let x = uv be the current input where $u, v \in \Sigma^*$. We have already seen the part u of the input and yet to see v.
- An item of the form α β is valid for situation where the regular expression α matches with the input 'u', and we expect β to match with the remaining input 'v' or its prefix.

An Input and a Set of Items

- Given a set of regular expressions there will be a set of valid items for a particular situation. This set represents the corresponding state of DFA.
- Consider three operator symbols of C language + ++ +=. We have three valid items after we have observed the first '+':

$$+ \bullet, + \bullet + \text{ and } + \bullet =.$$

- An item of the form +• is called a complete item.
- An item like + + is called an incomplete or shift item.
- The state Q with +●, +●+, +● = has two incomplete and one incomplete items.

- From the state Q there will be a transition to the state with item + + • on input '+' and another transition to the state + = • on input '='.
- There is no other transition to any state of valid items on any other input^a

^aFor all other input transitions go to ϕ .

In general

- If the item is α xβ, then on input symbol
 'x' the transition^a will be to αx β, for
 x ∈ Σ.
- $\alpha \bullet \cdot \beta \to^x \alpha \cdot \bullet \beta$, for any $x \in \Sigma \setminus \{ \setminus n \}$.
- $\alpha \bullet [xyz]\beta \to^{x,y,z} \alpha [xyz] \bullet \beta$, for any $x, y, z \in \Sigma$.

^aThese are transitions of an NFA.

- The item $\alpha \bullet (r_1|r_2)\beta$ is equivalent to two items $\alpha(\bullet r_1|r_2)\beta$ and $\alpha(r_1|\bullet r_2)\beta$. We expect to see either a match for r_1 or a match for r_2 .
- If there is a match for r₁, the new item is α(r₁ |r₂)β. But if it is a match for r₂, the new item is α(r₁|r₂•)β. And both are equivalent to the item α(r₁|r₂) β.

- Item $\alpha \bullet (r)^? \beta$ is equivalent to items $\alpha (\bullet r)^? \beta$ and $\alpha (r)^? \bullet \beta$.
- Either we expect to see a match for r or we expect to see a match for β zero or one match for r.
- Item $\alpha(r \bullet)^? \beta \equiv \alpha(r)^? \bullet \beta$. Once we have seen an r, we expect a match for β .

- Item α (r)*β expects to see zero or any finite number of matches for the pattern r. So it is equivalent to {α(r)* β, α(•r)*β}.
- Item α(r•)*β after seeing an r, we again expect to see zero or any finite number of matches for the pattern r. So it is equivalent to {α(r)* • β, α(•r)*β}.

A Simple Example

- Consider two regular expressions, $r_1 = (ab)^*b$ and $r_2 = (a)^*b$ corresponding to two tokens.
- The combined regular expression is $r = r_1 | r_2$.
- Our input should match any one of these patterns (or both). So the initial dotted item is •r equivalent to {•r₁, •r₂}. This is the start state q₀ of the DFA.

- But then $\bullet r_1 = \bullet(ab)^*b \equiv \{(\bullet ab)^*b, (ab)^* \bullet b\}$ and $\bullet r_2 = \bullet(a)^*b = \{(\bullet a)^*b, (a)^* \bullet b\}.$
- So $q_0 = \{(\bullet ab)^*b, (ab)^* \bullet b, (\bullet a)^*b, (a)^* \bullet b\}.$
- In this way we construct the following state transition table.

A Simple Example

CS	Items	NS	
		a	b
q_6	$(a \bullet b)^*b$		$\mathbf{q}_8:(ullet ab)^*b$
			$(ab)^* ullet b$

A Simple Example

CS	Items	NS	
		a	b
q_8	$(\bullet ab)^*b$	q_6	q_7
	$(ab)^* \bullet b$		

A Simple Example: State Transition Diagram

A Simple Example: Note

- In q₂ there are two complete/reduce items.
 So two regular expressions match with the input (b). We need to decide which token to generate.
- In q₄ there are both reduce and shift items.
 We generate token if the input is other than a, b e.g. 'eof'.

Components of a Scanner

- 1. The transition table of the DFA or NFA^a.
- 2. Set of actions corresponding to terminal^b and final states.
- 3. Other essential functions.

