
Compiler Design IIIT Kalyani, WB 1✬

✫

✩

✪

Lexical Analysis/Scanning

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 2✬

✫

✩

✪

Input and Output

• The input is a stream of characters (ASCII

codes) of the source program.

• The output is a stream of tokens or symbols

corresponding to different syntactic

categories. It also contains attributes

(associated values) of tokens.

• Examples of tokens are keywords, identifiers,

constants, operators, delimiters etc.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 3✬

✫

✩

✪

Note

• The scanner removes the comments, white

spaces, evaluates the constants, keeps track

of the line numbers etc.

• This stage performs the main I/O. It reduces

the complexity of the syntax analyzer.

• The syntax analyzer invokes the scanner

whenever it requires a token.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 4✬

✫

✩

✪

Token

A token is an identifier (name/code)
corresponding to a syntactic category of the
grammar (of the source language). In other
words it is a symbol (terminal) of the alphabet.
Often we use different integer codes for different
tokens.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 5✬

✫

✩

✪

Pattern

A pattern is a description (formal or informal)
of the set of objects corresponding to a terminal
(token) symbol of the grammar. Examples are
the set of identifier, set of integer constants,
keywords, operator symbols etc.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 6✬

✫

✩

✪

Lexeme and Attribute

• A lexeme is the actual string of characters

that matches a pattern.

• An attribute of a token is a value that the

scanner extracts from the corresponding

lexeme. This is used for semantic action.

• Typical examples are value of constant, the

string of characters of an identifiers etc.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 7✬

✫

✩

✪

Specification of Token

• The set of strings corresponding to a token

(terminals) of a is often a regular language,

and can be specified by a regular expression.

• So the collection of tokens of a programming

language can be specified by a finite set of

regular expressions.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 8✬

✫

✩

✪

Scanner from the Specification

• A scanner or lexical analyzer of a language,

in its core, has an NFA or DFA

corresponding to the set of regular

expressions of its tokens.

• The automaton and the related actions of a

scanner can be implemented directly as a

program or can be synthesized from its

specification by another program e.g flex.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 9✬

✫

✩

✪

Regular Expression

1. ε, ∅ and all a ∈ Σ are regular expressions.

2. If r and s are regular expressions, then so

are (r|s), (rs), (r∗) and (r). Nothing else is a

regular expression.

We can reduce the use of parenthesis by
introducing precedence and associativity rules.
Binary operators are left associative and the
precedence rule is ∗ > concat > |.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 10✬

✫

✩

✪

IEEE POSIX Regular Expressions

An enlarged set of operators (defined) for the

regular expressions were introduced in different

software e.g. awk, grep, lex etc.a.

• x or \x is the character itselfb.

• . matches with any character except ‘\n’.

• [xyz] is any character x, y, z.
aConsult the manual pages of lex/flex and Wikipedia for the details of IEEE

POSIX standard of regular expressions.
b‘\x’ is used when ‘x’ is a meta-character of regular expression e.g. ‘\·’. A

few exceptions are \n, \t, \r etc.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 11✬

✫

✩

✪

IEEE POSIX Regular Expression

• If r1 and r2 are regular expressions, there

composition rules are same as before. r1r2 is

the regular expression r1 followed by r2, and

r1 | r2, either r1 or r2.

• Basic repetition operators are r?: zero or

one r, r*: zero or any finite number of r’s,

and r+: one or any finite number of r’s.

• (r) is used for grouping.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 12✬

✫

✩

✪

IEEE POSIX Regular Expression

There are other operators also.

• [abg-pT-Y] stands for any character a,

b,g, · · · , p, T, · · · , Y.

• [^G-Q] not any one of G, H, · · · , P, Q.

• r{2,} two or more r’s etc.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 13✬

✫

✩

✪

Language of a Regular Expression

The language of a regular expression is defined
in a usual way on the inductive structure of the
definition.
L(ε) = {ε}, L(∅) = ∅, L(a) = {a} for all a ∈ Σ,
L(r|s) = L(r) ∪ L(s), L(rs) = L(r)L(s),
L(r∗) = L(r)∗, L(r?) = L(r) ∪ {ε},
L(r+) = L(r)+ etc.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 14✬

✫

✩

✪

An Identifier

The regular expression for an identifier may be
[a-zA-Z][a-zA-Z0-9]*
The first character is an English alphabet or
underscore. From the second character on a
decimal digit can also be used.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 15✬

✫

✩

✪

Regular Name Definition

• Names can be given to sub-expressions of a

regular expression to structure it.

• A defined name can be use in subsequent

expressions as a symbol that can be

expanded.

• It is like a variable of a context-free

grammar, with operator symbols, but

without recursion (EBNF).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 16✬

✫

✩

✪

Examples of a Regular Definition

sign: + | - | ε

digit: [0-9]

digits: {digit}*

frac: \.{digits} | ε

frace: \.{digit}{digits}

expo: ((E | e){sign}{digit}{digit}?) | ε

num: {sign}(({digit}+ {frac} {expo}) |

({frace} {expo}))

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 17✬

✫

✩

✪

RE to NFA: Thompson’s Construction

• For each a ∈ Σ we can construct a 2-state

NFA to recognize ‘a’.

