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‘ Lexical Analysis/Scanning I
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/ ‘Input and Output' \

e The input is a stream of characters (ASCII

codes) of the source program.

e The output is a stream of tokens or symbols
corresponding to different syntactic
categories. It also contains attributes

(associated values) of tokens.

e Eixamples of tokens are keywords, identifiers,

constants, operators, delimiters etc.
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Lect 2 Goutam Biswas




Compiler Design IITT Kalyani, WB 3

- N

e The scanner removes the comments, white

spaces, evaluates the constants, keeps track

of the line numbers etc.

e This stage performs the main 1/0. It reduces

the complexity of the syntax analyzer.

e The syntax analyzer invokes the scanner

whenever it requires a token.
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‘ Token I

A token is an identifier (name/code)
corresponding to a syntactic category of the
grammar (of the source language). In other
words it is a symbol (terminal) of the alphabet.

Often we use different integer codes for different
tokens.
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Pattern '

A pattern is a description (formal or informal)
of the set of objects corresponding to a terminal
(token) symbol of the grammar. Examples are

the set of identifier, set of integer constants,
keywords, operator symbols etc.
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Lexeme and Attribute'

e A lexeme is the actual string of characters

that matches a pattern.

e An attribute of a token is a value that the
scanner extracts from the corresponding

lexeme. This 1s used for semantic action.

e Typical examples are value of constant, the

string of characters of an identifiers etc.
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‘Speciﬁcation of Token'

e The set of strings corresponding to a token

(terminals) of a is often a regular language,

and can be specified by a regular expression.

e So the collection of tokens of a programming
language can be specified by a finite set of

regular expressions.
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/ Scanner from the Speciﬁcation' \

e A scanner or lexical analyzer of a language,
in its core, has an NFA or DFA

corresponding to the set of regular

expressions of its tokens.

e The automaton and the related actions of a
scanner can be implemented directly as a

program or can be synthesized from its

specification by another program e.g flex.

.
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‘ Regular Expressionl

1. £, 0 and all a € ¥ are regular expressions.

2. If » and s are regular expressions, then so
are (r|s), (rs), (r*) and (r). Nothing else is a
regular expression.

We can reduce the use of parenthesis by
introducing precedence and associativity rules.
Binary operators are left associative and the
precedence rule is * > concat > |.
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K IEEE POSIX Regular Expressionsl \

An enlarged set of operators (defined) for the

regular expressions were introduced in different

software e.g. awk, grep, lex etc.?.
e x or \x is the character itself".
e . matches with any character except ‘\n’.

e [xyz] is any character x, y, z.

2Consult the manual pages of lex/flex and Wikipedia for the details of IEEE
POSIX standard of regular expressions.
b\x’ is used when ‘x’ is a meta-character of regular expression e.g. ‘\-’. A

kfew exceptions are \n, \t, \r etc. /
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/ IEEE POSIX Regular Expressionl \

e If r; and ry are regular expressions, there

composition rules are same as before. riry is
the regular expression r; followed by rs, and

ri | ry, either ry or rs.

e Basic repetition operators are r?: zero or
one r, r*: zero or any finite number of r’s,

and r+: one or any finite number of r’s.

e (r) is used for grouping.
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N\

b,g,

IEEE POSIX Regular Expressionl

There are other operators also.

e [abg-pT-Y] stands for any character a,

. p, T, cee Y.

e ["G-Q] not any one of G, H, ---, P, Q.

e r{2,} two or more r’s etc.

/
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‘Language of a Regular Expressionl

The language of a regular expression is defined
in a usual way on the inductive structure ot the
definition.

L(e)=A{e}, L) =0, L(a) = {a} for all a € X,
L(r|s) = L(r) U L(s), L(rs) = L(r)L(s),
ET) L(r)*, L(r?) = L{r) U {c},

L(r™) = L(r)" etc.
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‘ An Identifier '

The regular expression for an identifier may be
[La-zA-Z] [La-zA-Z0-9] *

The first character is an English alphabet or
underscore. From the second character on a
decimal digit can also be used.

