Compiler Design IITT Kalyani, WB 1

4 N

Semantic Actions and 3-Address Code Generation.

_ /

Lect 12 Goutam Biswas

Compiler Design IITT Kalyani, WB 2

4 N

Introduction '

We start with different constructs of the
grammar given in the laboratory assignment
and discuss semantic actions and intermediate
code generation. First we consider simple
variable declaration.

_ /

Lect 12 Goutam Biswas

Compiler Design IITT Kalyani, WB 3

‘Grammar of Simple Variable Declaration.

DL — D:DL
— £
D — TY VL
TY — int | real
VL — VL ,id | id

_ /

Lect 12 Goutam Biswas

Compiler Design IITT Kalyani, WB 4

/ ‘ Synthesized Attributes I \

e The variable VL. may have a synthesized
attribute locLst, a list of indices of the

symbol table where names are inserted.

e T'ype and other information of these names

will be updated afterward?®.

e The non-terminal T'Y saves the type name in

its synthesized attribute 1Y .type.

@There is an alternate mechanism available if we can access the stack below

\the handle. /

Lect 12 Goutam Biswas

Compiler Design IITT Kalyani, WB 5

- N

e In our simple case it 1s int or float.

e But it can be multi-dimensional array of any
base type e.g. int al[3][4][5] - 3-clement
array of 4-element array of 5-element array
of integers. In fact there may be upper and
lower bounds of array indices for every

dimension.

_ /

Lect 12 Goutam Biswas

Compiler Design IITT Kalyani, WB 6

- N

e In case of a defined type like structure or
disjoint sum there is a list of fields and the

type of each one of them may be built-in or

defined.

e A defined type name can be saved with all

1ts field information and sizes.

e A variable of a defined type may have a link
to the corresponding type entry.

_ /

Lect 12 Goutam Biswas

Compiler Design IITT Kalyani, WB 7

- N

e In case of a procedure or function name we
need to save the number of parameters and
their types. Also the type of the value it

returns.

e If the whole type information is available, its

size etc. can be calculated and stored.

e In our simple case we need to store the size

and the offset of the memory location from a

\ base address. /

Lect 12 Goutam Biswas

Compiler Design IITT Kalyani, WB 8

‘ Important Functions I

e searchlnsert(symTab, lexme, err): it searches

the current symbol table with the second

parameter?®.

e In a normal situation there should not be
any entry of the lexme. It is inserted in the

table and the index is returned.

2There may be separate functions for search() and insert().

_ /

Lect 12 Goutam Biswas

Compiler Design IITT Kalyani, WB 9

‘ Important Functions I

e If the lexme is found in the table (already

inserted), it is an error condition.
e The type of the identifier is still unknown.

e mkloclLst(loc): makes a list of symbol-table
location specified by loc and returns the

single element list.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 10

‘ Important Functions I

e catLocLst(11,12): concatenates two lists of

symbol-table locations and returns the

concatenated list.

e updateType(symTab, 1, type): updates type
of the symbol-table locations from the list |
using type.

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

11

e

TY
TY
VL

VL

D

N\

Semantic Actions and Code Generation'

1

d

d

int {TY.type = INT}
real {TY.type = FLOAT}
id

{ temp = searchInsert(symTab, id.lexme, err)

VL.locLst = mkLocLst(temp) }
VL, | id

{ temp = searchlnsert(symTab, id.lexme, err)

~

VL.locLst = catLocLst(VL;.locLst, mkLocLst(tpmp) }
TY VL { updateType(symTab, VL.locLst, TY fype }

/

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB 12

4 N

Error

What should we do if searchInsert() gives an error?

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 13

4 N
‘ Expression Grammar I

e Our next consideration is the expression

grammar.

e We shall consider a small portion of it

without involving array etc.

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

14

e

N\

‘Part of Expression Grammar'

D

o]

%

E+ E
1d
1C

fc

Where id 1s a simple scalar variable, ic is an
integer constant and fc is a floating-point
constant.

/

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB 15

‘ Synthesized Attributes I

e An expression E has two attributes, E.loc

which is an index to the symbol table, and

E.type®.

e The symbol table entry corresponding to
E.loc may be a program defined variable or a

compiler generated variable.