• We can combine these base NFAs using

ε-transitions to build bigger NFAs.

• All these NAFs have one initial and one final

state.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 18✬

✫

✩

✪

φ

ε

a

s

f

f

s

s

∀a ∈ Σ

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 19✬

✫

✩

✪

(r|s) and (rs)

s1

s2

f1

f2

s f

s1 s2f1 f2s f

εε

ε

ε

ε

εεε ε

N(r)

N(s)

N(s) N(r)

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 20✬

✫

✩

✪

Kleene Closure: s∗

s1 f1s
εεε

f

εεε

ε

N(s)

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 21✬

✫

✩

✪

Properties of Thompson’s Construction

• |Q| ≤ 2length(r), where Q is the number of

states of the NFA and length(r) is the

number of alphabet and operator symbols in

r.

• The constructed NFA has only one initial

and one final state. There is no incoming

edge to the initial state and no outgoing

edge from the final state.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 22✬

✫

✩

✪

Properties of Thompson’s Construction

• At most one incoming and one outgoing

transition on a symbol of the alphabet. At

most two incoming and two outgoing

ε−transitions.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 23✬

✫

✩

✪

a+ (ab)∗ - An Example

a bεε ε

ε

εε

ε

a
ε

ε

ε

ε

0 1

2 3 4 56 7

8 9

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 24✬

✫

✩

✪

Construction of DFA from NFA

Let the constructed ε-NFA be
(N,Σ, δn, n0, {nF}). By taking ε-closure of
states and doing the subset construction we can
get an equivalent DFA (Q,Σ, δd, q0, QF).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 25✬

✫

✩

✪

Algorithm: Subset Construction

q0 = ε-closure({n0})

Q = L = {q0}

while(L 6= ∅)

q = removeElm(L)

for all σ ∈ Σ

t = ε-closure(δn(q, σ))

T [q][σ] = t

if t 6∈ Q

Q = Q ∪ {t}

L = L ∪ {t}

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 26✬

✫

✩

✪

ε-closure(T)

for all n ∈ T push(S, n) // S is stack

εT = T

while(notEmpty(S))

n = pop(S)

for all n′ ∈ δ(n, ε)

if n′ 6∈ εT

εT = εT ∪ {n′}

push(S, n′)

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 27✬

✫

✩

✪

Final State of the DFA

• The set of final states of the equivalent DFA

is QF = {q ∈ Q : nF ∈ q}.

• Different final states recognize different

tokens. Also one final state may identify

more than one tokensa.
aBut a scanner may not be able to produce a token immediately from its final

state, as there may be longer string matching with another token class. Often

we need the maximal length match.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 28✬

✫

✩

✪

Time Complexity of Subset Construction

The size of Q is O(2|N |) and so the time
complexity is also O(2|N |), where N is the set of
states of the NFA. But this is one time
construction.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 29✬

✫

✩

✪

a+ (ab)∗ - NFA to DFA

The state transition table of the DFA is

Initial Final State

State a b

A : {0, 2, 6, 7, 8, 9} {1, 3, 4, 9} ∅

B : {1, 3, 4, 9} ∅ {2, 5, 7, 9}

C : {2, 5, 7, 9} {3, 4} ∅

D : {3, 4} ∅ {2, 5, 7, 9}

∅ ∅ ∅

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 30✬

✫

✩

✪

a+ (ab)∗ - NFA to DFA

a
a

a
a

a

b bb

b

b

φ

D

A B

C

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 31✬

✫

✩

✪

Note

• We may drop the transitions to ∅ for

designing a scanner. This makes the DFA

incompletely specified.

• Absence of a transition from a final state

identifies a token.

• But in a scanner absence of a transition from

a non-final state may be due to crossing past

a token.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 32✬

✫

✩

✪

DFA State Minimization

• The constructed DFA may have set of

equivalent statesa and can be minimized.

• The time complexity of a scanner with lesser

number of states is not different from one

with smaller number of states.

• Their code sizes may be different.

aLet M = (Q,Σ, δ, s, F) be a DFA. Two states p, q ∈ Q are said to be equiv-

alent if there is no x ∈ Σ∗ so that δ(p, x) 6= δ(q, x).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 33✬

✫

✩

✪

DFA State Minimization

• Minimization starts with two non-equivalent

partitions of Q: F and Q \ F .

• If p, q belongs to the same initial partition P

of states, but there is some σ ∈ Σ so that

δ(p, σ) ∈ P1 and δ(q, σ) ∈ P2, where P1 and

P2 are two distinct partitions, then p, q

cannot remain in the same partition i.e. they

are not equivalent.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 34✬

✫

✩

✪

DFA to Scanner

• Given a regular expression r we can

construct a recognizer of L(r).