\_ /
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/ Regular Name Deﬁnition' \

e Names can be given to sub-expressions of a

regular expression to structure it.

e A defined name can be use in subsequent
expressions as a symbol that can be

expanded.

e It is like a variable of a context-free

orammar, with operator symbols, but
without recursion (EBNF).
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Examples of a Regular Deﬁnition'

sign: + | -] e
digit:  [0-9]
digits: {digit}x

frac: \.{digits} | ¢

frace: \.{digit}{digits}

expo: ((E | e){sign}{digit}{digit}?) | ¢
num: {sign}(({digit}+ {frac} {expo}) |

({frace} {expo}))
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‘RE to NFA: Thompson’s Construction'

e For each a € Y. we can construct a 2-state

NFA to recognize ‘a’.

e We can combine these base NFAs using

e-transitions to build bigger NFAs.

e All these NAFs have one initial and one final

state.

\_ /

Lect 2 Goutam Biswas




Compiler Design IIIT Kalyani, WB 18

>>®(p
()
>@ aVaez

\_ /

Lect 2 Goutam Biswas




Compiler Design IIIT Kalyani, WB 19

4 N

(r|s) and (rs)
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‘Kleene Closure: s* '

c

= - NGs) ((f1 :
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K Properties of Thompson’s Construction' \

e || < 2length(r), where @) is the number of
states of the NFA and length(r) is the

number of alphabet and operator symbols in

T.

e The constructed NFA has only one initial
and one final state. There is no incoming

edge to the initial state and no outgoing

edge from the final state.
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Lect 2 Goutam Biswas




Compiler Design ITIT Kalyani, WB 22

4 N

Properties of Thompson’s Construction'

e At most one incoming and one outgoing
transition on a symbol of the alphabet. At
most two incoming and two outgoing

c—transitions.
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a + (ab)* - An Example
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Construction of DFA from NFA'

Let the constructed e-NFA be

(N, X, 6n,n0, {nr}). By taking s-closure of
states and doing the subset construction we can
get an equivalent DFA (Q, X, 44, qo, @F).

\_ /
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/ Algorithm: Subset Construction' \

qo = e-closure({ng})
Q=L ={q}
while(L # 0)
q = removeElm(L)
for all o € X
t = e-closure(d,(q,0))
Tlqllo] =t
iftZ Q)
Q=Qu{t}
L =LU({t}

\_ /
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e-closure(T)

for all n € T push(S,n) // S is stack
el'="1T

while(notEmpty(.9))
n = pop(S)
for all n' € 6(n,¢)
if n' &€ eT
el =eT U{n'}
push(S,n’)

/
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Final State of the DFA'

e The set of final states of the equivalent DFA
iSQF:{QGQZ nFEq}.

e Different final states recognize different
tokens. Also one final state may identity

more than one tokens®.

2But a scanner may not be able to produce a token immediately from its final
state, as there may be longer string matching with another token class. Often

we need the maximal length match.

\_ /
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Time Complexity of Subset Construction'

The size of Q is O(2"V) and so the time

complexity is also O(2/"!), where N is the set of

states of the NFA. But this is one time
construction.
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4 N

a + (ab)* - NFA to DFA
The state transition table of the DFA is
Initial Final State
State a b
A: {0,2,6,7,8,9} | {1,3,4,9} 0
B: {1,3,4,9} 0 {2,5,7,9}
C: {2,5,7,9} {3,4} 0
D: {34} 0 {2,5,7,9}
0 0 0

\_ /
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a + (ab)* - NFA to DFA
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e We may drop the transitions to () for
designing a scanner. This makes the DFA

incompletely specified.

e Absence of a transition from a final state

identifies a token.

e But in a scanner absence of a transition from

a non-final state may be due to crossing past

\ a token. /
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/ ‘DFA State Minimization.

e The constructed DFA may have set of

equivalent states® and can be minimized.

e The time complexity of a scanner with lesser
number of states is not different from one

with smaller number of states.

e Their code sizes may be different.

2Let M = (Q,%,9,s, F) be a DFA. Two states p,q € Q are said to be equiv-

\alent if there is no = € ¥* so that d(p,z) # d(q, x). /
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/ ‘DFA State Minimization' \

e Minimization starts with two non-equivalent

partitions of @: F and Q) \ F'.

e If p, g belongs to the same initial partition P
of states, but there is some o € > so that
d(p,o) € P and 6(q,0) € P, where 7 and
P, are two distinct partitions, then p, g

cannot remain in the same partition i.e. they

are not equivalent.
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/ DFA to Scanner' \

e Given a regular expression r we can

construct a recognizer of L(r).

e For every token class or syntactic category of

a language we have a regular expression.

e Let {ri,ry,---,rr} be the total collection of
regular expressions of a language. Then

r =ry|ra| - |rr represents objects of all

syntactic categories.