^aThe table may be kept explicitly or implicitly (in the code). ^bA state from where there is no transition on the current input.

Maximum Prefix on NFA

- Read input and keep track of the sequence of the set of states^a. Stop when no more transition is possible (maximum prefix).
- Trace the sequence of the set of states backward and stop when a set of states with one or more final states is reached.

^aIn case of a DFA, there is only one element in the set. So it is a sequence of states.

Maximum Prefix on NFA

- Push back the look-ahead symbols in the input buffer and emit appropriate token along with its attribute value.
- The set of states may have more than one final states corresponding to different patterns. Action is taken corresponding to a pattern with highest priority.
From DFA to Code

Most often a DFA is used to implement a scanner. There are at least two possible implementations.

- Table driven,
- Direct coded,

We shall discuss about the table driven one in detail.

Table Driven Scanner

There is a driver code and a set of tables. The driver code essentially has following components:

- Initialization,
- Main scanner loop,
- Roll-back loop,
- Token or error return.

Initialization

 $cs \leftarrow q_0 \#$ current state is the start state lexeme $\leftarrow "" \#$ null string push(S, \$) # push end of stack marker

Scanner Loop

while $cs \neq \phi \#$ current state is not sink state if $cs \in Q_F$ then clear(S) # clear stack if cs is final push(S, cs) # push current state $lexeme \leftarrow lexeme + (c = getchar()) \#$ read next symbol $sym \leftarrow trans[c] \#$ translate char to DFA symbol $cs \leftarrow \delta(cs, sym) \#$ current state is next state

Roll Back Loop

while $cs \notin Q_F$ and notEmpty(S) # current state is not a final state and stack is not empty c = end(lexeme) lexeme = lexeme - c unget(c) # last symbol of lexeme to buffer $cs \leftarrow pop(S)$ # pop new state from stack

Example

- After initialization: cs = 0, stack: empty [\$], lexeme = null.
- After the scanner loop: $cs = \phi$, stack: [\$ 1 2 3], lexeme = "abaa".
- After the roll back loop: cs = 1, stack: empty [\$], lexeme = "a"
- Token for state 1 is generated.

Tables

- translate[] converts a character to a DFA symbol (reduces the size of the alphabet).
- delta[] is the state transition table.
- token[] have token values corresponding to final states.

Quadratic Roll-Back

At times roll-back may be costly - consider the language $ab|(ab)^*c$ and the input abababababs. There will be roll-back of 8 + 6 + 4 + 2 = 20 characters.

Direct Coded Scanner

- Each state is implemented as a fragment of code.
- It eliminates memory reference for transition table access.

- A scanner needs the input character by character. But the process will be very inefficient^a if the scanner sends request to the OS to read the file one character at a time.
- So the scanner reads a block of characters in a local buffer and consumes one character at a time.

^aSystem call is costly even if the data is available most of the time in the buffer cache.

Input Buffer

- A buffer at its end may contain the initial portion of a lexeme. It creates problem in refilling the buffer. So a 2-buffer scheme is used. The buffers are filled alternately.
- The buffer size depends on the available memory. Today when megabytes of memory is available, the whole source file can be read in a single buffer.

Input Buffer

- The file size can be obtained from the OS^a, the required memory can be allocated, and the whole file can be read.
- Another alternative is to map the file to the memory^b.

^aIn Linux a call to fstat() or stat() provides the output parameter struct stat *sbP. The structure contains file size along with other information. ^bUsing mmap() in Linux. But the file should not be modified.

Input Buffer

- Availability of the whole file in the memory helps to manage variable length tokens e.g. identifiers, strings, numbers, and also comments.
- This may also help to identify precisely the location of an error^a.

^aIt is important to identify lines in a file. But newline is not uniform across OS. It is better to convert it to uniform internal representation.

Direct Construction of DFA from a Regular Expression

Another construction of deterministic finite automaton (DFA) from the given regular expression.

- important if p has an out-transition on some $\sigma \in \Sigma$.
- Let the NFA be $(N, \Sigma, \delta_n, n_0, \{n_F\})$.