®Which is also available in the symbol table.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 16

/ ‘ Important Functions I \

e searchlnsert(symTab, lexme, err): is as we

have already defined.

e But in this case, if the lexme corresponds to
a program variable and it is not found in the
symbol-table, it is an error. Necessary

actions are to be taken?.

*We may insert the name in the symbol table with a type UNDEEF or some
default type. This will stop generating error message on the same undefined

\Variable. /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB

Lect 12

-

‘ Important Functions I

e The function newTemp() generates a
compiler defined variable name. Its type is
determined by the type of the expression

being evaluated.

e The function getType(symTab, loc) returns
the type of the variable at the index loc of
the symbol table.

.

/

17

Goutam Biswas

Compiler Design IIIT Kalyani, WB 18

/ Semantic Actions and Code Generation'

E — 1
{E.loc = searchlnsert(symTab, ID.lexme, err) }
{E.type = getType(symTab, E.loc) }

E — 1c
{E.loc =
searchlnsert(symTab, newTemp(), err)
updateType(symTab, mkLocLst(E.loc), INT)
E.type = INT
codeGen(assIntConst, ic.val, E.loc)}

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 19

Semantic Actions and Code Generation'

E — fc
{E.loc =
searchlnsert(symTab, newTemp(), err)
updateType(symTab, mkLocLst(exp.loc), FLOAT])
E.type = FLOAT
codeGen(assFltConst, fc.val, E.loc)}

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 20

Semantic Actions and Code Generation'

E — E{+ Es
{if E;.type = INT and
Es.type = INT then

E.loc = searchInsert(symTab, newTemp(), err)
updateType(symTab, mkLocLst(E.loc), INT)
E.type — INT

codeGen(assIntPlus, E;.loc, Es.loc, E.loc)}

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 21

Semantic Actions and Code Generation'

it E,.type = FLOAT
Es.type = FLOAT then
E.loc = searchlnsert(symTab, newTemp(), err)
updateType(symTab, mkLocLst(exp.loc), FLOAT)
E.type = FLOAT
codeGen(assFItPlus, E4.loc, Es.loc, E.loc)

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 22

/ Semantic Actions and Code Generation' \

if Eq.type = INT
Es.type = FLOAT then

temp = searchlnsert(symTab, newTemp(),err)

updateType(symTab, mkLocLst(temp),FLOAT)

codeGen(assignIntToF1t, E4.loc, temp)

E.loc = searchInsert(symTab, newTemp(),err)
updateType(symTab, mkLocLst(E.loc),FLOAT)
E.type = FLOAT

codeGen(assF1tPlus, temp, Es.loc, E.loc)

\Another case 1s similar. /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 23

‘Where to Store the Code.

e The question is where to store the generated

3-address codes.
e They may be saved in a global array, or

e They may be kept as another attribute of .

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 24

4 N

Grammar for Statements'

Our next considerations are statements. We
start with simple assignment statement.

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 25

4 N

Grammar Simple Assignment Statement'

AS — id=E

We assume that id is a simple scalar variable.

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 26

Semantic Actions and Code Generation'

AS
— 1d=E

{temp = searchInsert(symTab, id.lexme, err)

if getType(symTab,temp) = UNDEF then ERROR

if (getType(symTab, temp) = INT and E.type = INT) or
(getType(temp) = FLOAT and E.type = FLOAT) then

codeGen(assign, E.loc, temp)

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 27

4 N

Semantic Actions and Code Generation'

if (getType(symTab,temp) = INT and E.type = FLOAT) then
codeGen(assignFltTolnt, E.loc, temp)
if (getType(symTab,temp)=FLOAT and E.type=INT]) then
codeGen(assignIntToFl1t, E.loc, temp) }

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 28

4 N

‘Control Flow Statements'

Our next consideration are the statements that
control the flow of execution. Here we use a
technique known as backpatching to fill the

jump/branch addresses.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 29

Backpatching in Control Flow Statements'

e Boolean expressions and flow-of-control

statements require branch instructions.

e The branch target is unknown when the
3-address code for branch instructions are

generated.

e One solution is to pass the label of the

branch target as inherited attribute.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 30

/ Backpatching in Control Flow Statements' \

e As the target instruction has not yet been

generated, 1t 1s necessary to bind the labels

afterward.

e Backpatching is an alternate approach where
the targets of codes corresponding to

branch/jump instructions are kept unfilled.

e List of these unfilled code indices are passed

as synthesized attributes.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 31

Backpatching in Control Flow Statements'

e Target holes in these 3-address codes will be
filled (backpatched) when the target labels

are generated.

e Production rules of boolean expression and
control flow statements are modified by
introducing special non-terminals, known as

markers, producing null strings.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB

32

/ ‘Modiﬁed Grammar of Boolean Expressionl

We use or, and and not for clarity.