• For every token class or syntactic category of

a language we have a regular expression.

• Let {r1, r2, · · · , rk} be the total collection of

regular expressions of a language. Then

r = r1|r2| · · · |rk represents objects of all

syntactic categories.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 35✬

✫

✩

✪

DFA to Scanner

• Given the set of NFAs of r1, r2, · · · , rk we

construct the NFA for r = r1|r2| · · · |rk by

introducing a new start state and adding

ε-transitions from this state to the initial

states of the component NFAs.

• But we keep different final states as they are

to identify different tokens.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 36✬

✫

✩

✪

Final Composite NFA

sr1 fr1

sr2 fr2

srk frk

ε

ε

ε

s

N(r1)

N(r2)

N(rk)

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 37✬

✫

✩

✪

DFA to Scanner

The DFA corresponding to r can be
constructed from the composite NFA. It can be
implemented as a C program that will be used
as a scanner of the language. But the following
points are to be noted.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 38✬

✫

✩

✪

Note

• A lexically correct program is not a single

word but a stream of words.

• The notion of acceptance of a token in a

scanner is different from a simple DFA.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 39✬

✫

✩

✪

Note

• Word of one syntactic category may be a

prefix of a word of another category e.g.

< << <<=a.

• Words of different categories are often not

separated by delimiters e.g. main(){b.

aThe scanner should generate one token for <<= and not three.
bThe scanner generates four tokens, id, (,), {

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 40✬

✫

✩

✪

Note

We need to address the following questions.

• when does the scanner report an acceptance?

• what does it do if the word (lexeme) matches

with more than one regular expressions e.g.

int which is a valid identifier and a keyword

of C.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 41✬

✫

✩

✪

Example

Consider the following operators in C language:
+ ++ += * *= < << <= <<=
The state transition diagram of their DFA is as
follows:

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 42✬

✫

✩

✪

2

3

4

5

6

7

8

+

=

* =

<
< =

=

1+

9

a

b

c d

nts

nts

nts

nts

nts

nts

nts

nts

nts

nts: no transition specified

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 43✬

✫

✩

✪

Note

• Both state a and 1 are final. The token for

++ can be generated at state 1 as it is not

prefix to any other pattern.

• But it cannot be done at state a without a

look-ahead. If the next symbol is other than

+ or =, then the token for + can be

generated.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 44✬

✫

✩

✪

Note

• The amount of look-ahead may be more

than one character.

• The look-ahead symbols are put back in the

input stream before starting the matching

for the next pattern (from the start state).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 45✬

✫

✩

✪

A Classic Example

• Here is a situations where there are more

than one look-ahead.

Fortran:
DO 10 I = 1, 10 and DO 10 I = 1.10
The first one is a do-loop and the second one is
an assignment DO10I=1.10. Fortran ignores
blanks.
PL/I:
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN
IF THEN are not reserved as keyword.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 46✬

✫

✩

✪

Maximum Word Length Matching

• The scanner will go on reading input as long

as there is a transition on it from the current

state.

• Let there be no transitions from the current

state q on the next input σ (the machine is

incompletely specified).

• The state q may or may not be a final state.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 47✬

✫

✩

✪

q is Final

• If the final state q corresponds to only one

regular expression ri, the scanner returns the

corresponding tokena.

• But if it matches with more than one regular

expressions then the conflict is resolved by

specifying priority of expressions e.g. a

keyword over an identifier.
aIt is necessary to identify the final state of the DFA with regular expressions.

It is determined by the final states of the NFA present in the final state of the

DFA.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 48✬

✫

✩

✪

q is not Final

• It is possible that while consuming symbols

the scanner has crossed one or more final

states. In a maximal length scanner, the

token corresponding to the last final state is

returned.

• So it is necessary to keep track of the

sequence of states crossed before a final state

is reacheda.
aA stack may be used for this purpose.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 49✬

✫

✩

✪

Another DFA Construction

Following is another construction of DFA from
the collection of dotted items of the regular
expressions.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 50✬

✫

✩

✪

Regular Names and Dotted Items

Let N : αβ be a regular expression.

• A dotted items or simply an items is a string

of the form α • β.

• The notion of item is very useful when we

try to match the regular expression with an

input.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 51✬

✫

✩

✪

An Input and a Set of Items

• Let x = uv be the current input where

u, v ∈ Σ∗. We have already seen the part u

of the input and yet to see v.

• An item of the form α • β is valid for

situation where the regular expression α

matches with the input ‘u’, and we expect β

to match with the remaining input ‘v’ or its

prefix.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 52✬

✫

✩

✪

An Input and a Set of Items

• Given a set of regular expressions there will

be a set of valid items for a particular

situation. This set represents the

corresponding state of DFA.

• Consider three operator symbols of C

language + ++ +=. We have three valid

items after we have observed the first ‘+’:

+•, + •+ and +• =.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 53✬

✫

✩

✪

An Input and a Set of Items

• An item of the form +• is called a complete

item.