 In this computation only the important states of the NFA belonging to q and their ε-closures are useful.

Important States

- Given a regular expression r the important states, other than the initial state, of the NFA are determined by the positions of symbols in the regular expression.
- In our example, a + (ab)* the important states are 8, 0, 2, 4.

End Marker and Final State

We introduce a special end marker $\# \notin \Sigma$ to the regular expression, $r \to (r)\#$. This makes the final state(s) of the original NFA important. It also helps to detect the final state(s) (a state that has transition on #).

Lect 2

Syntax Tree of a Regular Expression

A regular expression can be represented by a syntax tree where each leaf node corresponds to an operand $a \in \Sigma \cup \{\#, \varepsilon\}$. Each internal node corresponds to an operator symbol.

Labeling the Leaf Nodes

- We associate a positive integer p with each leaf node of a ∈ Σ ∪ {#} (not of ε). The positive integer p is called the position of the symbol of the leaf node.
- Following are a few definitions where n is a node and p is a position.

Definitions

- nullable(n): A node n is nullable if the language of its subexpression contains ϵ .
- firstpos(n): It is the set of positions in the subtree of n, from where the first symbol of any string of the language corresponding to the subexpression of n may come.

[•] internal node of the form n_1^* : true.

• internal node of the form n_1^* : firstpos (n_1) .

• internal node of the form n_1^* : lastpos (n_2) .

In our example there are two nullable nodes, the '+' and the '*' nodes. We decorate the syntax tree with firstpos() and lastpos() data.

Computation of followpos(p)

Given a regular expression r, a symbol of a particular position can be followed by a symbol of another position in a string of L(r) in two different ways.

If n is a concatenation node n₁ ∘ n₂ of the syntax tree, then for each position p in lastpos(n₁), the followpos(p) contains each position q in the firstpos(n₂).

In our example,

- from the concatenation nodes we get that $3 \in \text{followpos}(2), 4 \in \text{followpos}(1)$ and $4 \in \text{followpos}(3)$.
- from the Kleene-star node we get $2 \in \text{followpos}(3).$

109

Directed Graph to NFA

This directed graph is actually an NFA without $\varepsilon\text{-transition.}$

- All positions in the firstpos(root) are initial states.
- A transition from $p \to q$ is labeled by the symbol of position p.
- The node corresponding to the position of # is the accepting state.

DFA from Regular Expression - Direct Construction

- Input: A regular expression r over Σ Output: A DFA $M = (Q, \Sigma, s, F, \delta)$.
- Algorithm:
- 1. Construct a syntax tree T corresponding to the augmented regular expression (r)#, where $\# \notin \Sigma$.

114

Construction of δ

```
tag[firstpos(root(T))] \leftarrow 0
Q \leftarrow \operatorname{firstpos}(\operatorname{root}(T))
while (\alpha \in Q \text{ and } tag[\alpha] = 0) do
          tag[\alpha] \leftarrow 1
          \forall a \in \Sigma \ do
                    \forall positions p \in \alpha of a \in \Sigma,
                    collect followpos(p) in a set \beta
                    if (\beta \notin Q)
                              tag[\beta] \leftarrow 0
                              Q \leftarrow Q \cup \{\beta\}
                   \delta(\alpha, a) \leftarrow \beta.
```

DFA of the Example

The state transition table:

Initial	Final State		
State	a	b	
$A: \{1, 2, 4\}$	{3,4}	Ø	
$B: \{3,4\}$	Ø	$\{2, 4\}$	
$C:\;\{2,4\}$	{3}	Ø	
$D: \{3\}$	Ø	$\{2, 4\}$	

Start state: $A\{1, 2, 4\}$, Final states: $\{A\{1, 2, 4\}, B\{3, 4\}, C\{2, 4\}\}$.

117

Transition Table is Sparse

- Often the transitions on most input from a state is to the empty state (S_{\emptyset}) .
- Number of items of the form $A : \alpha \bullet a\beta$ where $a \in \Sigma$ are not many.
- So the next state column on input *a* contains a small set of next states, and they may not appear in the columns of other input.

Transition Table Compression

- A sparse transition table can be compressed without compromising the speed and ease of access to it.
- Compression algorithms try to put non-empty state entries in locations of empty state entries.
- It also try to share identical rows of different states.