BE — BE or mR BE
— BE and mR BE

— not BE
— (BE)
— E relOP E
mR — ¢ (new Marker non-terminal)

N\

~

/

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB 33

‘ Synthesized Attributes I

e The non-terminal BE has two synthesized
attributes trueLst and falseLst.

e BE.trueLst is the list of 3-address codes
(indices) corresponding to jumps/branches
that will be taken when the expression of BE

evaluates to true.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB

34

-

‘ Synthesized Attributes I

e Similarly BE.falseLst is the list of code

indices from where jump/branches are taken

when BE evaluates to false.

e The BE.truelst will be backpatched by the

index of the 3-address code where the
control will be transterred when BE

evaluates to true.

\o Similar is the case for BE.falsel.st.

~

/

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB 35

Sequence Number of an Instructions'

e There is a sequence number or index of every

instruction If they are stored in a global

array. These indices are used as labels®.

e Following are a few useful functions for

semantics actions.

aIf the sequence of instructions is maintained as a list, then we may have a

label in the list or a pointer to the target instruction.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 36

‘ Important Functions I

e mklst(i): makes a single element list with

the code index ¢ and returns the pointer of
the list.

e catlst(l,l5): two lists pointed by I; and Iy

are concatenated and returned as a list.

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

37

.

e

‘ Important Functions I

e fill(/, 7): the unfilled targets of each

jump /branch instruction whose indices are

in the list [are filled /backpatched by the

index ¢ of the target instruction.

e The global variable nextInd has the sequence

number(index) of next 3-address code to be

generated.

/

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB 38

Semantic Actions and Code Generation'

e The non-terminal mR has a synthesized

attribute nextInd, the current value of the

variable nextInd.

mR — ¢
o

{mR.nextInd = nextInd}

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 39

/ ‘ An Alternative ' \

e As an alternative the non-terminal mR has a

synthesized attribute label. The reduction of
mR generates a new label, attaches it to the

next 3-address code and saves it in mR.label.

mR — ¢
° {mR.label = newlabel()}
{codeGen(label, mR.label)}

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 40

Semantic Actions and Code Generation'

BE — exp; relOP expo
{BE.trueList = mklst(nextInd)
BE.falseList = mklst(nextInd+1)

codeGen(‘if relOP’; expy.loc,
expo.loc, ‘goto’ - -+)

codeGen(‘goto’ - -)

nextInd = nextInd+2 }

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 41

Semantic Actions and Code Generation.

BE — BE; or mR BEs
{fill(BE;.falseLst,mR.nextInd)
BE.truelist = (BE;.truelst,

BEs.truelst)
BE.falseList = BEs.falseList }

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 42

Semantic Actions and Code Generation.

BE — BE; and mR BE,
{fill(BE;.trueLst,mR.nextInd)
BE.falseList = (BE; .falseLst,

BE,.falseLst)
BE.truelist = BEs.trueLst }

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 43

4 N

Semantic Actions and Code Generation'

BE — not BE;
{BE.falseLst = BE;.trueLst
BE.truelist = BE;.falseLst }

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 44

4 N

Semantic Actions and Code Generation'

BE — (BE;)
{BE.falseLst = BE;.falselst
BE.truelist = BE;.trueLst }

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 45

4 N

Example I

Consider the

x <=y or not a>b+ cand p =q

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 46

4 N

Boolean Expression: Parse Tree'

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

47

e

-

BEZ/ E(\fl\mR\BE
JUN TN

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB 48

4 Bampic] A

e Let the next index (nextInd) of the

3-address code sequence be 100.

e The 3-address codes corresponding to BEy in
readable form is
100 if x < y goto ---
101 goto ---

e BE,.truelst = {100} and BEs.falselist =
{101} and nextInd: 102.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 49

-

.

e Next reduction is mR; — . The attribute

e Next 3-address code is due to exp,.

e Then the code corresponding to BEy is

~

Example I

mR;.nextInd <+ nextInd: 102.
102 %1 <~ b + ¢

103 if a > $i goto ---
104 goto - --

/

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB

50

-

N\

Example I

e BEg.truelst = {103} and BEg.falselist =

{104} and nextInd: 105.

e The not operator flips the lists.