\_ /
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4 N
DFA to Scanner.

e GGiven the set of NFAs of ry, 79, -+ , 1. we

construct the NFA for r = r{|rs| - - - |ry by
introducing a new start state and adding
e-transitions from this state to the initial

states of the component NFAs.

e But we keep different final states as they are

to identify different tokens.
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‘Final Composite NFAI

/
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DFA to Scanner'

The DFA corresponding to r can be
constructed from the composite NFA. It can be
implemented as a C program that will be used
as a scanner of the language. But the following
points are to be noted.

\_ /
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o A lexically correct program is not a single

word but a stream of words.

e The notion of acceptance of a token in a

scanner is different from a simple DFA.

\_ /
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e Word of one syntactic category may be a

prefix of a word of another category e.g.
< << <<=,

e Words of different categories are often not

separated by delimiters e.g. main () {".

The scanner should generate one token for <<= and not three.
bPThe scanner generates four tokens, id, (, ), {

\_ /
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We need to address the following questions.

e when does the scanner report an acceptance?

e what does it do if the word (lexeme) matches
with more than one regular expressions e.g.

int which is a valid identifier and a keyword

ot C.

\_ /
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4 N

Example I

Consider the following operators in C language:
+ 4+ += % k= < << <= <<=

The state transition diagram of their DFA is as
follows:

\_ /
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~

nts: no transition specified
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e Both state a and 1 are final. The token for

++ can be generated at state 1 as it is not

prefix to any other pattern.

e But it cannot be done at state a without a
look-ahead. If the next symbol is other than
+ or =, then the token for + can be

generated.

\_ /
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e The amount of look-ahead may be more

than one character.

e The look-ahead symbols are put back in the
input stream before starting the matching

for the next pattern (from the start state).

\_ /
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4 N\
A Classic Examplel

e Here 1s a situations where there are more

than one look-ahead.

Fortran:

DO 10 I =1, 10and DO 10 I = 1.10

The first one is a do-loop and the second one is
an assignment DO10I=1.10. Fortran ignores
blanks.

PL/T:

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN
IF THEN are not reserved as keyword.

\_ /
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Maximum Word Length Matching'

e The scanner will go on reading input as long

as there 1s a transition on it from the current

state.

e Let there be no transitions from the current
state ¢ on the next input o (the machine is

incompletely specified).

e The state ¢ may or may not be a final state.

\_ /
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/ ‘ q is Final I \

e If the final state g corresponds to only one

regular expression r;, the scanner returns the

corresponding token®.

e But if it matches with more than one regular
expressions then the conflict is resolved by
specifying priority of expressions e.g. a

keyword over an identifier.

2]t is necessary to identify the final state of the DFA with regular expressions.
It is determined by the final states of the NFA present in the final state of the

QFA. /
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/ ‘q 1S not Final' \

e It is possible that while consuming symbols

the scanner has crossed one or more final
states. In a maximal length scanner, the
token corresponding to the last final state is

returned.

e S0 it is necessary to keep track of the
sequence of states crossed betore a final state
1s reached?.

\ @A stack may be used for this purpose. /
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Another DFA Construction'

Following is another construction of DFA from
the collection of dotted items of the regular
exXpressions.
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Regular Names and Dotted Items'

Let N : aff be a regular expression.

e A dotted items or simply an items is a string
of the form a e §.

e The notion of item is very useful when we
try to match the regular expression with an

input.

\_ /
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/ ‘An Input and a Set of Items' \

e Let x = uv be the current input where

u,v € X*. We have already seen the part u

of the input and yet to see v.

e An item of the form o e 8 is valid for
situation where the regular expression «
matches with the input ‘u’, and we expect 3

to match with the remaining input ‘v’ or its

prefix.

\_ /

Lect 2 Goutam Biswas




Compiler Design ITIT Kalyani, WB

Lect 2

.

/ ‘An Input and a Set of Items'

e Given a set of regular expressions there will

be a set of valid items for a particular

situation. This set represents the

corresponding state of DFA.

e Consider three operator symbols of C
language + ++ +=. We have three valid
items after we have observed the first ‘+’:
+eo, + 0+ and e =.