• An item like + •+ is called an incomplete or

shift item.

• The state Q with +•, + •+, +• = has two

incomplete and one incomplete items.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 54✬

✫

✩

✪

Transition of a Dot

• From the state Q there will be a transition

to the state with item + + • on input ‘+’

and another transition to the state + = • on

input ‘=’.

• There is no other transition to any state of

valid items on any other inputa

aFor all other input transitions go to φ.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 55✬

✫

✩

✪

Transition of a Dot

In general

• If the item is α • xβ, then on input symbol

‘x’ the transitiona will be to αx • β, for

x ∈ Σ.

• α • ·β →x α · •β, for any x ∈ Σ \ {\n}.

• α • [xyz]β →x,y,z α[xyz] • β, for any

x, y, z ∈ Σ.
aThese are transitions of an NFA.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 56✬

✫

✩

✪

Transition of a Dot

• The item α • (r1|r2)β is equivalent to two

items α(•r1|r2)β and α(r1| • r2)β. We expect

to see either a match for r1 or a match for r2.

• If there is a match for r1, the new item is

α(r1 • |r2)β. But if it is a match for r2, the

new item is α(r1|r2•)β. And both are

equivalent to the item α(r1|r2) • β.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 57✬

✫

✩

✪

Transition of a Dot

• Item α • (r)?β is equivalent to items α(•r)?β

and α(r)? • β.

• Either we expect to see a match for r or we

expect to see a match for β - zero or one

match for r.

• Item α(r•)?β ≡ α(r)? • β. Once we have

seen an r, we expect a match for β.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 58✬

✫

✩

✪

Transition of a Dot

• Item α • (r)∗β expects to see zero or any

finite number of matches for the pattern r.

So it is equivalent to {α(r)∗ • β, α(•r)∗β}.

• Item α(r•)∗β - after seeing an r, we again

expect to see zero or any finite number of

matches for the pattern r. So it is equivalent

to {α(r)∗ • β, α(•r)∗β}.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 59✬

✫

✩

✪

Transition of a Dot

Similarly,

• Item α • (r)+β ≡ α(•r)+β.

• Item α(r•)+β ≡ {α(r)+ • β, α(•r)+β}.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 60✬

✫

✩

✪

A Simple Example

• Consider two regular expressions, r1 = (ab)∗b

and r2 = (a)∗b corresponding to two tokens.

• The combined regular expression is r = r1|r2.

• Our input should match any one of these

patterns (or both). So the initial dotted item

is •r equivalent to {•r1, •r2}. This is the

start state q0 of the DFA.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 61✬

✫

✩

✪

A Simple Example

• But then •r1 = •(ab)
∗b ≡ {(•ab)∗b, (ab)∗ • b}

and •r2 = •(a)
∗b = {(•a)∗b, (a)∗ • b}.

• So q0 = {(•ab)
∗b, (ab)∗ • b, (•a)∗b, (a)∗ • b}.

• In this way we construct the following state

transition table.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 62✬

✫

✩

✪

A Simple Example

CS Items NS

a b

q0 (•ab)∗b q1 :(a • b)
∗b q2 :(ab)

∗b•

(ab)∗ • b (a)∗ • b (a)∗b•

(•a)∗b (•a)∗b

(a)∗ • b

In q2 both items are complete.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 63✬

✫

✩

✪

A Simple Example

CS Items NS

a b

q1 (a • b)∗b q3 :(•a)
∗b q4 :(•ab)

∗b

(a)∗ • b (a)∗ • b (ab)∗ • b

(•a)∗b (a)∗b•

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 64✬

✫

✩

✪

A Simple Example

CS Items NS

a b

q3 (•a)∗b q3 q5 :(a)
∗b•

(a)∗ • b

q5 has one complete item.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 65✬

✫

✩

✪

A Simple Example

CS Items NS

a b

q4 (•ab)∗b q6 :(a • b)
∗b q7 :(ab)

∗b•

(ab)∗ • b

(a)∗b•

q7 has a complete item.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 66✬

✫

✩

✪

A Simple Example

CS Items NS

a b

q6 (a • b)∗b q8 : (•ab)
∗b

(ab)∗ • b

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 67✬

✫

✩

✪

A Simple Example

CS Items NS

a b

q8 (•ab)∗b q6 q7

(ab)∗ • b

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 68✬

✫

✩

✪

A Simple Example: State Transition Diagram

0 1

2

3

4 5

6 7

8

a a

a

b b b

a b

b

a b

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 69✬

✫

✩

✪

A Simple Example: Note

• In q2 there are two complete/reduce items.

So two regular expressions match with the

input (b). We need to decide which token to

generate.

• In q4 there are both reduce and shift items.

We generate token if the input is other than

a, b e.g. ‘eof’.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 70✬

✫

✩

✪

Components of a Scanner

1. The transition table of the DFA or NFAa.

2. Set of actions corresponding to terminalb

and final states.