BE,.truelist = {104} and BE,.falselst =
1103},

e Next reduction is mRs — . The attribute

mRs.nextInd < nextInd: 105.

/

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB 51

4 Bampic] A

e Next 3-address codes are corresponding to
BE::
105 if p == q goto ---
106 goto - --

e BE;.truelst = {105} and BEs.falselist =
{106} and nextInd: 107.

e At reduction of BEs the BE,.trueLst is
backpatched by mRy.nextInd = 105.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 52

\
g)

e The code after the first backpatching:
100 if x < y goto ---

101 goto ---

10281 < b + ¢

103 if a > $i goto ---

104 goto 105

105 if p == q goto - -

106 goto - --

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 53

4 N
Example I

e BE;.trueLst = BE;.trueLst: {105} and
BE;.falseLst = (BE,.falseLst U
BE;.falselist): {103,106}.

e At reduction of BE; the BEs.falselist is
backpatched by mRy.nextInd = 102.

e BE;.truelist = {100,105} and BE;.falselLst
— {103,106}

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 54

\
g)

e Modified code is

100 if x < y goto ---
101 goto 102

10281 < b 4+ ¢

103 if a > $i goto ---
104 goto 105

105 if p == q goto - -
106 goto - --

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 55

4 N

Example: Note I

It is clear that codes in sequence numbers 101
and 104 are useless. We replace them by

no-operations (nop)

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 56

\
g)

e The modified code is
100 if x < y goto ---

101 nop

10281 < b 4+ ¢

103 if a > $i goto ---
104 nop

105 if p == q goto - -
106 goto - --

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB

57

e

Statements and Backpatching'

sequence of statements and flow-of-control

marker non-terminals®

mar may cease to be LALR.

N\

We use backpatching for assignment statement,

statements. So the grammar is modified with

@0One should be careful about doing that as in some cases the modified gram-

/

Lect 12

Goutam Biswas

Compiler Design IIIT Kalyani, WB 58

4 N

‘Modiﬁed Grammar of Statements.

SL — SLmRS|S

S — AS

— 1f BE mR then SL kR else SL ;
— for mR BE mR do SL ;
— NOp

mR — ¢

kR — ¢

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 59

4 N

‘Synthesized Attribute of a Statement'

Every statement (S and SL) has a synthesized

attribute nextlLst. This is the list of indices of
jump and branch instructions (unfilled) within

the statement that transter control to the
3-address instruction following the statement.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB

e

60

‘Backpatching: Statement List'

S, — SL;{mR S
{fill(S;.nextLst, mR.nextInd)
SL.nextLst = S.nextLst}

SL — S
{SL.nextLst = S.nextLst}

_

Lect 12

/

Goutam Biswas

Compiler Design IIIT Kalyani, WB 61

/Backpatching: Assignment, nop Statement and Marker'

S — AS {S.nextLst = nil}

S — mnop {codeGen(‘nop’)
nextInd = nextInd+1
S.nextLst = nil}

kR — ¢ {kR.nextInd = nextInd

codeGen(‘goto’ - - -)

nextInd = nextInd+1}

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

62

e

_

Backpatching: if—StatementI

if BE mR then SL; kR else SL
{fill(BE.trueList, mR.nextInd)
fill(BE.falseLst, kR.nextInd+1)

temp = catLst(SL;.nextLst, mkLst(kR.nextInd))

S.nextLst = catLst(temp, SLo.nextLst) }

/

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB 63

a N
Example I

Consider the if-statement with the same
boolean expression taken earlier as an example.

if x <y or not a > b + ¢ and p == q then
X = O%y

else
a=a-p

end

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

64

e

_

if-statement: Parse Tree.