~

/
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‘An Input and a Set of Items'

e An item of the form +e is called a complete

1tem.

e An item like 4+ o + is called an incomplete or
shift item.

e The state () with +e, + ® +, +e = has two

incomplete and one incomplete items.

\_ /
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‘Transition of a Dot '

e From the state () there will be a transition
to the state with item + + e on input ‘4’

and another transition to the state + = e on

input ‘=".

e There is no other transition to any state of

valid 1items on any other input®

.

@For all other input transitions go to ¢.

~

/
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K ‘Transition of a Dot '

In general

e If the item is v @ 3, then on input symbol
‘x” the transition® will be to az e [, for
xr € ..

eae-f—"q-ef forany r € ¥\ {\n}.

o e |ryz|f —"Y* alryz| e 3, for any
x,Y,z € 2.

k @These are transitions of an NFA.

/
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a N
‘Transition of a Dot I

e The item « e (r1|ry)3 is equivalent to two

items a(erq|re) 5 and a(r| e ry)3. We expect

to see either a match for r{ or a match for rs.

e If there is a match for r;, the new item is
a(ry e |r9) 5. But if it is a match for 75, the
new item is a(ri|roe)5. And both are
equivalent to the item a(ri|ry) @ 5.

\_ /
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‘Transition of a Dot '
?

o Item v e ()’ is equivalent to items a(er)’f

and a(r)’ e 3.

Compiler Design

-

e Either we expect to see a match for r or we

expect to see a match for 8 - zero or one

~

57

match for r.

o Item a(re)’f3

SCEIl a1l 7, WE

= a(r)’ e 3. Once we have

expect a match for £.

/
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a N
‘Transition of a Dot I

e [tem « e ()" expects to see zero or any

finite number of matches for the pattern r.
So it is equivalent to {a(r)* e B, a(er)*S}.

o [tem a(re)*[ - after seeing an r, we again
expect to see zero or any finite number of

matches for the pattern r. So it is equivalent
to {a(r) e 5, afer)"5}.
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4 N

‘Transition of a Dot'

Similarly,
o [tem e (r)"5 = a(er)"f.

o [tem a(re) " ={a(r)" e 3, aler) g}

\_ /

Lect 2 Goutam Biswas




Compiler Design ITIT Kalyani, WB 60

4 N
A Simple Examplel

e Consider two regular expressions, r, = (ab)*b

and 79 = (a)*b corresponding to two tokens.
e The combined regular expression is r = r1|rs.

e Our input should match any one of these
patterns (or both). So the initial dotted item
is er equivalent to {er{, ery}. This is the
start state qg of the DFA.

\_ /
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4 N
A Simple Examplel

e But then ery = e(ab)*b = {(eab)*b, (ab)* e b}
and ero = e(a)*b = {(ea)*b, (a)" e b}.

e S0 gy = {(eab)*b, (ab)* @b, (ea)*b, (a)" e b}.

e In this way we construct the following state

transition table.

\_ /
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A Simple Examplel

C'S | Items NS

a b

qo | (eab)*b | q1 :(a®D)*b| qa:(ab)*be
(ab)*eb| (a)*eb (a)*De
(ea)*b (ea)*b

(

a)* eb

In ¢» both items are complete.

/
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A Simple Examplel

C'S | Items NS
a b
0 | (@ o) g5 :(ea)*b]| qu (eab)*b
(a)*ob | (a)*eb | (ab)* eb
(0a)'b (a)"be

/

Lect 2
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e

N\

A Simple Examplel

C'S | Items NS
a b
3 | (®a)*b | g3 |qs:(a) be
(a)* b

g5 has one complete item.

/
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N\

A Simple Examplel

CS | Items NS
a b
qs | (eab)*b | qs :(a®b)*b| qr :(ab)*be
(ab)* @b
(a)*be

g7 has a complete item.

/
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e

A Simple Examplel

C'S | Items NS
a b
g6 |(a®b)*b| |qgs: (eab)d
(ab)* @b

/
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e

A Simple Examplel

C'S | Items NS

a | b

gs | (eab)"b | qs| gz
(ab)* @b

/

Lect 2
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e

A Simple Example: State Transition Diagram

a

a a @
=)D
b b

~

/
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‘A Simple Example: Note.

e In gy there are two complete/reduce items.

So two regular expressions match with the
input (b). We need to decide which token to

generate.

e In q4 there are both reduce and shift items.
We generate token if the input is other than

a,be.g. ‘eof’.