3. Other essential functions.
aThe table may be kept explicitly or implicitly (in the code).
bA state from where there is no transition on the current input.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 71✬

✫

✩

✪

Maximum Prefix on NFA

• Read input and keep track of the sequence of

the set of statesa. Stop when no more

transition is possible (maximum prefix).

• Trace the sequence of the set of states

backward and stop when a set of states with

one or more final states is reached.
aIn case of a DFA, there is only one element in the set. So it is a sequence of

states.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 72✬

✫

✩

✪

Maximum Prefix on NFA

• Push back the look-ahead symbols in the

input buffer and emit appropriate token

along with its attribute value.

• The set of states may have more than one

final states corresponding to different

patterns. Action is taken corresponding to a

pattern with highest priority.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 73✬

✫

✩

✪

From DFA to Code

Most often a DFA is used to implement a

scanner. There are at least two possible

implementations.

• Table driven,

• Direct coded,

We shall discuss about the table driven one in
detail.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 74✬

✫

✩

✪

Table Driven Scanner

There is a driver code and a set of tables. The

driver code essentially has following

components:

• Initialization,

• Main scanner loop,

• Roll-back loop,

• Token or error return.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 75✬

✫

✩

✪

Initialization

cs ← q0 # current state is the start state

lexeme ← “ ” # null string

push(S, $) # push end of stack marker

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 76✬

✫

✩

✪

Scanner Loop

while cs 6= φ # current state is not sink state

if cs ∈ QF then clear(S) # clear stack if cs is final

push(S, cs) # push current state

lexeme ← lexeme + (c = getchar()) # read next symbol

sym ← trans[c] # translate char to DFA symbol

cs ← δ(cs, sym) # current state is next state

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 77✬

✫

✩

✪

Roll Back Loop

while cs 6∈ QF and notEmpty(S)

current state is not a final state and stack is not empty

c = end(lexeme)

lexeme = lexeme - c

unget(c) # last symbol of lexeme to buffer

cs ← pop(S) # pop new state from stack

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 78✬

✫

✩

✪

Token or Error

if cs ∈ QF return token[cs] # return token and attributes.

else Error # lexical error

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 79✬

✫

✩

✪

An Example

φ0 1 2 3a b a a

No transition

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 80✬

✫

✩

✪

Example

• After initialization: cs = 0, stack: empty [$],

lexeme = null.

• After the scanner loop: cs = φ, stack:

[$ 1 2 3], lexeme = ”abaa”.

• After the roll back loop: cs = 1, stack:

empty [$], lexeme = ”a”

• Token for state 1 is generated.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 81✬

✫

✩

✪

Tables

• translate[] converts a character to a DFA

symbol (reduces the size of the alphabet).

• delta[] is the state transition table.

• token[] have token values corresponding to

final states.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 82✬

✫

✩

✪

Quadratic Roll-Back

At times roll-back may be costly - consider the
language ab|(ab)∗c and the input ababababab$.
There will be roll-back of 8 + 6 + 4 + 2 = 20
characters.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 83✬

✫

✩

✪

Direct Coded Scanner

• Each state is implemented as a fragment of

code.

• It eliminates memory reference for transition

table access.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 84✬

✫

✩

✪

Code Corresponding to a State

• Code is labeled by the state name.

• Read a character and append it to lexeme.

• Update the roll-back stack.

• Go to next appropriate state - a valid

transition, roll-back and token return state

etc.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 85✬

✫

✩

✪

Reading Characters: Input Buffer

• A scanner needs the input character by

character. But the process will be very

inefficienta if the scanner sends request to the

OS to read the file one character at a time.

• So the scanner reads a block of characters in

a local buffer and consumes one character at

a time.
aSystem call is costly even if the data is available most of the time in the

buffer cache.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 86✬

✫

✩

✪

Input Buffer

• A buffer at its end may contain the initial

portion of a lexeme. It creates problem in

refilling the buffer. So a 2-buffer scheme is

used. The buffers are filled alternately.

• The buffer size depends on the available

memory. Today when megabytes of memory

is available, the whole source file can be read

in a single buffer.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 87✬

✫

✩

✪

Input Buffer

• The file size can be obtained from the OSa,

the required memory can be allocated, and

the whole file can be read.

• Another alternative is to map the file to the

memoryb.

aIn Linux a call to fstat() or stat() provides the output parameter struct

stat *sbP. The structure contains file size along with other information.
bUsing mmap() in Linux. But the file should not be modified.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 88✬

✫

✩

✪

Input Buffer

• Availability of the whole file in the memory

helps to manage variable length tokens e.g.

identifiers, strings, numbers, and also

comments.

• This may also help to identify precisely the

location of an errora.
aIt is important to identify lines in a file. But newline is not uniform across

OS. It is better to convert it to uniform internal representation.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 89✬

✫

✩

✪

Direct Construction of DFA from a Regular Expression

Another construction of deterministic finite
automaton (DFA) from the given regular
expression.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 90✬

✫

✩

✪

Important States: a Definition

• All initial states of the NFA are important.