Table Compression: an Example

Let $\Sigma = \{a, b, c, d\}$, $Q = \{0, 1, 2, 3, 4\}$ and the transition table is as follows, where '-' is for the state S_{\emptyset} .

CS	NS				
	a	b	С	d	
0	2				
1	_	3	—	0	
2	_	3	4	—	
3	2			—	
4	3	4	—	1	

The Bit Map for S_{\emptyset}

CS	Bit Map			
	a	b	С	d
0	0	1	1	1
1	1	0	1	0
2	1	0	0	1
3	0	1	1	1
4	0	0	1	0

Table Compression by Row Displacement

• The row corresponding to the state 4 can be partially merged by displacing it one position.

State Transition in Compressed Table

The next state (q) of $\delta(p, \sigma)$ is computed as follows.

- If the bit-map of $[p, \sigma]$ is '1', $q = S_{\emptyset}$. $\delta(0, c) = S_{\emptyset}$, as '1' in the bit-map table.
- Otherwise, the state is found from the compressed table starting from the displacement of p. δ(4, d) = 1 as '0' in bit-map and displacement is one.

Comparison of Space

- Let there be m states and n input symbols.
 If each transition table entry takes 4-bytes, then the space required is 4mn bytes in an uncompressed table.
- For the compressed version, there is an empty state bit-map table empty[m][n] which takes roughly mn/32 bytes of space (word size is 32-bits).

Comparison of Space

- The displacement vector takes 4m bytes of space and the compressed transition table vector takes 4k bytes, where k is its size.
- In the example, m = 5, n = 4 and k = 5. So the space used by the original table is 80 bytes. Space used after compression is 3 × 5 × 4 = 60 bytes. We assume that each entry of the bit-map table is 1 byte.

- For optimal compression it is necessary to find displacement of rows corresponding to different states so that the length of the transition vector is minimal.
- But that is an NP-complete problem^a. So it is necessary to use heuristics to get a good solution (sub-optimal).

^aLoosely speaking, as it is not a decision problem, but an optimization problem.

130

Heuristic on Example

- Sorted rows: (3 4 1)(- 3 0)(- 3 4 -)(2 -)(2 -)
- But this doe not give minimal size transition vector.

- For a large table the bit-map is replaced by markings in the entries of the state-transition vector.
- Marking can either be done using states or by the input characters.
- We shall not discuss the technique here.

• Given an empty-state bit-map table, compatible states can be combined to form a single row.

^aTwo states p, q are said to be compatible if for all $\sigma \in \Sigma$, either one of $\delta(p, \sigma)$ or $\delta(q, \sigma)$ is S_{\emptyset} , or they are same.

• States of same colour are in the same partition and can be merged.

Table Compression by Graph Colouring

- The next question is how to displace and merge the next state rows of the compatible states.
- If these rows are almost full (may be true for a large table), they can simply be concatenated.

References

[ASRJ] Compilers Principles, Techniques, and Tools, byA. V. Aho, Monica S. Lam, R. Sethi, & J. D. Ullman,2nd ed., ISBN 978-81317-2101-8, Pearson Ed., 2008.

[DKHJK] Modern Compiler Design, by Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J. H. Jacobs, Koen Langendoen, 2nd ed., ISBN 978 1461 446989, Springer (2012).

[KL] Engineering a Compiler, by Keith D. Cooper & Linda Troczon, (2nd ed.), ISBN 978-93-80931-87-6, Morgan Kaufmann, Elsevier, 2012.

References

[ASRJ] Compilers Principles, Techniques, and Tools, by
A. V. Aho, Monica S. Lam, R. Sethi, & J. D. Ullman,
2nd ed., ISBN 978-81317-2101-8, Pearson Ed., 2008.

[DKHJK] Modern Compiler Design, by Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J. H. Jacobs, Koen Langendoen, 2nd ed., ISBN 978 1461 446989, Springer (2012).

[KL] Engineering a Compiler, by Keith D. Cooper & Linda Troczon, (2nd ed.), ISBN 978-93-80931-87-6, Morgan Kaufmann, Elsevier, 2012.