\_ /
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e

‘Components of a Scannerl

1. The transition table of the DFA or NFA?.

2. Set of actions corresponding to terminal®

and final states.

3. Other essential functions.

N\

2The table may be kept explicitly or implicitly (in the code).
b A state from where there is no transition on the current input.

/
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a N
Maximum Prefix on NFA'

e Read input and keep track of the sequence of

the set of states®. Stop when no more

transition is possible (maximum prefix).

e Trace the sequence of the set of states
backward and stop when a set of states with

one or more final states 1s reached.

2In case of a DFA, there is only one element in the set. So it is a sequence of

states.

\_ /

Lect 2 Goutam Biswas




Compiler Design ITIT Kalyani, WB 72

a N
Maximum Prefix on NFA'

e Push back the look-ahead symbols in the

input buffer and emit appropriate token

along with its attribute value.

e The set of states may have more than one
final states corresponding to different
patterns. Action is taken corresponding to a

pattern with highest priority.

\_ /
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a N
From DFA to Code'

Most often a DFA is used to implement a

scanner. There are at least two possible

implementations.
e Table driven,

e Direct coded,

We shall discuss about the table driven one in
detail.

\_ /
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‘Table Driven Scannerl

There is a driver code and a set of tables. The
driver code essentially has following

components:
e Initialization,

e Main scanner loop,

e Roll-back loop,

e Token or error return.

N\

~

/

74

Lect 2 Goutam Biswas



Compiler Design

IIIT Kalyani, WB

75

e

CS < (o
lexeme <

push(S, $)

Y

‘ Initialization '

/

Lect 2

Goutam Biswas



Compiler Design ITIT Kalyani, WB 76

4 N\
Scanner Loop I

while cs # ¢ # current state is not sink state
if cs € QF then clear(S) # clear stack if ¢s is final
push(S, cs) # push current state

lexeme <— lexeme + (¢ = getchar()) # read next pymbol
sym <— trans|c| # translate char to DFA symbol
cs < O(cs, sym) # current state is next state

\_ /
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4 N\
Roll Back Loop'

while ¢s € Qr and notEmpty(.S)
# current state is not a final state and stack is not ¢gmpty

¢ = end(lexeme)
lexeme = lexeme - ¢
unget (c) # last symbol of lexeme to buffer

cs < pop(S) # pop new state from stack

\_ /

Lect 2 Goutam Biswas




Compiler Design IIIT Kalyani, WB 78

4 N

Token or Error'

if cs € Qp return token|cs] and attributgs.
else Error

\_ /
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4 N

An Examplel
(O EAD—(D2 (32 (9)

No transition

\_ /
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Example I

e After initialization: cs = 0, stack: empty [$],

lexeme = null.

o After the scanner loop: cs = ¢, stack:

$ 12 3], lexeme = "abaa”.

o After the roll back loop: cs = 1, stack:

77 )

empty [$], lexeme = "a

e Token for state 1 is generated.

4 N

\_ /
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- p

e translate[] converts a character to a DFA

symbol (reduces the size of the alphabet).
e deltal] is the state transition table.

e token[] have token values corresponding to

final states.

\_ /
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characters.

N\

Quadratic Roll-Back I

At times roll-back may be costly - consider the
language ab|(ab)*c and the input ababababab$.

There will be roll-back of 8 +6 +4 + 2 = 20

/
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4 N

Direct Coded Scanner'

e Fach state is implemented as a fragment of

code.

e [t eliminates memory reference for transition

table access.

\_ /
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N\

Code Corresponding to a State'

e Code is labeled by the state name.
e Read a character and append it to lexeme.

e Update the roll-back stack.

e (Go to next appropriate state - a valid

transition, roll-back and token return state

etc.

/
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/ ‘Reading Characters: Input Buﬁer' \

e A scanner needs the input character by

character. But the process will be very
ineflicient® it the scanner sends request to the

OS to read the file one character at a time.

e So the scanner reads a block of characters in
a local buffer and consumes one character at

a time.

aSystem call is costly even if the data is available most of the time in the

\bllffer cache. /
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/ ‘ Input Buffer I \

e A buffer at its end may contain the initial

portion of a lexeme. It creates problem in
refilling the buffer. So a 2-buffer scheme is
used. The buffers are filled alternately:.

e The buffer size depends on the available
memory. Today when megabytes of memory

is available, the whole source file can be read

in a single buffer.