• Any other state p of the NFA is also

important if p has an out-transition on some

σ ∈ Σ.

• Let the NFA be (N,Σ, δn, n0, {nF}).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 91✬

✫

✩

✪

Important States: a Definition

• During the construction of DFA

(Q,Σ, δd, q0, QF) from the NFA, we compute

the next state of the DFA as

ε-closure(δn(q, σ)), where q ⊆ N (q ∈ Q) and

σ ∈ Σ.

• In this computation only the important

states of the NFA belonging to q and their

ε-closures are useful.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 92✬

✫

✩

✪

Important States

• Given a regular expression r the important

states, other than the initial state, of the

NFA are determined by the positions of

symbols in the regular expression.

• In our example, a+ (ab)∗ the important

states are 8, 0, 2, 4.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 93✬

✫

✩

✪

a+ (ab)∗ - An Example

a bεε ε

ε

εε

ε

a
ε

ε

ε

ε

0 1

2 3 4 56 7

8 9

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 94✬

✫

✩

✪

End Marker and Final State

We introduce a special end marker # 6∈ Σ to
the regular expression, r → (r)#. This makes
the final state(s) of the original NFA important.
It also helps to detect the final state(s) (a state
that has transition on #).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 95✬

✫

✩

✪

Syntax Tree of a Regular Expression

A regular expression can be represented by a
syntax tree where each leaf node corresponds to
an operand a ∈ Σ ∪ {#, ε}. Each internal node
corresponds to an operator symbol.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 96✬

✫

✩

✪

Syntax Tree of a+ (ab)∗#

#+

*a

a b

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 97✬

✫

✩

✪

Labeling the Leaf Nodes

• We associate a positive integer p with each

leaf node of a ∈ Σ ∪ {#} (not of ε). The

positive integer p is called the position of the

symbol of the leaf node.

• Following are a few definitions where n is a

node and p is a position.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 98✬

✫

✩

✪

Definitions

• nullable(n): A node n is nullable if the

language of its subexpression contains ǫ.

• firstpos(n): It is the set of positions in the

subtree of n, from where the first symbol of

any string of the language corresponding to

the subexpression of n may come.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 99✬

✫

✩

✪

DFA directly from Regular Expression

• lastpos(n): it is similar to the firstpos(n)

except that these are the positions of the

last symbols.

• followpos(p): It is the set positions in the

syntax tree from where a symbol may come

after the symbol of the position p in a string

of L((r)#).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 100✬

✫

✩

✪

Computation of nullable(n)

n is a

• leaf node with label ε: true.

• leaf node with label a ∈ Σ: false.

• internal node of the form n1 + n2:

nullable(n1) ∨ nullable(n2).

• internal node of the form n1 ◦ n2:

nullable(n1) ∧ nullable(n2).

• internal node of the form n∗1: true.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 101✬

✫

✩

✪

Computation of firstpos(n)

n is a

• leaf node with label ε: ∅.

• leaf node with position p (label a ∈ Σ ∪ {#}): {p}.

• internal node of the form n1 + n2: firstpos(n1) ∪

firstpos(n2).

• internal node of the form n1 ◦ n2: if nullable(n1), then

firstpos(n1) ∪ firstpos(n2), else firstpos(n1).

• internal node of the form n∗
1: firstpos(n1).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 102✬

✫

✩

✪

Computation of lastpos(n)

n is a

• leaf node with label ε: ∅.

• leaf node with position p (label a ∈ Σ ∪ {#}): {p}.

• internal node of the form n1 + n2: lastpos(n1) ∪

lastpos(n2).

• internal node of the form n1 ◦ n2: if nullable(n2), then

lastpos(n1) ∪ lastpos(n2), else lastpos(n2).

• internal node of the form n∗
1: lastpos(n2).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 103✬

✫

✩

✪

Example

In our example there are two nullable nodes,
the ‘+’ and the ‘∗’ nodes. We decorate the
syntax tree with firstpos() and lastpos() data.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 104✬

✫

✩

✪

#+

*a

a b

1

2 3

4

({3}, {3})

({1}, {1})

({2}, {2})

({2}, {3})

({2}, {3})

({4}, {4})({1, 2}, {1, 3})

({1, 2, 4}, {4})

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 105✬

✫

✩

✪

Computation of followpos(p)

Given a regular expression r, a symbol of a

particular position can be followed by a symbol

of another position in a string of L(r) in two

different ways.

• If n is a concatenation node n1 ◦ n2 of the

syntax tree, then for each position p in

lastpos(n1), the followpos(p) contains each

position q in the firstpos(n2).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 106✬

✫

✩

✪

Computation of followpos(p)

• If n is a Kleene-star node of the syntax tree,

then for each position p in lastpos(n), the

followpos(p) contains each position q of

firstpos(n).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 107✬

✫

✩

✪

Example

In our example,

• from the concatenation nodes we get that

3 ∈ followpos(2), 4 ∈ followpos(1) and

4 ∈ followpos(3).