S
K

|

else \
S

\

€

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB 65

a N
Example I

We already know that the code corresponding
to BE is as follows:

100 if x < y goto ---

101 nop

10281 «+— b + c

103 if a > $i goto ---

104 nop

105 if p == q goto - --

106 goto - --

BE.truelist = {100, 105} and BE.falselst =
{103,106} and nextInd: 107.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 66

4 Bampic] A

e Next reduction is mR; — . The attribute
mR.nextInd + nextInd: 107.

n

e The code corresponding to SL; is
107 $(i+1) =5 x y
108 x = $(i+1)

e The reduction of kR; — ¢ generates the code
109 goto - --
[ts attribute is kR.nextLst = {109}

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 67

4 N

Example I

e The code corresponding to SLs is
110 $(i+2) = a + p
111 a = $(i+2)

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

68

-

Example I

The sequence of code and synthesized data at
this point of compilation are
100 if x < y goto ---

101 nop

10281 «+— b + c
103 if a > $i goto ---
104 nop
105 if p == q goto ---
106 goto - --
107 $(i+1) =
108 x = $(i+1)
109 goto - --
110 $(i+2) =
&11 a = $(i+2)

~

/

Lect 12

Goutam Biswas

Compiler Design IIIT Kalyani, WB 69

a N
Example I

e BE.truelist = {100,105} and BE.falseList =
1103, 106).

e mR;.nextInd = 107.
e kR.nextLst = {109}

e SLi.nextLst = SLy.nextLst = nil

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 70

a N
Example I

During the reduction to IS following actions are

taken.
e Backpatch BE.truelst with mR;.nextInd.
e Backpatch BE.falseLst with kR.nextInd.

e ifStmt.nextLst = mkLst(kR.nextLst+1) as
SLi.nextLst = SLy.nextLst = nil.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 71

4 Bampic] A

Final sequence of code is
100 if x < y goto 107
101 nop
10281 < b + ¢

103 if a > $i goto 110
104 nop

105 if p == q goto 107
106 goto 110

107 $(i+1) =5 x y
108 x = $(i+1)

109 goto - --

110 $(i+2) = a + p

\;?J_a = $(i+2) 4//

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 72

‘Backpatching: for/while Statement'

Note that our for is nothing but while.
S — for mR; BE mR, do SL end

{fill(SL.nextLst, mR;.nextInd)
fill(BE.trueLst, mRs.nextInd)
S.nextLst = BE.falselst
codeGen(‘goto’, mR;.nextInd) }

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 73

4 N\
‘ exitLoop Statement I

e Our exit is similar to break is C language.

e We only consider necessary semantic actions
and translation of exit in the context of a

while-statement.

e We define an exit-list (extLst=Nil) after

entering a while-loop.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 74

4 N\
‘ exitLoop Statement I

e At every exit, an unfilled ‘goto -’ code is

generated and its index is inserted in the

exit-list.

e During the final reduction of the
S — while - - -, the exit-list is merged with
the S.nextLst.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB

75

-

N\

Modified Grammar of while I

Grammar After First Modification

S — while mR BE mR : SL end

mR — ¢

Grammar After Second Modification

S — while eR BE mR : SL end
mR — ¢

eR — ¢

/

Lect 12

Goutam Biswas

Compiler Design IIIT Kalyani, WB 76

4 N

Semantic Actions for eR'

eR — ¢
{ eR.nextInd = nextInd
extLst = Nil}

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 77

4 N

Semantic Actions for eR'

S — EXITLOOP
{ extLst = catLst(extLst, mkLst(nextInd))
codeGen(’goto’, -)
nextInd = nextInd + 1}

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

78

e

N\

Backpatching Modified: while Statement'

S — while eR BE mR : SL end

{fill(SL.nextLst, el

fill(BE.trueLst, m!

R.next.

R.nextInd)

nd)

S.nextLst = catlst(BE.falseLst,

extLst)

codeGen(‘goto’, eR.nextInd) }

~

/

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB 79

- N

e The exit-list can be maintained as a special

label (say exit) in the symbol table.

e Nesting of loop will complicate the situation.
In that case we use a stack to push exit-list

headers of outer loops.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB

30

-

.

e If a loop creates a local environment, the
outer symbol-tables are pushed in a stack. If

the exit-list is maintained on a symbol-table,

it will automatically be stacked.