\_ /
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4 N
‘ Input Buffer I

e The file size can be obtained from the OS?,

the required memory can be allocated, and

the whole file can be read.

e Another alternative is to map the file to the

memory"’.

In Linux a call to fstat() or stat() provides the output parameter struct

stat *sbP. The structure contains file size along with other information.
PUsing mmap () in Linux. But the file should not be modified.

\_ /
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4 N
‘ Input Buffer I

e Availability of the whole file in the memory

helps to manage variable length tokens e.g.
identifiers, strings, numbers, and also

comments.

e This may also help to identify precisely the

location of an error?.

2]t is important to identify lines in a file. But newline is not uniform across

OS. It is better to convert it to uniform internal representation.

\_ /
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4 N

‘Direct Construction of DFA from a Regular Expressionl

Another construction of
from the given regular
exXpression.

\_ /
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‘Important States: a Deﬁnition'

e All initial states of the NFA are important.

e Any other state p of the NFA is also

important if p has an out-transition on some

g e ..

e Let the NFA be (N, X, 6,,ng, {nr}).

\_ /
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/ ‘Important States: a Deﬁnition' \

e During the construction of DFA

(Q,>2,04,q0, Qr) from the NFA, we compute
the next state of the DFA as
e-closure(d,(q,0)), where ¢ C N (¢ € ()) and
o€ 2.

e In this computation only the important
states of the NFA belonging to ¢ and their

\ e-closures are useful.

/

Lect 2 Goutam Biswas




Compiler Design ITIT Kalyani, WB 92

4 N\
Important States I

e Given a regular expression r the important
states, other than the initial state, of the
NFA are determined by the positions of

symbols in the regular expression.

e In our example, a + (ab)* the important
states are &, 0, 2, 4.

\_ /

Lect 2 Goutam Biswas




Compiler Design IIIT Kalyani, WB 93

4 N

a + (ab)* - An Example
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4 N

End Marker and Final State'

We introduce a special end marker # & > to
the regular expression, r — (r)#. This makes

the final state(s) of the original NFA important.
It also helps to detect the final state(s) (a state
that has transition on #).

\_ /
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e

Syntax Tree of a Regular Expressionl

corresponds to an operator symbol.

N\

A regular expression can be represented by a
syntax tree where each leat node corresponds to

an operand a € X U {#,¢e}. Each internal node

/
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e

Syntax Tree of a + (ab)*#
/N
+ T
N\,
d

N
a b

/
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Labeling the Leaf Nodes'

e We associate a positive integer p with each
leaf node of a € ¥ U {#} (not of €). The

positive integer p is called the position of the

symbol of the leat node.

e Following are a few definitions where n is a

node and p 1s a position.

\_ /
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Lect 2

\_ /

4 N

‘ Definitions '

e nullable(n): A node n is nullable if the

language of its subexpression contains e.

e firstpos(n): It is the set of positions in the
subtree of n, from where the first symbol of
any string of the language corresponding to

the subexpression of n may come.

Goutam Biswas
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DFA directly from Regular Expressionl

e lastpos(n): it is similar to the firstpos(n)

except that these are the positions of the

last symbols.

e followpos(p): It is the set positions in the
syntax tree from where a symbol may come

after the symbol of the position p in a string
of L((r)#).

\_ /
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n 1S a

Computation of nullable(n)

e leaf node with label e: true.
e leaf node with label a € >J: false.

e internal node of the form ni + no:
nullable(n;) V nullable(ns).

e internal node of the form nq o no:
nullable(n;) A nullable(ns).

\o internal node of the form nj: true. /
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4 N

Computation of firstpos(n)

n s a
e leaf node with label e: 0.
e leaf node with position p (label a € ¥ U {#}): {p}.

e internal node of the form ny + ny: firstpos(ny) U
firstpos(ns).

e internal node of the form n; o ny: if nullable(n;), then
firstpos(ny) U firstpos(nsg), else firstpos(ny).

e internal node of the form nj: firstpos(n,).

\_ /
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4 N

Computation of lastpos(n)

n s a
e leaf node with label e: 0.
e leaf node with position p (label a € ¥ U {#}): {p}.

e internal node of the form n; + ny: lastpos(ny) U
lastpos(ns).

e internal node of the form n; o ny: if nullable(ns), then
lastpos(ny) U lastpos(ns), else lastpos(ns).

e internal node of the form nj: lastpos(ns).