• from the Kleene-star node we get

2 ∈ followpos(3).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 108✬

✫

✩

✪

Example

The following table summaries followpos() of

different positions.

Position p followpos(p)

1 {4}

2 {3}

3 {2, 4}

4 ∅

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 109✬

✫

✩

✪

Directed Graph of followpos()

• Each position p is represented by a node.

• There is a directed edge from a position p to

a position q, if q ∈ followpos(p).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 110✬

✫

✩

✪

Directed Graph of the Example

1 2 3 4

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 111✬

✫

✩

✪

Directed Graph to NFA

This directed graph is actually an NFA without

ε-transition.

• All positions in the firstpos(root) are initial

states.

• A transition from p→ q is labeled by the

symbol of position p.

• The node corresponding to the position of #

is the accepting state.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 112✬

✫

✩

✪

Directed Graph to NFA: the Example

1 2 3 4

a

a

b

b

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 113✬

✫

✩

✪

DFA from Regular Expression - Direct Construction

Input: A regular expression r over Σ

Output: A DFA M = (Q,Σ, s, F, δ).

Algorithm:

1. Construct a syntax tree T corresponding to

the augmented regular expression (r)#,

where # 6∈ Σ.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 114✬

✫

✩

✪

DFA from Regular Expression - Directly

2. Compute nullable, firstpos, lastpos and

followpos of the syntax tree T .

3. The construction of M is as follows: The set

of states Q of M are the subsets of the

positions of T . The start state

s = firstpos(root(T)). The final states are all

the subsets containing the position of #.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 115✬

✫

✩

✪

Construction of δ

tag[firstpos(root(T))] ← 0

Q← firstpos(root(T))

while (α ∈ Q and tag[α] = 0) do

tag[α] ← 1

∀a ∈ Σ do

∀ positions p ∈ α of a ∈ Σ,

collect followpos(p) in a set β

if (β 6∈ Q)

tag[β] ← 0

Q← Q ∪ {β}

δ(α, a)← β.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 116✬

✫

✩

✪

DFA of the Example

The state transition table:

Initial Final State

State a b

A : {1, 2, 4} {3, 4} ∅

B : {3, 4} ∅ {2, 4}

C : {2, 4} {3} ∅

D : {3} ∅ {2, 4}

Start state: A{1, 2, 4}, Final
states:{A{1, 2, 4}, B{3, 4}, C{2, 4}}.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 117✬

✫

✩

✪

DFA State Transition Diagram

3,4 2,4 3

B

C D
1,2,4

A

a b

a

b

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 118✬

✫

✩

✪

Transition Table is Sparse

• Often the transitions on most input from a

state is to the empty state (S∅).

• Number of items of the form A : α • aβ

where a ∈ Σ are not many.

• So the next state column on input a contains

a small set of next states, and they may not

appear in the columns of other input.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 119✬

✫

✩

✪

Transition Table Compression

• A sparse transition table can be compressed

without compromising the speed and ease of

access to it.

• Compression algorithms try to put

non-empty state entries in locations of

empty state entries.

• It also try to share identical rows of different

states.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 120✬

✫

✩

✪

Transition Table Compression

• But how to disambiguate the presence of S∅

along with another state.

• Some algorithm maintains a bit map to

indicates the presence of S∅ at a location.

• If the bit is set we have S∅. Otherwise, the

location is accessed to get the non-empty

next state.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 121✬

✫

✩

✪

Table Compression: an Example

Let Σ = {a, b, c, d}, Q = {0, 1, 2, 3, 4} and the transition

table is as follows, where ‘-’ is for the state S∅.

CS NS

a b c d

0 2 − − −

1 − 3 − 0

2 − 3 4 −

3 2 − − −

4 3 4 − 1

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 122✬

✫

✩

✪

The Bit Map for S∅

CS Bit Map

a b c d

0 0 1 1 1

1 1 0 1 0

2 1 0 0 1

3 0 1 1 1

4 0 0 1 0

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 123✬

✫

✩

✪

Table Compression by Row Displacement

• Different rows of the original state transition

table are merged to an one-dimensional

transition vector, by sharing of locations and

displacement of rows.

• Rows of states 0, 1, 2, 3 can be merged to a

single row [2 3 4 0] as no input has

conflicting transitions to the next states

except the empty state.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 124✬

✫

✩

✪

Table Compression by Row Displacement

• The row corresponding to the state 4 can be

partially merged by displacing it one

position.

2 3 4 0

3 4 − 0

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 125✬

✫

✩

✪

Table Compression by Row Displacement

• Displacements corresponding to different

states are,

State 0 1 2 3 4

Displacement 0 0 0 0 1

• The compressed state transition array is

(2 3 4 0 1).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 126✬

✫

✩

✪

State Transition in Compressed Table

The next state (q) of δ(p, σ) is computed as

follows.