/

Lect 12

Goutam Biswas

Compiler Design

IIIT Kalyani, WB

81

e

N\

Grammar of Array Declaration'

decl
typeList

varList

type

N

det typeList end
typeList ; varList : type
varList : type

var , varList

var

INT | FLOAT

/

Lect 12

Goutam Biswas

Compiler Design IIIT Kalyani, WB 82

Grammar of Array Declaration'

var — 1D sizeListO
sizeListO — sizelist
sizeliist — sizelist | INT_CONST |
— | INT_CONST |

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 83

4 N

‘ Array Declaration I

A typical array deceleration is as follows:
def

%.[.3] [4] [6] : int ;

end

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

84

e

_

‘Array Declaration: Parse Tree'

decl\ sizeList
def Lig €N / \ \\
et type 'St\ sizeList
| | type / \ \\ |
/varLlst\ - ‘ sizelist | IC 5
Var ‘ varList Int / ‘ \ :
[ic] 4
sizeListO :
ID 3
| sizeList
X

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB 85

‘Information in Symbol Table'

e Array int x[3] [4] [6] may be viewed as

follows:

e A 3-element array of 4-element array of

H-element array of base type int.

e Important information are base type, range

of each dimension and the total size in bytes.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 86

4 N

e In some programming languages the upper

and lower bounds of each dimension can be

specified.

e More information such as lower bound and
upper bound of of indices is necessary to

save 1n such a situation.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 87

/ ‘Synthesis of Attributes and Semantic Actionsl \

e The non-terminal sizel.ist and sizel.istO

maintains the list of sizes (dimSzLst).

e This list may be put in the symbol table
during the reduction of

var — ID sizelListO.

e The base type and displacement (depends on
the total size) are updated during the

reduction typelList — varList : type.

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB 88

e

~

‘Array Declaration: Decorated Parse Tree'

_

/)eUSt sizeList.dimSzLst={3,4,5} SizeList
sizeList.dimSzLst={3, 4}/\ \\
varLlst\ type sizeList
/ ‘ ot List.dimSzLst{3} \\\ :
var ! varListint S°Z® /
/ \ sizeList [1C 1 5
sizeListO / ‘ \ I
IP sizeListO.dimSzLst={3,4,5} [IC 4
: SizeList :
X sizeList.dimSzLst={3,4,5} é

/

Lect 12

Goutam Biswas

Compiler Design ITIT Kalyani, WB 89

_ /

Lect 12

K Array Expression and Assignment I \

e An array element may be present in an
expression or a value may be assigned to an
array element.
xLer] [ea] := exp

a := --- x[e1] [es]

e In both the cases it is necessary to compute
the offset of the element from the base of the

array.

Goutam Biswas

Compiler Design ITIT Kalyani, WB 90

K Offset Computation: an Examplel \

e We consider a 3-D array of base type int:
x[3][6][7] : int.

e The array is stored in the memory in

row-major order.

e Let the address of the x[0] [0] [0] (starting

address) be x,; and the size of int be w.

e The address of x[i] [j] [k] is
To+ (X54+7)XT7)+ k) xXw

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 91

4 N

Esssential information to compute the offset of
x[1] [j] [k] are starting address z,, values of
three indices 17, 7, k, the sizes of the second and
the third dimensions, 5, 7 respectively, and size
of the base type.

_ /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 92

_ /

Lect 12

/ Offset Computation: an Examplel \

e If the array is stored in column-major order,
the address of x[i] [j] [k] is
ro+ (K x5+ j) x3)+1i) xw. Here the
sizes of the first and the second dimensions

are useful for offset computation.

e In both the cases we assume that when the

range of a dimension |n| is specified, the

indices are 0,--- ,n — 1.

Goutam Biswas

Compiler Design ITIT Kalyani, WB 93

/ Offset Computation: an Examplel \

e In some languages the ranges of indices of

different dimensions are given explicitly, e.g.
int x[1-3][2-5] [3-7], where possible
values of first indices are 1,2,3; second indices
are 2,3,4,5; and third indices are 3,4,5,6,7.

e In row-major storage the address of
x[1T[3] [kl isxe+ ((((—1)x (h—24+1)+
(1 —2))x(7T—3+1))+ (k—3)) x w, where
\ x, 18 the address of x[1] [2] [3]. /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB 94

/ Offset Computation: an Examplel \

e et sy=5—2+1and s3=7—3+ 1 be the

sizes of second and third dimensions.

e The expression can be rewritten as
To — ((((1 X s9+2) xs3)+3) xw)+ ((((7 x
So+7) X 83) + k) X w).

e The first two terms are independent of

(¢, 7, k). In a nested loop they can be

computed outside it.