\_ /
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4 N

Example I

In our example there are two nullable nodes,
the ‘+’ and the ‘x’ nodes. We decorate the
syntax tree with firstpos() and lastpos() data.

\_ /
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({1,2,4},{4})
({1, 2},11,3})
({15 117) ?

({2}:12})

N

+

RN

a
2

*

O

# (141 14))
4
({2}:13})
({2}:13})
AN
g({3}»{3})
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.

Computation of followpos(p)

Given a regular expression r, a symbol of a
particular position can be followed by a symbol
of another position in a string of L(r) in two

different ways.

e [f n is a concatenation node ni o ny of the

syntax tree, then for each position p in

lastpos(ny ), the followpos(p) contains each

position ¢ in the firstpos(ns).

~

/
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4 N

Computation of followpos(p)

e If n is a Kleene-star node of the syntax tree,
then for each position p in lastpos(n), the
followpos(p) contains each position ¢ of
firstpos(n).

\_ /
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a N
Example I

In our example,

e from the concatenation nodes we get that
3 € followpos(2), 4 € followpos(1) and
4 € followpos(3).

e from the Kleene-star node we get

2 € followpos(3).

\_ /
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4 N
Example I

The following table summaries followpos() of

different positions.

Position p | followpos(p)
1 {4}

2 {3}
3 (2,4}
4

\_ /
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4 N

Directed Graph of followpos()

e lach position p is represented by a node.

e There is a directed edge from a position p to

a position ¢, if g € followpos(p).

\_ /
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4 N

Directed Graph of the Examplel
2 ©® @

\_ /
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/ Directed Graph to NFAI \

This directed graph is actually an NFA without

e-transition.

e All positions in the firstpos(root) are initial

states.

e A transition from p — ¢q is labeled by the
symbol of position p.

e The node corresponding to the position of #
\ is the accepting state. /
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4 N

‘Directed Graph to NFA: the Examplel

a b

N |
2 G

\_ /
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DFA from Regular Expression - Direct Construction.

Input: A regular expression r over X
Output: A DFA M = (Q, %, s, F,0).
Algorithm:

1. Construct a syntax tree T' corresponding to

the augmented regular expression (r)#,

where # & ..

\_ /

Lect 2 Goutam Biswas




Compiler Design IIIT Kalyani, WB 114

DFA from Regular Expression - Directly'

2. Compute nullable, firstpos, lastpos and

followpos of the syntax tree T'.

3. The construction of M is as follows: The set
of states () of M are the subsets of the
positions of T'. The start state
s = firstpos(root(7)). The final states are all

the subsets containing the position of #.

\_ /
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/ ‘Construction of & ' \

tag|firstpos(root(7))] < 0
Q) < firstpos(root(T))
while (a € ) and tag|a] = 0) do
taglal < 1
Va € X2 do
V positions p € a of a € X,

collect followpos(p) in a set 3

if (¢ Q)
tag[s] < 0
Q < QU {p}
d(a,a) + B.

/
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/ ‘ DFA of the Examplel \

The state transition table:

Initial Final State
State a b
A {1,2,4} 1 {3,4}| O
B: {3 4} 0 |{2,4}
C: {24} {3} 0
D {3} 0 |{2,4}

Start state: A{1,2,4}, Final
\StateS:{A{l,Q,él},B{3,4},C{2,4}}.

/
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4 N

‘DFA State Transition Diagram.
C a
N ) . NP
(69— ©
A 5 .
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.

Transition Table is Sparse'

e Often the transitions on most input from a

state is to the empty state (5p).

e Number of items of the form A : cv e af

where a € X are not many.

e S0 the next state column on input a contains

a small set of next states, and they may not

appear in the columns of other input.

~

/
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/ Transition Table Compression' \

e A sparse transition table can be compressed

without compromising the speed and ease of

access to 1it.

e Compression algorithms try to put
non-empty state entries in locations of

empty state entries.

e [t also try to share identical rows of different

\ states. /
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Transition Table Compression'

e But how to disambiguate the presence of Sy

along with another state.

e Some algorithm maintains a bit map to

indicates the presence of Sy at a location.

e If the bit is set we have Sp. Otherwise, the

location 1s accessed to get the non-empty

next state.

\_ /
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/ ‘Table Compression: an Examplel

Let ¥ = {a,b,c,d}, @ ={0,1,2,3,4} and the transition
table is as follows, where ‘-’ is for the state Sy.