• If the bit-map of [p, σ] is ‘1’, q = S∅.

δ(0, c) = S∅, as ‘1’ in the bit-map table.

• Otherwise, the state is found from the

compressed table starting from the

displacement of p. δ(4, d) = 1 as ‘0’ in

bit-map and displacement is one.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 127✬

✫

✩

✪

Comparison of Space

• Let there be m states and n input symbols.

If each transition table entry takes 4-bytes,

then the space required is 4mn bytes in an

uncompressed table.

• For the compressed version, there is an

empty state bit-map table empty[m][n]

which takes roughly mn/32 bytes of space

(word size is 32-bits).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 128✬

✫

✩

✪

Comparison of Space

• The displacement vector takes 4m bytes of

space and the compressed transition table

vector takes 4k bytes, where k is its size.

• In the example, m = 5, n = 4 and k = 5. So

the space used by the original table is 80

bytes. Space used after compression is

3× 5× 4 = 60 bytes. We assume that each

entry of the bit-map table is 1 byte.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 129✬

✫

✩

✪

Note

• For optimal compression it is necessary to

find displacement of rows corresponding to

different states so that the length of the

transition vector is minimal.

• But that is an NP-complete problema. So it

is necessary to use heuristics to get a good

solution (sub-optimal).
aLoosely speaking, as it is not a decision problem, but an optimization prob-

lem.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 130✬

✫

✩

✪

A Heuristic to Find Good Displacement

• Sort the rows according to the descending

order of density (larger to smaller number of

non-empty states).

• Rows are merged by first-fit.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 131✬

✫

✩

✪

Heuristic on Example

• Sorted rows: (3 4 - 1)(- 3 - 0)(- 3 4 -)(2 - -

-)(2 - - -)

• But this doe not give minimal size transition

vector.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 132✬

✫

✩

✪

Replacing Bit-Map by Marking

• For a large table the bit-map is replaced by

markings in the entries of the

state-transition vector.

• Marking can either be done using states or

by the input characters.

• We shall not discuss the technique here.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 133✬

✫

✩

✪

Table Compression by Graph Colouring

• For a large table the set of states Q is

partitioned in such a way that their

next-state rows are compatible and can be

combineda.

• Given an empty-state bit-map table,

compatible states can be combined to form a

single row.
aTwo states p, q are said to be compatible if for all σ ∈ Σ, either one of δ(p, σ)

or δ(q, σ) is S∅, or they are same.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 134✬

✫

✩

✪

Table Compression by Graph Colouring

• The state partitioning can be done by

constructing the interference graph of the

states, and finding the minimum number of

colours to colour the vertices.

• The states are nodes in the graph. There is

an edge between the nodes of state p and q if

the next-state vectors of them cannot be

merged (not compatible).

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 135✬

✫

✩

✪

Table Compression by Graph Colouring

• In our example there are five nodes

{0, 1, 2, 3, 4} and four edges

{0, 4}, {1, 4}, {2, 4}, {3, 4}. The vertices can

be coloured with two colours.

• States of same colour are in the same

partition and can be merged.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 136✬

✫

✩

✪

Table Compression by Graph Colouring

• The next question is how to displace and

merge the next state rows of the compatible

states.

• If these rows are almost full (may be true for

a large table), they can simply be

concatenated.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 137✬

✫

✩

✪

References

[ASRJ] Compilers Principles, Techniques, and Tools, by

A. V. Aho, Monica S. Lam, R. Sethi, & J. D. Ullman,

2nd ed., ISBN 978-81317-2101-8, Pearson Ed., 2008.

[DKHJK] Modern Compiler Design, by Dick Grune, Kees

van Reeuwijk, Henri E. Bal, Ceriel J. H. Jacobs, Koen

Langendoen, 2nd ed,, ISBN 978 1461 446989, Springer

(2012).

[KL] Engineering a Compiler, by Keith D. Cooper & Linda

Troczon, (2nd ed.), ISBN 978-93-80931-87-6, Morgan

Kaufmann, Elsevier, 2012.

Lect 2 Goutam Biswas

Compiler Design IIIT Kalyani, WB 138✬

✫

✩

✪

References

[ASRJ] Compilers Principles, Techniques, and Tools, by

A. V. Aho, Monica S. Lam, R. Sethi, & J. D. Ullman,

2nd ed., ISBN 978-81317-2101-8, Pearson Ed., 2008.

[DKHJK] Modern Compiler Design, by Dick Grune, Kees

van Reeuwijk, Henri E. Bal, Ceriel J. H. Jacobs, Koen

Langendoen, 2nd ed,, ISBN 978 1461 446989, Springer

(2012).

[KL] Engineering a Compiler, by Keith D. Cooper & Linda

Troczon, (2nd ed.), ISBN 978-93-80931-87-6, Morgan

Kaufmann, Elsevier, 2012.

Lect 2 Goutam Biswas