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 95

‘Grammar of Array in Expression and Assignmentl

id — ID indexListO
indexListO — indexList
indexListO — ¢

indexList — indexList | exp |
indexList — [exp]

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

96

e

_

Array in Expression: Parse Tree'

exp

|
A\

D IndexListO

mdexLlst

NN

iIndexList, [exp3

/NN

mdexLlstl [€XP,]

/1N

[expp

~

/

Lect 12

Goutam Biswas

Lect 12

Compiler Design ITIT Kalyani, WB

- N

e [lach expression has an attribute exp.loc, an
index of the symbol table corresponding to a

variable.

e The symbol-table entry of the array
identifier has the sizes of different
dimensions. But it is not available during
the reduction of | exp | to indexlist or

indexList | exp | to indexlist?

\ #Though it is available immediately below the handle in the stack. /

97

Goutam Biswas

Compiler Design ITIT Kalyani, WB 98

/ Synthesized Attributes and Semantic Actionsl \

e Both indexlList and indexl.istO has

synthesized attributes locLst that carries list

of symbol-table indices corresponding to the

exXpressions.

e The computation of ofiset takes place during
the reduction of ID indexListO to id.

e The non-terminal id may have two

k attributes, id.base and id.oflset. /

Lect 12 Goutam Biswas

Compiler Design ITIT Kalyani, WB

99

-

‘ Code Generation '

e Let array deceleration be

x[r1] [ro] -+ [ry]:int.

x [expi] [expa] -+ [exp:l
e Let the base address of the array be xp.

e Let the width of the base type be w.

.

e Let the use of an array in an expression is

/

Lect 12

Goutam Biswas

Compiler Design IIIT Kalyani, WB 100

‘ Code Generation '
Note that

indexListO.locLst = {exp;.loc, -- -, expg.loc}.
The address computation of the array element
and the semantic actions corresponding to the

reduction
id — ID indexListO

is as follows:
templ = searchlnsert(symTab, newTemp(), err)

updateType(mkLocLst(templ), ADDR)
codeGen(assign, exp;.loc, templ)
$;11 = expj.loc

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 101

4 N
‘ Code Generation I

fortr=1tok —1do

temp2 = searchlnsert(symTab, newTemp(), err)

updateType(mkLocLst(temp2), ADDR)
codeGen(assAddrMultConst, templ, r;;1, temp2)

$j—|—2i — $j—|—2i—1 X Tip1
templ = searchlnsert(symTab, newTemp(), err)

updateType(mkLocLst(templ), ADDR)
codeGen(assAddrAdd, temp2, exp;,1, templ)

Sjt2i41 = Bj40i + expipr

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 102

4 N

‘ Code Generation '

temp2 = searchlnsert(symTab, newTemp(), err)

updateType(mkLocLst(templ), ADDR)
codeGen(assAddrMultConst, templ, w, temp2)

$j+2k — $j+2k—1 X w

id.base = searchlnsert(symTab,ID.lexme,err).sTab.offset
id.offset = temp?2

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 103

4 N
‘ Code Generation I

The 3-address code corresponding to exp — id 1is,
temp = searchlnsert(symTab, newTemp(), err)
updateType(mkLocLst(templ), ADDR)
codeGen(assAddrAddConst, id.base, id.offset, temp)
Sjtont1 = Sjpor + 1y

templ = searchlnsert(symTab, newTemp(), err)

updateType(mkLocLst(templ), TYPE)
codeGen(assignIndirFrm, temp, temp1)

$j—|—2k+2 — *$j+2kz'+1

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

104

e

_

‘Array in Assignment: Parse Tree'

assignmentStmt

/1N

L ex
dotld = P

|
A\

D indexListO

mdexLlst

AN

indexList exp3

/ \\\

|ndexL|sr1 exp2

/1N

[expy

~

/

Lect 12

Goutam Biswas

Compiler Design IIIT Kalyani, WB 105

Synthesized Attributes and Semantic Actionsl

e The semantic actions upto id are identical.

e The non-terminal dotld will have attributes
of 1d 1.e. dotld.base and dotld.offset.

e The value of dotld.base 4+ dotld.offset is
computed. The location corresponding to

this address is indirectly assigned exp.loc.