CS NS

a b c d
012 — — —
I |— 3 — 0
2 |— 3 4 —
3 |2 — — —
4 13 4 — 1

~

/
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4 N

The Bit Map for Sy I

CS | Bit Map

a b c d

0 [0 1 1 1

1 {1 010

2 11 0 0 1

3 /0 1 1 1

4 10 0 1 0

\_ /
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/ ‘Table Compression by Row Displacement' \

e Different rows of the original state transition

table are merged to an one-dimensional
transition vector, by sharing of locations and

displacement of rows.

e Rows of states 0, 1, 2, 3 can be merged to a
single row |2 3 4 0] as no input has

conflicting transitions to the next states

except the empty state.

\_ /
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‘Table Compression by Row Displacement'

e The row corresponding to the state 4 can be

partially merged by displacing it one

position.

2 34 0
34 — 0

\_ /
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e

N\

‘Table Compression by Row Displacement'

e Displacements corresponding to different

states are,
State 01 2 3 4
Displacement |0 0 0 0 1

(23401).

e The compressed state transition array is

~

/
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/ State Transition in Compressed Table'

The next state (q) of §(p, o) is computed as

follows.

e If the bit-map of [p,o] is ‘17, ¢ = 9.
6(0,c) = Sy, as ‘1’ in the bit-map table.

e Otherwise, the state is found from the
compressed table starting from the

displacement of p. §(4,d) =1 as ‘0’ in

\ bit-map and displacement is one.

/
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/ ‘Comparison of Space' \

e Let there be m states and n input symbols.

If each transition table entry takes 4-bytes,
then the space required is 4mn bytes in an

uncompressed table.

e For the compressed version, there is an
empty state bit-map table empty|m]||n]
which takes roughly mn/32 bytes of space
(word size is 32-bits).

\_ /
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/ ‘Comparison of Space' \

e The displacement vector takes 4m bytes of

space and the compressed transition table

vector takes 4k bytes, where £ is its size.

e In the example, m =5,n =4 and £ = 5. So
the space used by the original table is 80
bytes. Space used after compression is

3 x5 x4 =060 bytes. We assume that each
entry of the bit-map table is 1 byte.

\_ /
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- N

e For optimal compression it is necessary to
find displacement of rows corresponding to

different states so that the length of the

transition vector is minimal.

e But that is an NP-complete problem?®. So it
1s necessary to use heuristics to get a good

solution (sub-optimal).

2Loosely speaking, as it is not a decision problem, but an optimization prob-

\ /
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A Heuristic to Find Good Displacement'

e Sort the rows according to the descending

order of density (larger to smaller number of

non-empty states).

e Rows are merged by first-fit.

\_ /
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e

N\

)@---)

vector.

‘Heuristic on Examplel

e Sorted rows: (34-1)(-3-0)(-34-)(2--

e But this doe not give minimal size transition

/
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‘Replacing Bit-Map by Marking'

e Lor a large table the bit-map is replaced by

markings in the entries of the

state-transition vector.

e Marking can either be done using states or

by the input characters.

e We shall not discuss the technique here.
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/ Table Compression by Graph Colouring' \

e For a large table the set of states () is

partitioned in such a way that their
next-state rows are compatible and can be

combined?.

e Given an empty-state bit-map table,
compatible states can be combined to form a

single row.

2Two states p, g are said to be compatible if for all o € 3, either one of 6(p, o)

Q 0(q,o0) is Sp, or they are same. /
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/ Table Compression by Graph Colouring' \

e The state partitioning can be done by

constructing the interterence graph of the
states, and finding the minimum number of

colours to colour the vertices.

e The states are nodes in the graph. There is
an edge between the nodes of state p and ¢ if

the next-state vectors of them cannot be

merged (not compatible).

\_ /

Lect 2 Goutam Biswas




Compiler Design IIIT Kalyani, WB 135

Table Compression by Graph Colouring'

e In our example there are five nodes
{0,1,2,3,4} and four edges
{0,4},{1,4},{2,4},{3,4}. The vertices can

be coloured with two colours.

e States of same colour are in the same

partition and can be merged.

\_ /
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Table Compression by Graph Colouring'

e The next question is how to displace and

merge the next state rows of the compatible

states.

e If these rows are almost full (may be true for
a large table), they can simply be

concatenated.

\_ /
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