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 106

4 N

‘ Code Generation '

temp = searchlnsert(symTab, newTemp(), err)
updateType(mkLocLst(temp), ADDR)
codeGen(assAddrPlus, dotld.base, dotld.offset, temp)

codeGen(assIndirTo, expy.loc, temp)

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 107

Grammar of Function Declaration'

decl — fun tunDet end
funDef — funID fparamListO -> type
funBody
funID — 1D

fparamListO — fparamlList

fparamListO — ¢

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

108

e

N\

Grammar of Function Declaration'

fparam.

1St

fparam.

P!

[1st

1St

]

[1st

idP

funBody

e

fparamList ; pList : type

p

P

List : type
List , 1dP

dP

1d

ID sizelistO
declList SLO

~

/

Lect 12

Goutam Biswas

Compiler Design ITIIT Kalyani, WB

Lect 12

g

e We may rewrite the rule
funDet — funID tparamListO -> type funBody as
funDet — funHeader funBody
funHeader — funID fparamListO -> type

e The name of the function and its type
information, an ordered list of return type
and types of formal parameters, can be

inserted in the current symbol table during

\ the reduction to funHeader.

/

109

Goutam Biswas

Compiler Design IIIT Kalyani, WB 110

4 N

e It is necessary to save the current symbol

table (ct) (pointer to it) in a stack and
create a new symbol table (nt) for the new

environment of the function.

e There is a link from the the function name

entry in ct to the new table nt.

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 111

4 N

e It is also necessary to insert the formal

parameter names and their types in the new
symbol-table (nt) as they will be used as
variables during the translation of the

function body.

_ /

Lect 12 Goutam Biswas

Compiler Design

IIIT Kalyani, WB

112

e

N\

Grammar of Function Call'

callStmt
exp
actParamlist

actParamlist

b

actParamList , exp

exp

(ID : actParamListO)

(ID : actParamListO)

/

Lect 12

Goutam Biswas

Compiler Design IIIT Kalyani, WB 113

4 N

e Corresponding to every reduction to

actParamlList the following three address
code may be generated.

codeGen(param, exp.loc)

e But we shall delay the generation of this

code due to several reasons.

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 114

/ \

e It is necessary to check type equivalence of
actual and formal parameters. It may also
be necessary to write code for type
conversion. But none of these can be easily

done during the reduction to actParamlLst.

e Moreover we want to group all actual

parameter codes together, without mixing

them with the code to evaluate expressions.

-

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 115

4 N

e So we save the list of locations of exp’s as

synthesized attribute of actParamlList.

e Finally during the reduction to exp or
callstmt, a sequence of
codeGen(param, exp.loc)

3-address codes are emitted.

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 116

- N

e Actual function call will be made during the

reduction to exp or the callStmt.

e The 3-address code in case of reduction to
callStmt is
codeGen(call, temp, count),
where temp is the symbol-table index

corresponding to the function name and

count is the number of actual parameters.

.

Lect 12 Goutam Biswas

Compiler Design ITIIT Kalyani, WB

117

-

.

e The 3-address code corresponding to the
reduction to exp is slightly different. A new
variable name is created and inserted in the

symbol table with its type information etc.

The code 1s

codeGen(assCall, temp, count, temp;),

where temp; is the index of the symbol-table

corresponding to the new variable.

~

/

Lect 12

Goutam Biswas

Compiler Design IIIT Kalyani, WB 118

4 N

Parameter Passing I

Our discussion on parameter passing assumes
call-by-value. We have not talked about
call-by-reference, call-by-name, call-by-need,
etc.

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 119

4 N

Code for Structure'

We have not talked about code generation for
structure or record declaration and access.

_ /

Lect 12 Goutam Biswas

Compiler Design IIIT Kalyani, WB 120

4 N

‘ Switch Statement '

There is no switch statement in our language.
But what are the possible translation
mechanisms of such a statement?

_ /

Lect 12 Goutam Biswas

